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environments and highly integrated measurements challenging
interpretation.

2

N Magnetized Liner Inertial Fusion produces a hot (multi- )
keV), dense (~1 g/cc), and macroscopic (O(10mm) tall and
0O(0.1mm) diameter) cylindrical D, plasma with thermal
pressures that can exceed 1Gbar. This platform 1s ideal for
developing and applying data-driven solutions to some of our

Some challenges: biggest challenges (specific example to follow).
*Destructive experiments
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°Small data-regime (relative to ML) !
» Highly integrated measurements
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° = intuition driven design
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s fcompression process. Measuring BR could pr'&)wde insights into
these effects.

« Effective flux compression is critical for performance
> Aids trapping of fusion products and reduction of electron heat conducti
°|dealized calculations show ~1000x B-field amplification may be achiev:

«Physical mechanisms (Nernst, resistive diffusion, etc.) may cause flux to
leave fuel
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B-field locked into plasma by
warm electrons, so electron
thermal transport
perpendicular to magnetic field
will transport flux.

\ / - Greater preheat increases V, T, increasing Nernst

- Greater B, decreases Nermnst

- Measurement could help quantify these effects




¢ | Radially and axially viewed secondary DT neutron spectra and

yield ratio Y = Y, /Yy are sensitive to fuel magnetization.
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7 | neural network surrogate enables Bayesian inference
for UQ.

*10-100 CPU hours per model evaluation
°10’s of thousands of evaluations for Bayesian UQ per experiment
*Replace forward model with NN (including surrogate model uncertainty)
°<1ms forward model evaluation on personal machine

Secondary nToF Data with Automated Data Featurization Features with Uncertainty
signal and background ROI selected
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Uncovered experimental evidence that Nernst is integral to
performance scaling in MagLIF.

*Nernst limits the gains that can be obtained by increasing preheat
Fill density, Applied B field, and peak current should be improved to enable performance gain
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W.E. Lewis et al., accepted Phys. Plasmas (2021). M.R. Gomez et al., PRL 125, 155002 (2020).




Notional Loboratories
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