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. Jet-in-crossflow (JIC)
« CVP, HSV, shear layer, etc.

S. Arunajatesan AIAA (2012).

“[T]he predictive capabilities of the family

of models examined here for the jet-in-

crossflow problem are marginal at best.”

» overpredicted velocity deficit

» overpredicted CVP strength, wrong
location

» poor Reynolds stress predictions

Two causes:
1. Model-form error — Missing physics
2. Inadequate coefficient calibration

/ RANS Performance
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PIV data from Sandia
experiments circa 2005.

Beresh et al. AIAA Journal, 43:2, 2005
Beresh et al. JPP, 23:2, 2007
etc.
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Redefine RANS model
coefficients via a data-driven
calibration.

Two approaches:
1. Best scalar
2. Spatially-varying state-based

// Application: Supersonic jet in transonic crossflow
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Approach #1:
Calibrate Model
Coefficients via PIV
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Bayes theorem: Best combination of
model coefficients: C = {C,, Cc;, C¢4}

Cpnom = {0.09,1.90,1.43)
Copt = {0.1025,2.099,1.416)

Calibrated
k-£¢ model

0.02
y [m]
AlAAJ, 54:8, 2016.

2018.

Figures from Ray et al,

See also AIAAJ, 56:12,

/ Calibrate RANS based on PIV data

Standard
k-&£ model
Calibrated
k-£ model




Pf/ The jet interaction data set
/ Cfa" T 11177777552

brated based on only four PIV
planes:
Transverse jet of varying strength.

The full data set contains 48 test
cases, varying:

 Jet strength

* Nozzle inclination

« Measurement station

i
TfPfEE

0.98
0.96
0.94
0.92
0.9

0.88
0.86
0.84

Also, PlV test case on a full-scale
vehicle with spin rockets.

RANS run using SIERRA Aero CFD Code

Beresh et al, AIAAJ, 45:8, 2007



/ Validating the calibrated C, model

'/We examined 6 quality metrics on V and @ (Miller et al. 2022)
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Here’s one:
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,// Validating the calibrated C, model

'/We examined six quality metrics (Miller et al. 2022)
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Here’s another:

// Validating the calibrated C, model

'/We examined six quality metrics (Miller et al. 2022)
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/ Validating the calibrated C, model

/We examined six quality metrics (Miller et al. 2022)

4

Five of the six metrics showed substantial
improvement for nearly every case.

The sixth showed mixed results.

= = —

This simply uses the mean vorticity field
from four PIV planes.

Experimental calibration yielded coefficients |
with general JIC improvement. |

L R |




Approach #2:
Spatially-variable C,,
based on PIV




,/ A look inside a turbulence closure model

4 /| Turbulent eddy viscosity: In a k-€ model:
Linear Boussinesq: — tke
-1 ra vt > G . 1——
uiu}- - Ekaq = a’ij’ = —ZVtSij \ k = Euiut
_ model dissipati
Ordinary Least Squares: constant ISSIDERAE
e rate
Aijdij /
;= ————
—28k1 Sk How realistic? Consistency issue?

We can calculate all of these terms directly from PIV!

A simple computation based on the above equations will not suffice.
The full story: see Miller and Beresh, AIAA Journal, 2021.
o2



New approach:
C, is allowed to vary spatially

based on wind tunnel PIV
data, rather than assuming a
fixed constant.

We need C, over the entire
computational domain.

The PIV provides C, in only
two planes.

Computaisnal domain
o e "™ |

Machine learning of €, from
the PIV data...

Cy = £(54,24)
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New approach:
C, is allowed to vary spatially

based on wind tunnel PIV
data, rather than assuming a
fixed constant.

* Deep Learning of PIV-derived C,

values Co = F(Ras)

2 = (82}, 2, = {82},
25 = {89}, 4, = (802}, 2, = (§207)

Deep Neural Network (DNN)
Multiple (3) hidden layers
18, 9, 3 nodes per layer
RelLU activation function
Ensembles of networks

model value
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= / Move to a spatially-variable C, model

- | Calibrated C, = 0.1025

:calibrated constant

. nominal constant i

Nominal C, = 0.09

0 0.05 0.1 0.15 0.2 0.25
experimental data-derived value I



Nominal, Calibrated, &VarlabIeC models

« Variable €, model queries ensemble of networks trained on 2
planes of PIV data

120 : 100
& *
0.1305 15
100 l{]u?{] w0 - s -
\ 2 Variable C,
- 0.126
’ " ~ |across the
— o7 s I
T RS A : | JIC domain
- 0.102

G0 4 00630

0.0495 " DEfaUIts baCK

10 A 0.0360 78
. toC, =0.1025
| |
[ |
00225 66 J“
i

20 T T T T 00090 0 1
240 26 28 : 32 340 ' T T ' T !
260 280 00 320 0 4D 20 0 20 10 60




_,/ How well does this work?

Experiment

k — € (Calibrated . k—¢ (ML C:ﬁ)

Experiment k—e k — e (Calibrated k—e(MLC),)

[




/ How well does this work?
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Significant improvement over nominal ) _ )
Slight improvement over Calibrated?

But we already knew that....




P/ What's going on?
" Default C, to 0.1025

Avoid extrapolatlon or variance

Result: Default Cﬂ dominates the result

What is C, in unmeasured regions?

The PIV data miss important physics near the wall and the
jet nozzle

Another issue is data consistency

C, model trained using measured k and &, but RANS k and ¢
values may be in error




P/ Conclusions & what's next?

Data-driven CFD trained with PIV-measured physics
rather than trained with LES/DNS

Model as implemented may be an improvement over
best Calibrated model

Default Calibrated value dominates:
More data needed?

Formalized validation with same 6 metrics ongoing:
Stay tuned

Improve PIV data consistency
Use same data in TBNN: Eric Parish
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Quality metrics, predicted (Xzans) VS true (Xpy):
‘4
« Mean Squared Error (normalized): 0.0 = perfect * Vortex Perimeters (normalized): 1.0 = perfect
« Measures peak accuracy * Measures vortex size
. 2
MSE = (Xppy X};ANSJ ) -y Prans
(XPIV > Ppry
« Geometric Mean Error (normalized): 0.0 = perfect « Vortex Circulation (normalized): 1.0 = perfect
* Measures bulk accuracy * Measures vortex strength
GME = exp[({In(I1Xpry — Xrans|))) r* = r?“”sr [= J-EdA
exp[({(In(|Xprv 1)) PIV
« 2-D Correlation Coefficient: 1.0 = perfect « Vortex center difference: 0.0 = perfect
* Measures spatial alignment * Measures vortex alignment
A 2i %j(Xpy — (Xpiv)) (Xrans — (Xrans)) wy SOy + Vrans)2 + Gy + ZRANS)EJ 9.2 = f[y. fath
JE,;Z;(XPW — Xpw))? X Xj(Xpans — (Xrans))? Perv

y




