

Spherical explosions were detonated at varying heights above the ground and imaged with high-speed cameras. The high-speed images were processed using natural background oriented schlieren and background subtraction techniques to visualize shock wave propagation and reflection from the ground. Digital streak images were created from the high-speed video frames. Tracking the shock wave became more quantifiable with the streak images, which allowed data such as the shock velocity, shape, and interactions with the fireball to be collected. The images were also analyzed to measure the change in light intensity of the explosive fireball as the reflected ground shock wave passed through the fireball. Correlations between the height of burst, ground shock reflection velocity, and fireball illumination are presented.

*This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.