

Exceptional service in the national interest

Data-Driven Calibration of RANS Closure Models with PIV

Nathan E. Miller, Steven J. Beresh,
Eric J. Parish, Jaideep Ray, and
Matthew F. Barone

2022 Symposium on Turbulence Modeling
July 27-29, 2022

RANS Performance

Jet-in-crossflow (JIC)

- CVP, HSV, shear layer, etc.

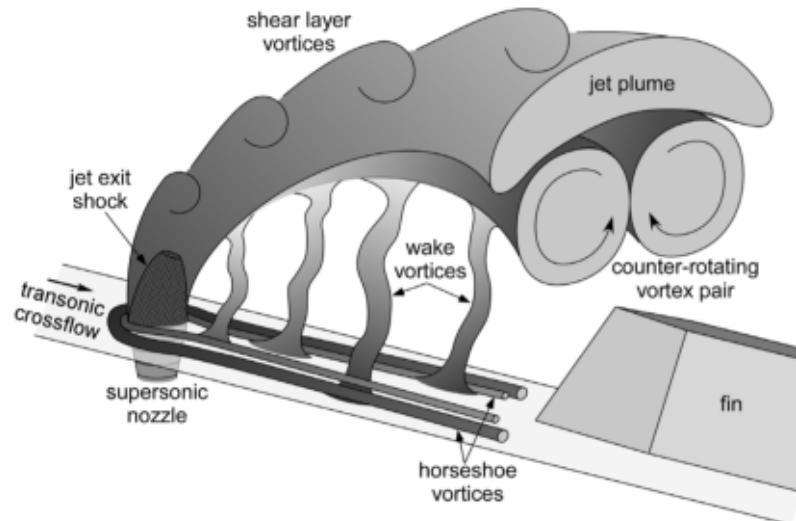
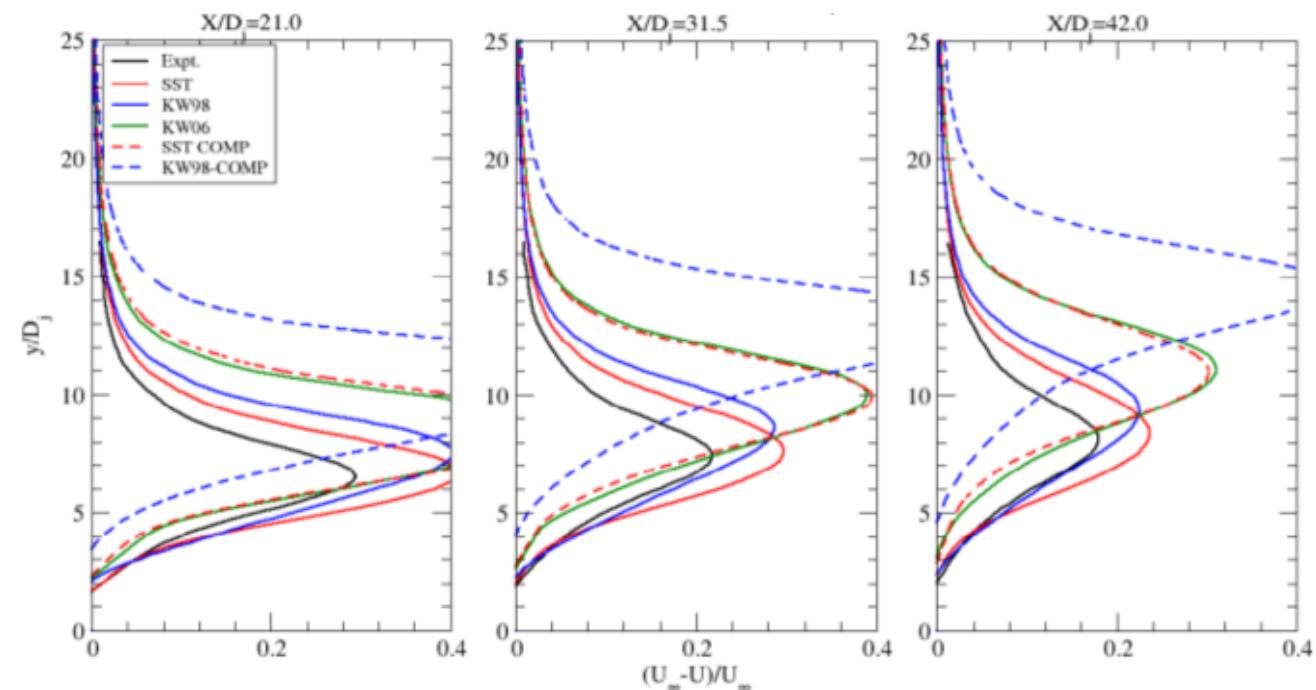
S. Arunajatesan AIAA (2012):

"[T]he predictive capabilities of the family of models examined here for the jet-in-crossflow problem are marginal at best."

- overpredicted velocity deficit
- overpredicted CVP strength, wrong location
- poor Reynolds stress predictions

Two causes:

1. **Model-form error** → Missing physics
2. **Inadequate coefficient calibration**



Application: Supersonic jet in transonic crossflow

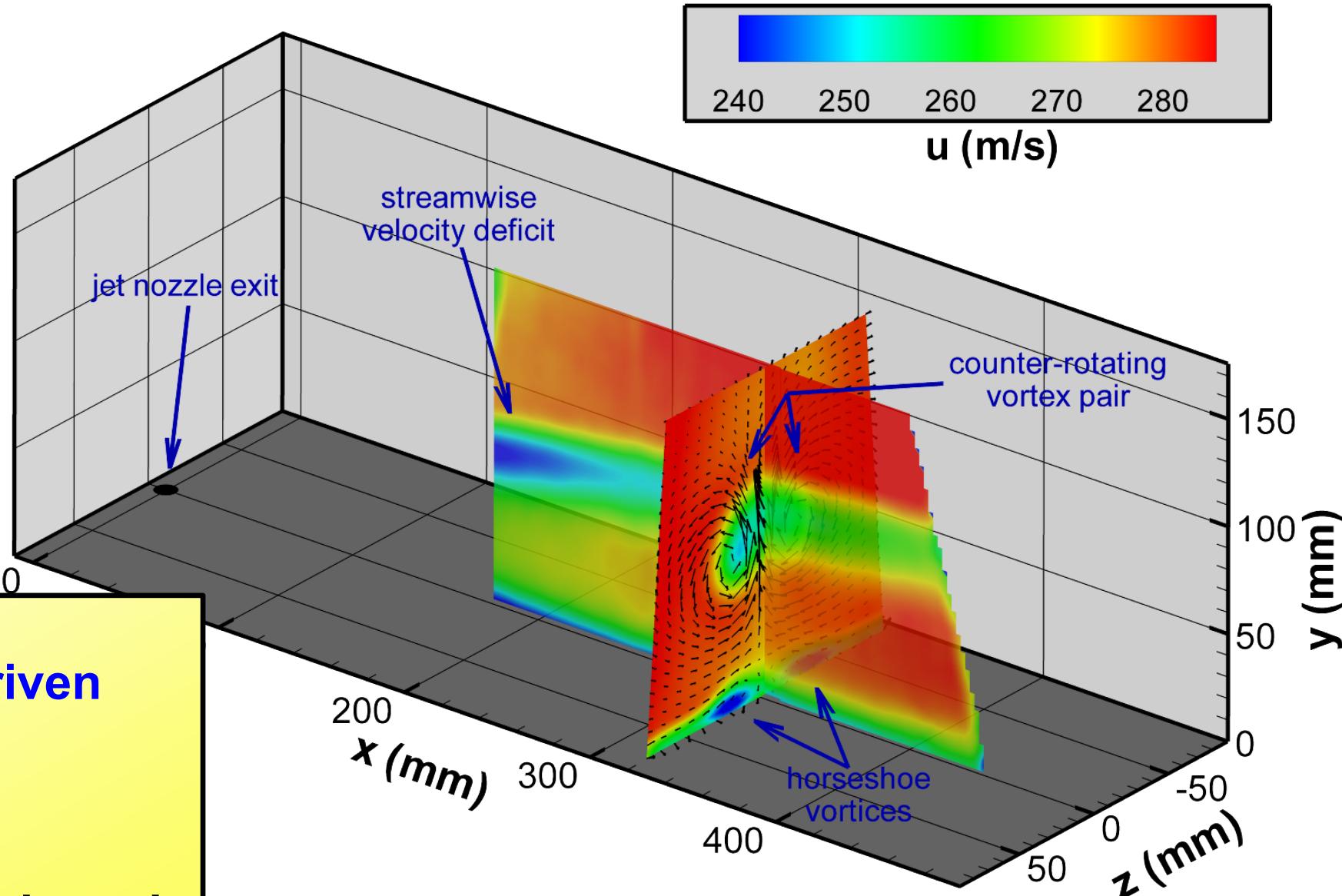
PIV data from Sandia experiments circa 2005.

Beresh et al. AIAA Journal, 43:2, 2005
Beresh et al. JPP, 23:2, 2007
etc.

Redefine RANS model coefficients via a data-driven calibration.

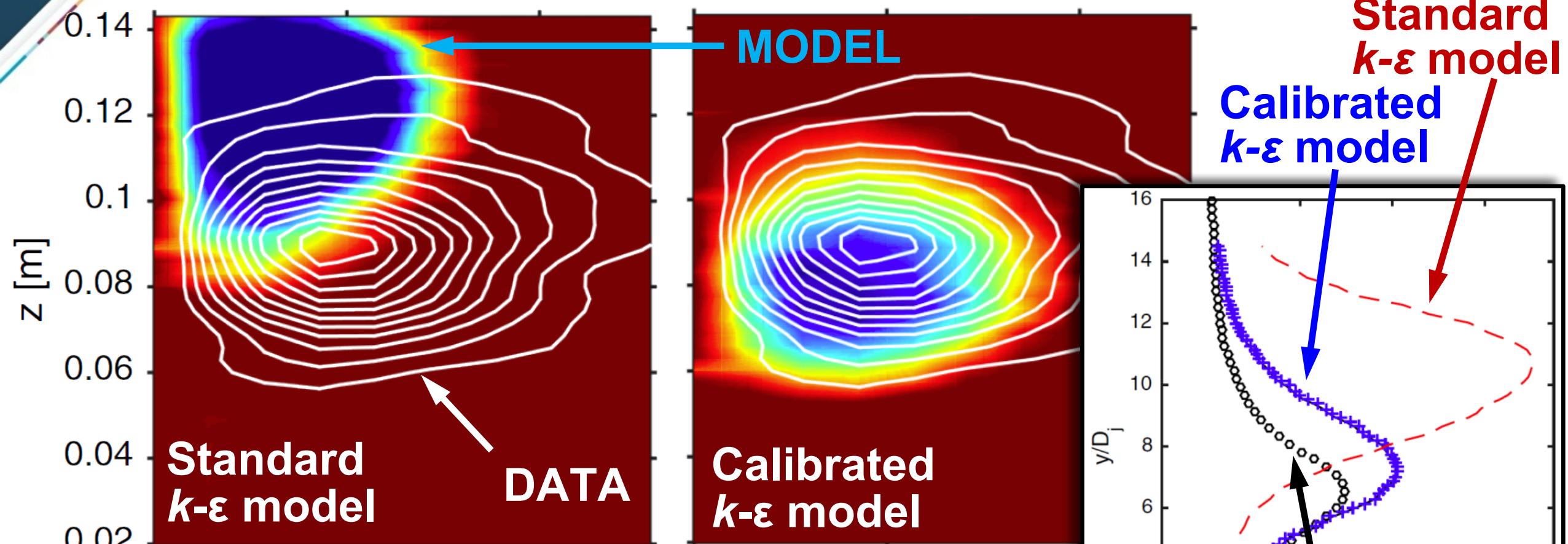
Two approaches:

1. Best scalar
2. Spatially-varying state-based



Approach #1: Calibrate Model Coefficients via PIV

Calibrate RANS based on PIV data



Bayes theorem: Best combination of model coefficients: $C = \{C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1}\}$

$$C_{nom} = \{0.09, 1.90, 1.43\}$$

$$C_{opt} = \{0.1025, 2.099, 1.416\}$$

Figures from Ray *et al*,
AIAAJ, 54:8, 2016.
See also AIAAJ, 56:12,
2018.

The jet interaction data set

Calibrated based on only four PIV planes:

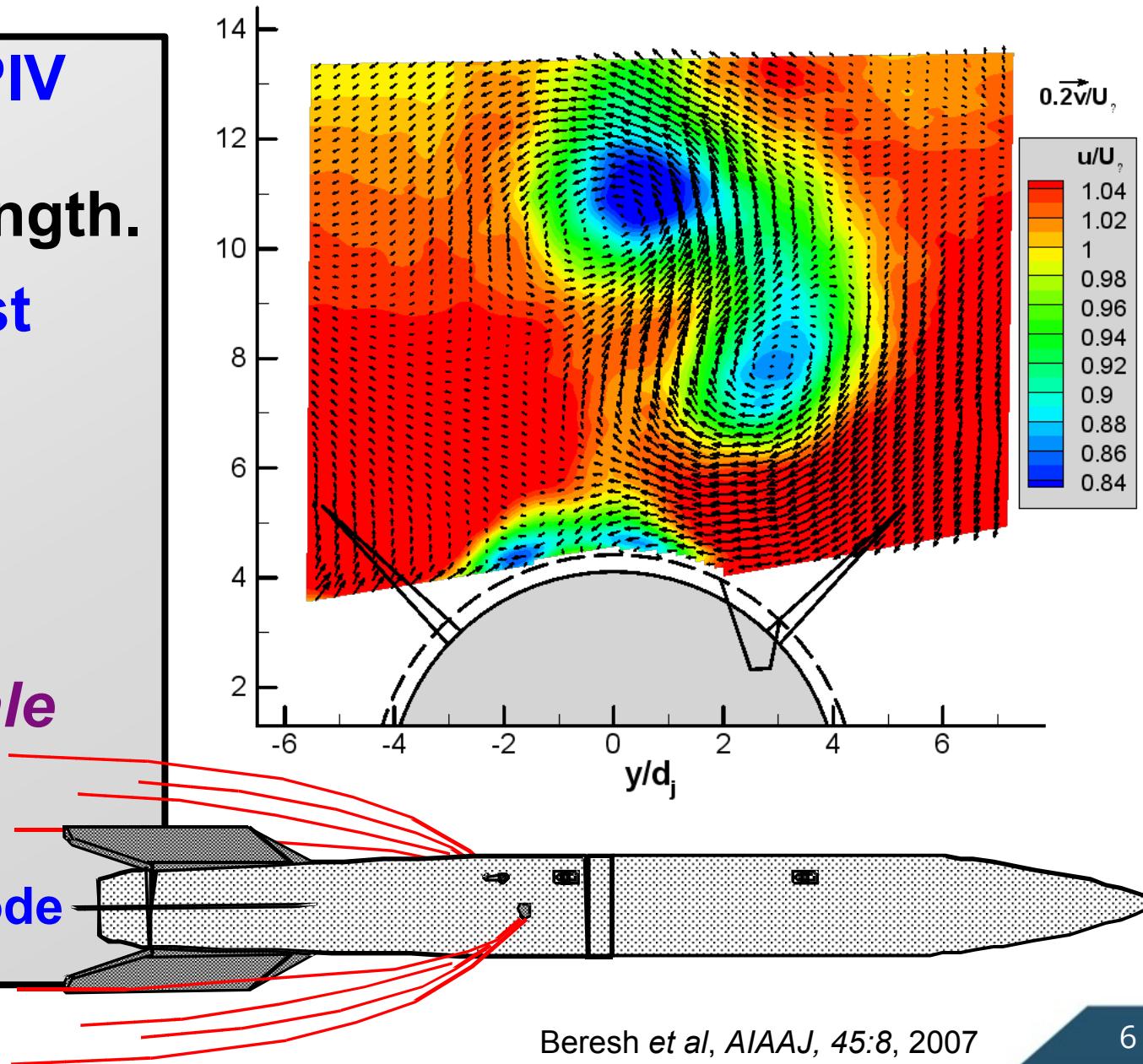
Transverse jet of varying strength.

The full data set contains 48 test cases, varying:

- Jet strength
- Nozzle inclination
- Measurement station

Also, PIV test case on a full-scale vehicle with spin rockets.

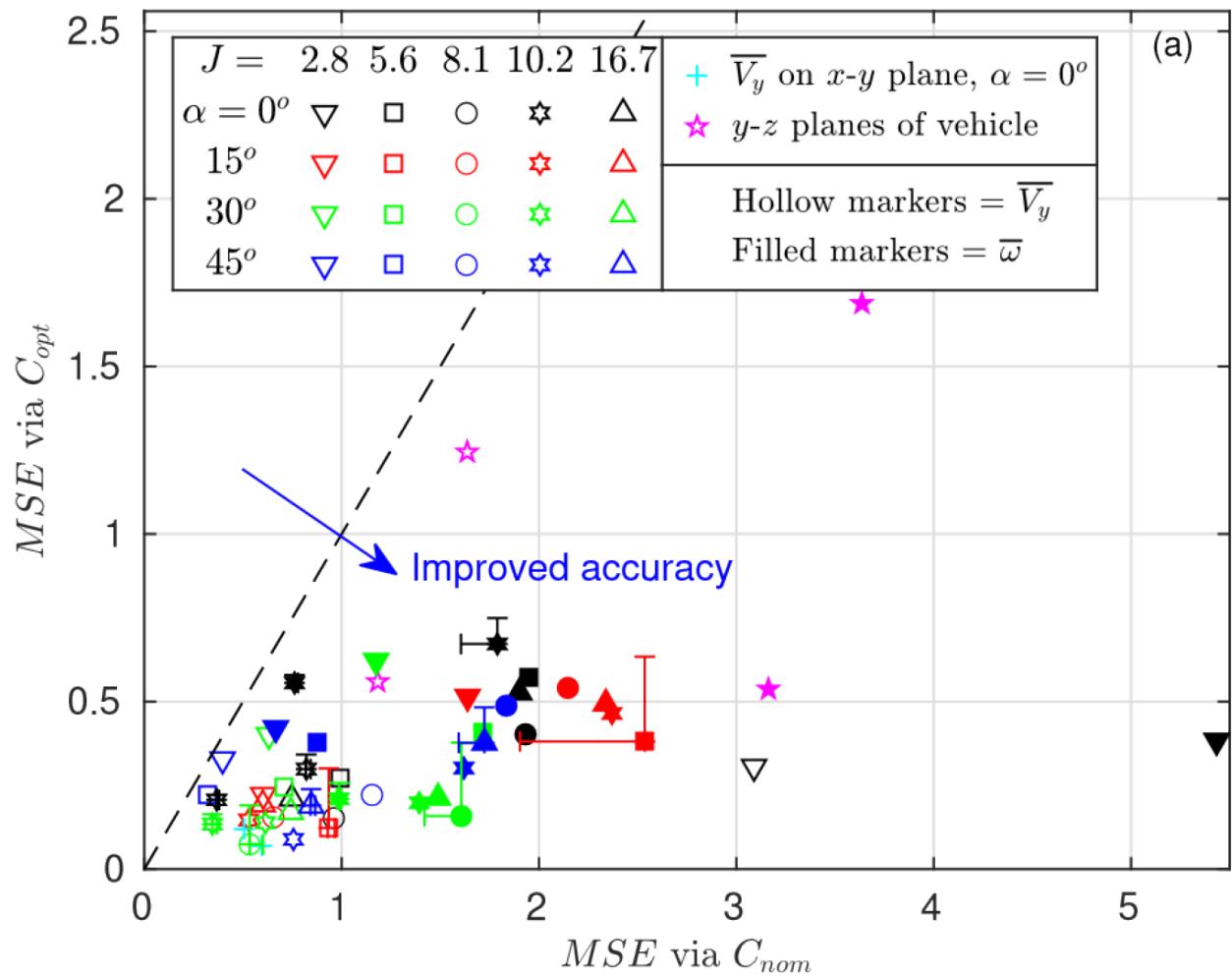
RANS run using SIERRA Aero CFD Code



Validating the calibrated C_μ model

We examined 6 quality metrics on \bar{V} and $\bar{\omega}$ (Miller et al. 2022)

Here's one:

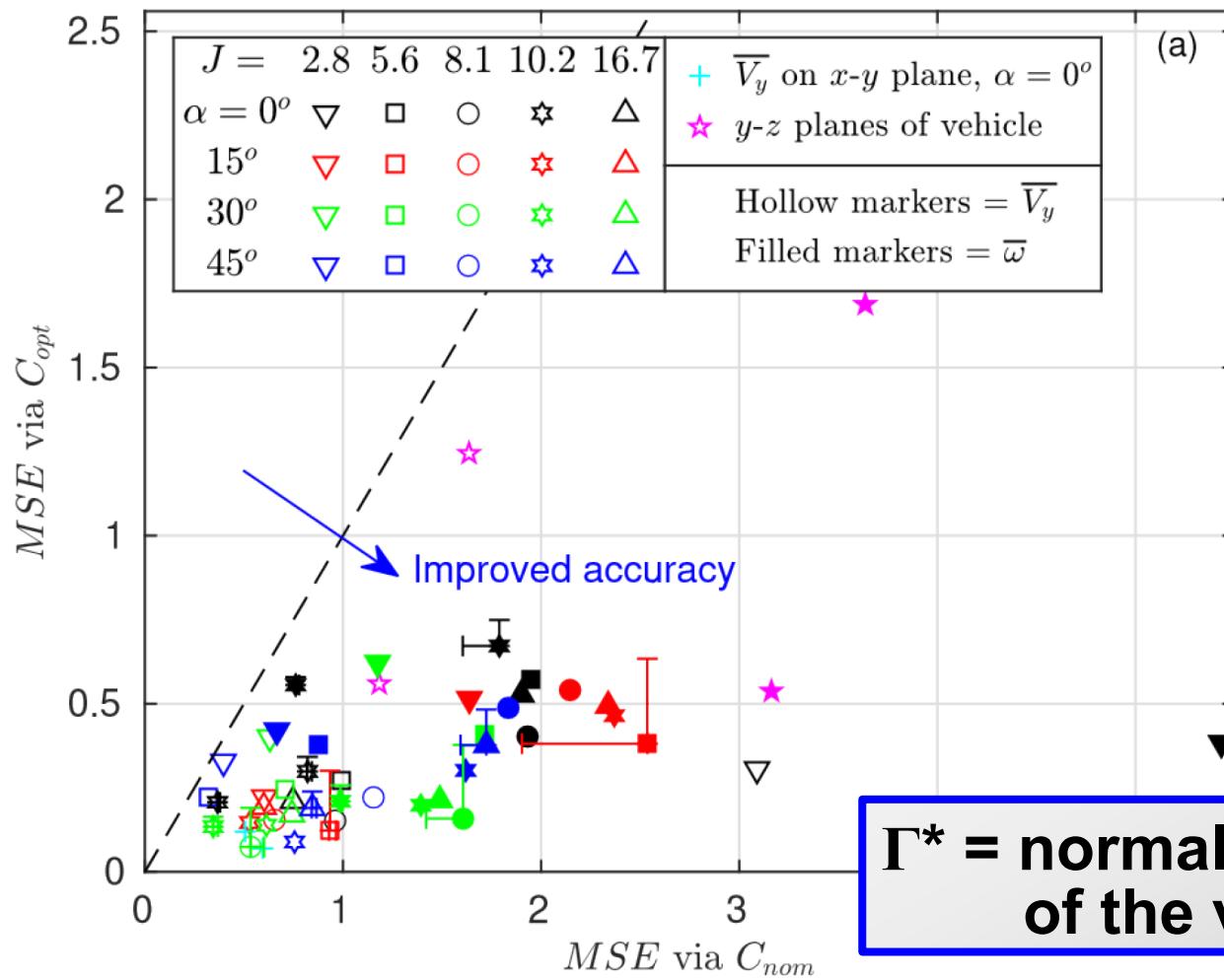


MSE = mean square error
Overall picture of the error of the CFD w.r.t. the PIV.

Validating the calibrated C_μ model

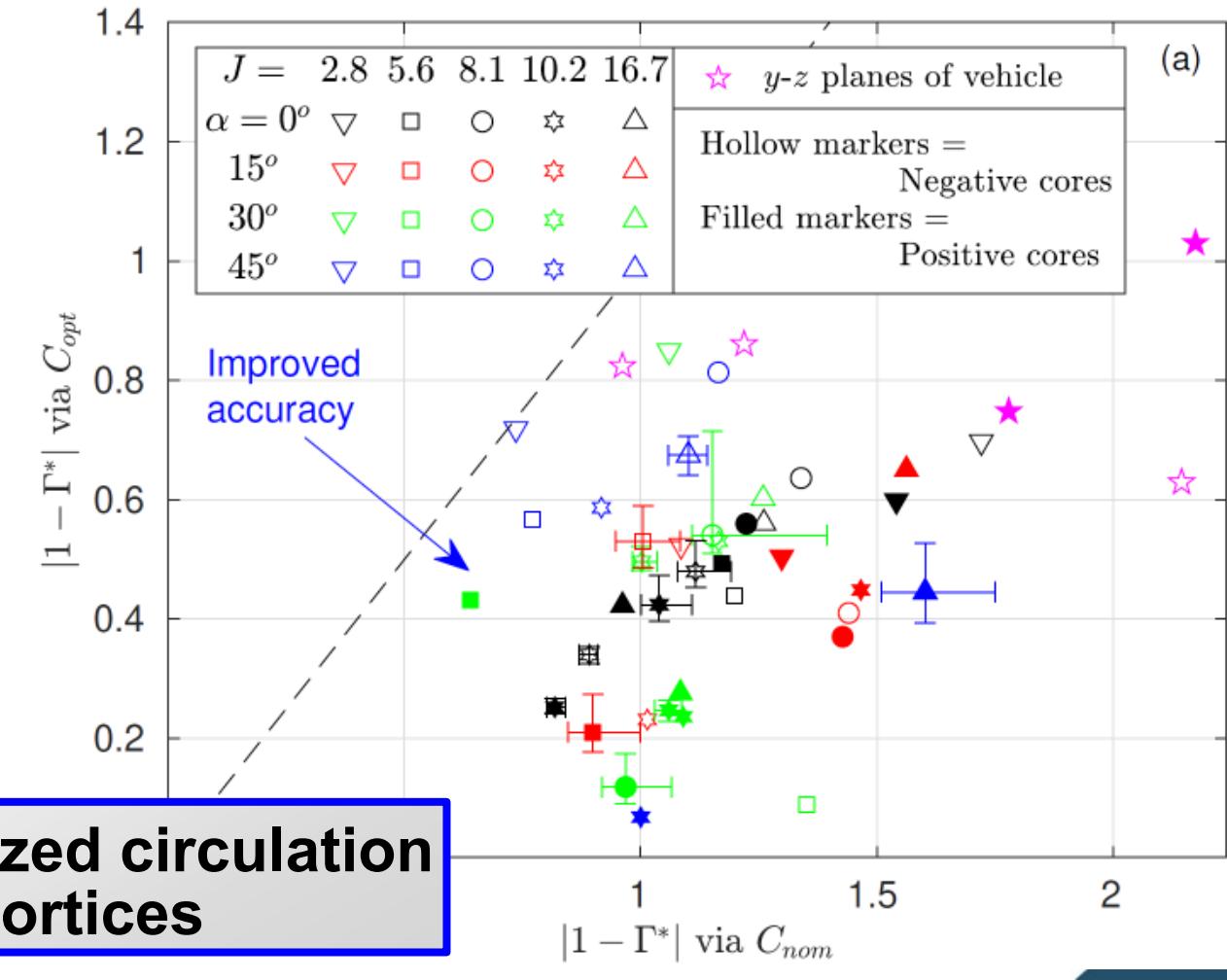
We examined six quality metrics (Miller et al. 2022)

Here's one:



Γ^* = normalized circulation
of the vortices

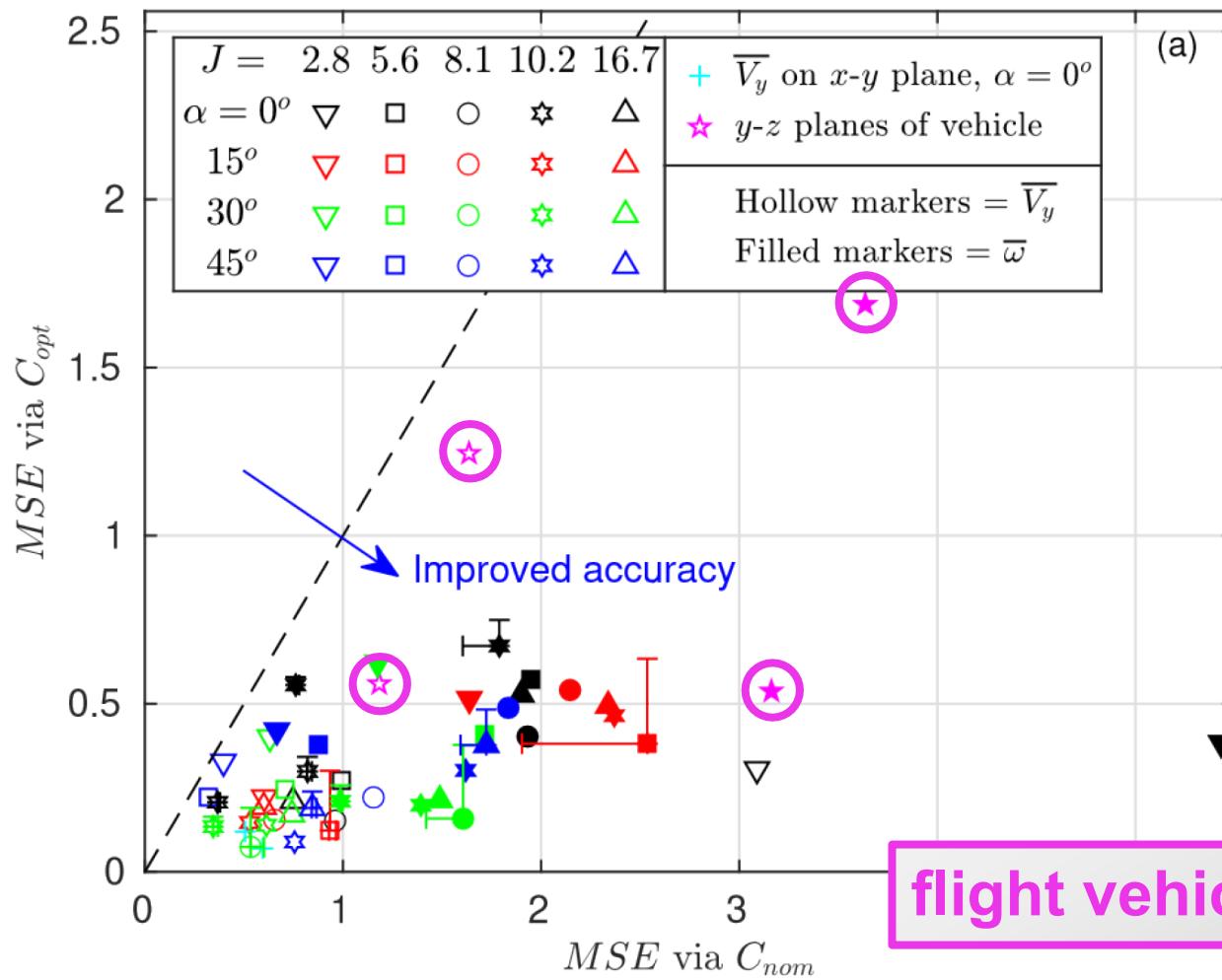
Here's another:



Validating the calibrated C_μ model

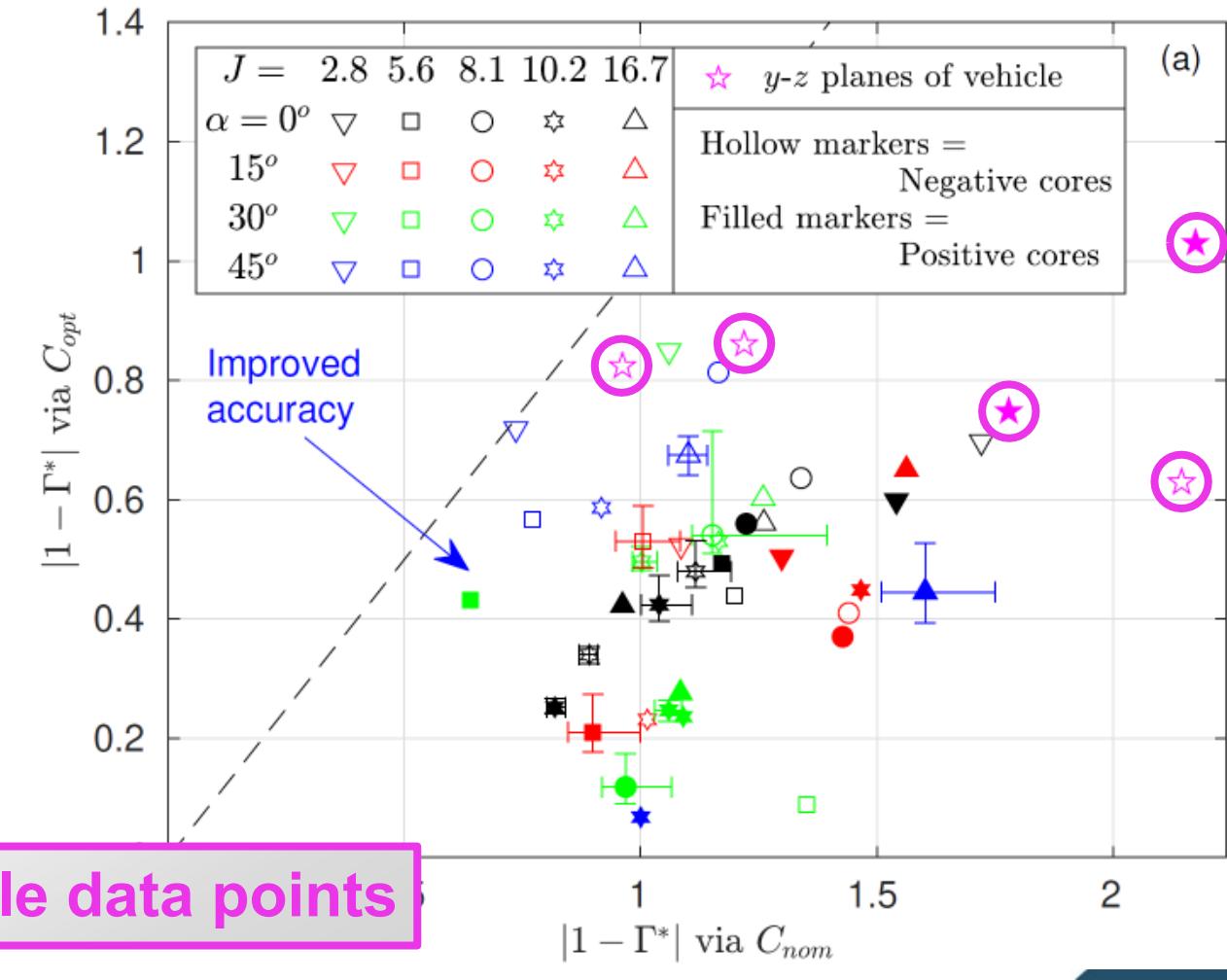
We examined six quality metrics (Miller et al. 2022)

Here's one:



flight vehicle data points

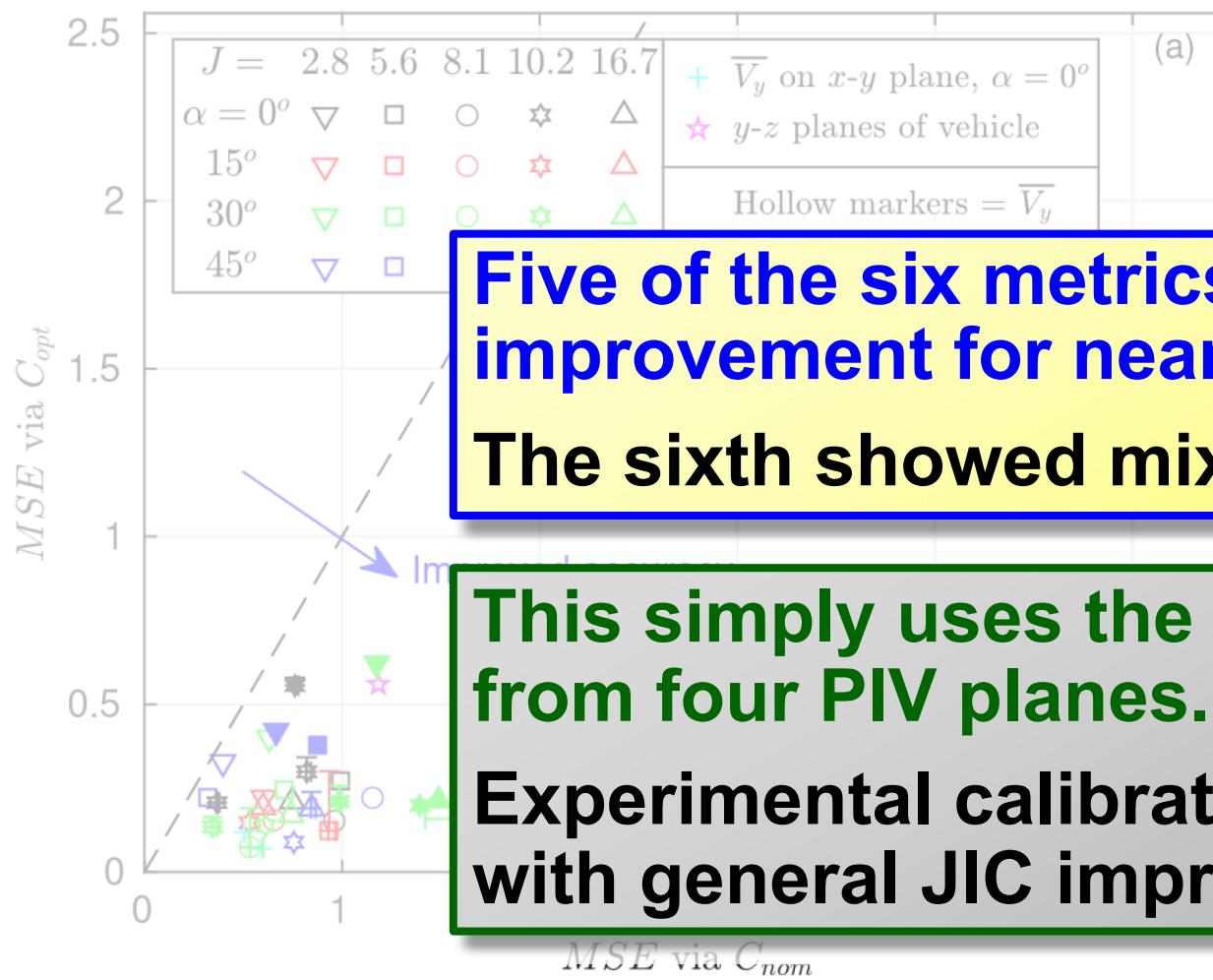
Here's another:



Validating the calibrated C_μ model

We examined six quality metrics (Miller et al. 2022)

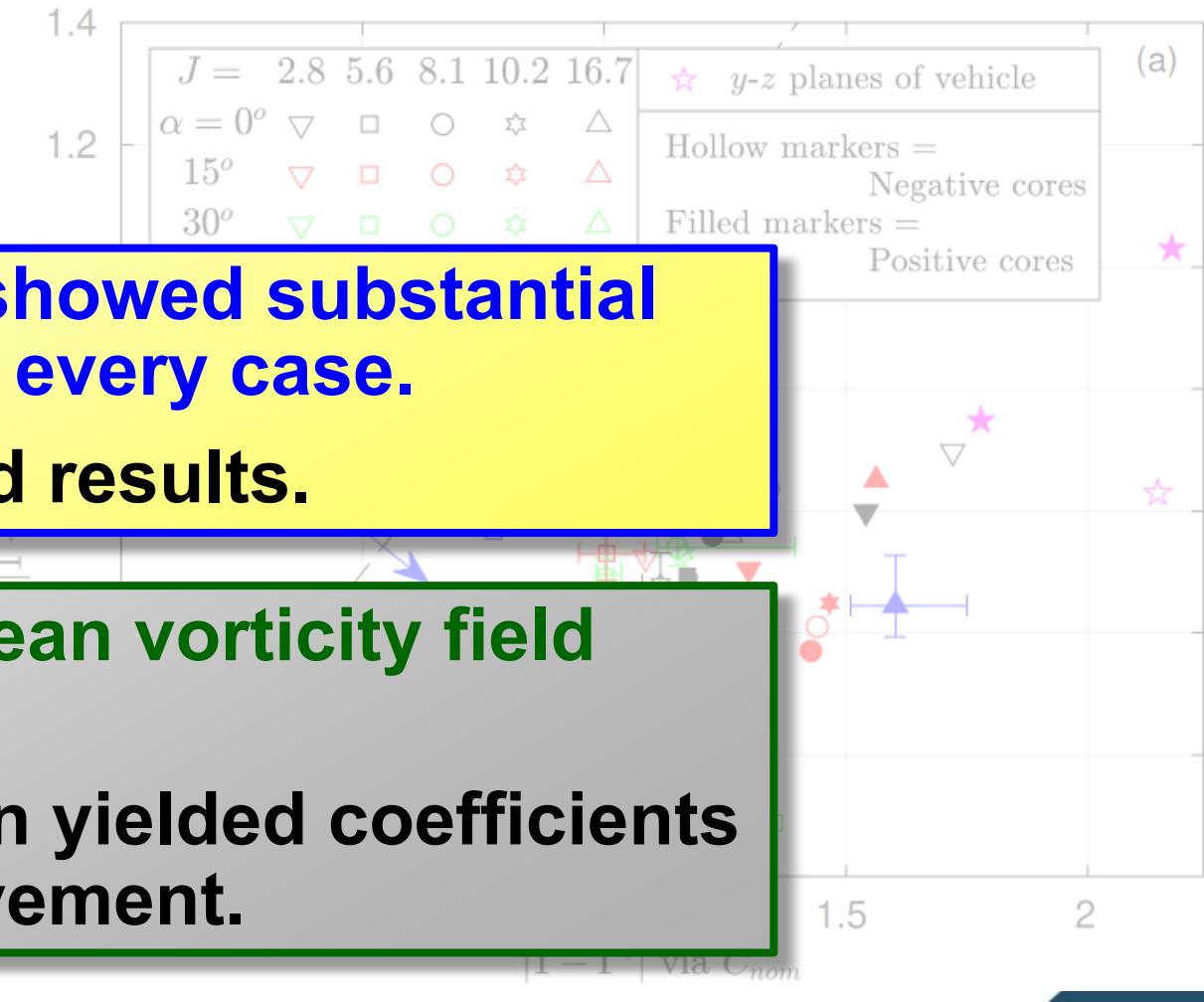
Here's one:



Five of the six metrics showed substantial improvement for nearly every case.

The sixth showed mixed results.

Here's another:



This simply uses the mean vorticity field from four PIV planes.

Experimental calibration yielded coefficients with general JIC improvement.

Approach #2:
Spatially-variable C_μ
based on PIV

A look inside a turbulence closure model

Turbulent eddy viscosity:

Linear Boussinesq:

$$\overline{u'_i u'_j} - \frac{2}{3} k \delta_{ij} = a_{ij} = -2 \nu_t \overline{S_{ij}}$$

Ordinary Least Squares:

$$\nu_t = \frac{\overline{a_{ij}} \overline{S_{ij}}}{-2 \overline{S_{kl}} \overline{S_{kl}}}$$

In a $k-\varepsilon$ model:

$$\nu_t = \frac{C_\mu k^2}{\varepsilon}$$

model constant

$$k = \frac{1}{2} \overline{u'_i u'_i}$$

dissipation rate

How realistic? Consistency issue?

We can calculate all of these terms directly from PIV!

A simple computation based on the above equations will not suffice.

The full story: see Miller and Beresh, *AIAA Journal*, 2021.

Move to a spatially-variable C_μ model

New approach:

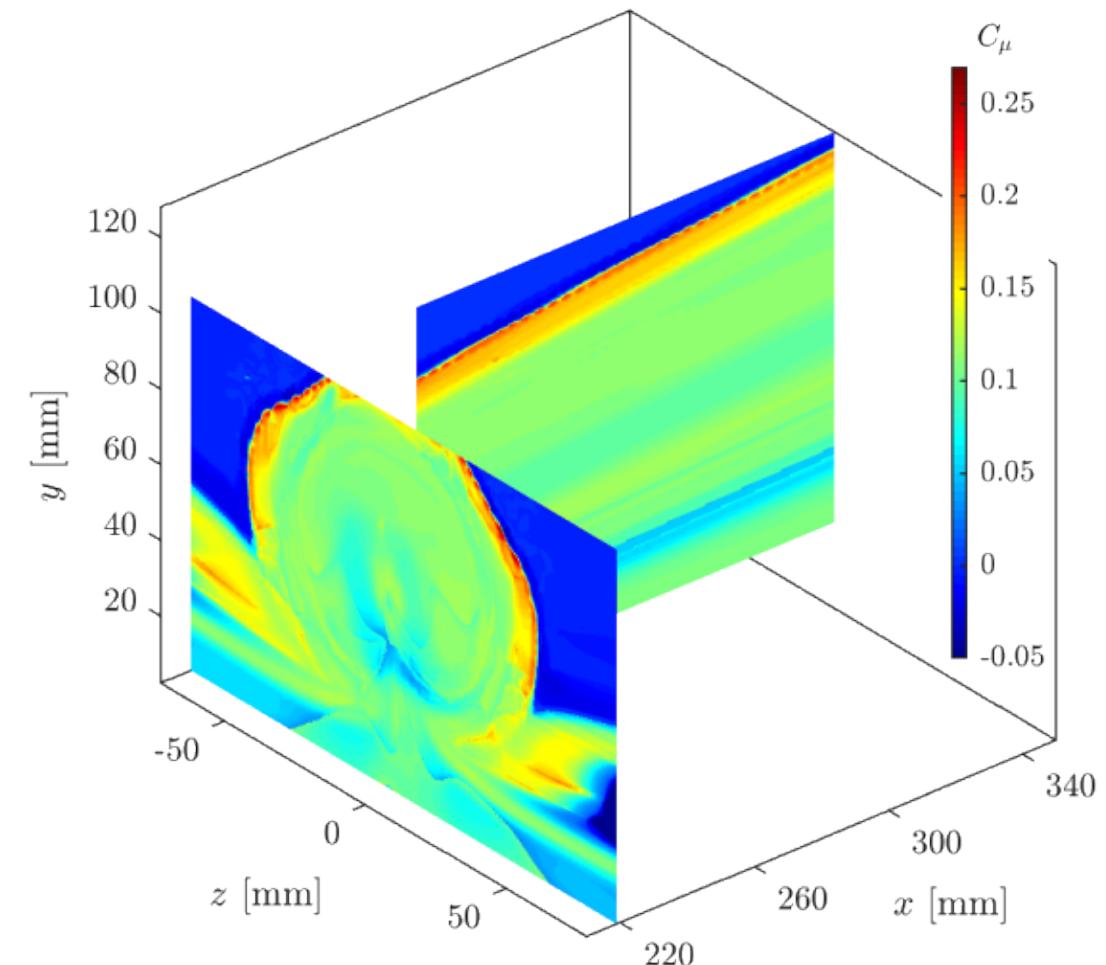
C_μ is allowed to vary spatially based on wind tunnel PIV data, rather than assuming a fixed constant.

We need C_μ over the entire computational domain.

The PIV provides C_μ in only two planes.

Machine learning of C_μ from the PIV data...

$$C_\mu = f(\hat{S}_{ij}, \hat{\Omega}_{ij})$$



Move to a spatially-variable C_μ model

New approach:

C_μ is allowed to vary spatially based on wind tunnel PIV data, rather than assuming a fixed constant.

- Deep Learning of PIV-derived C_μ values

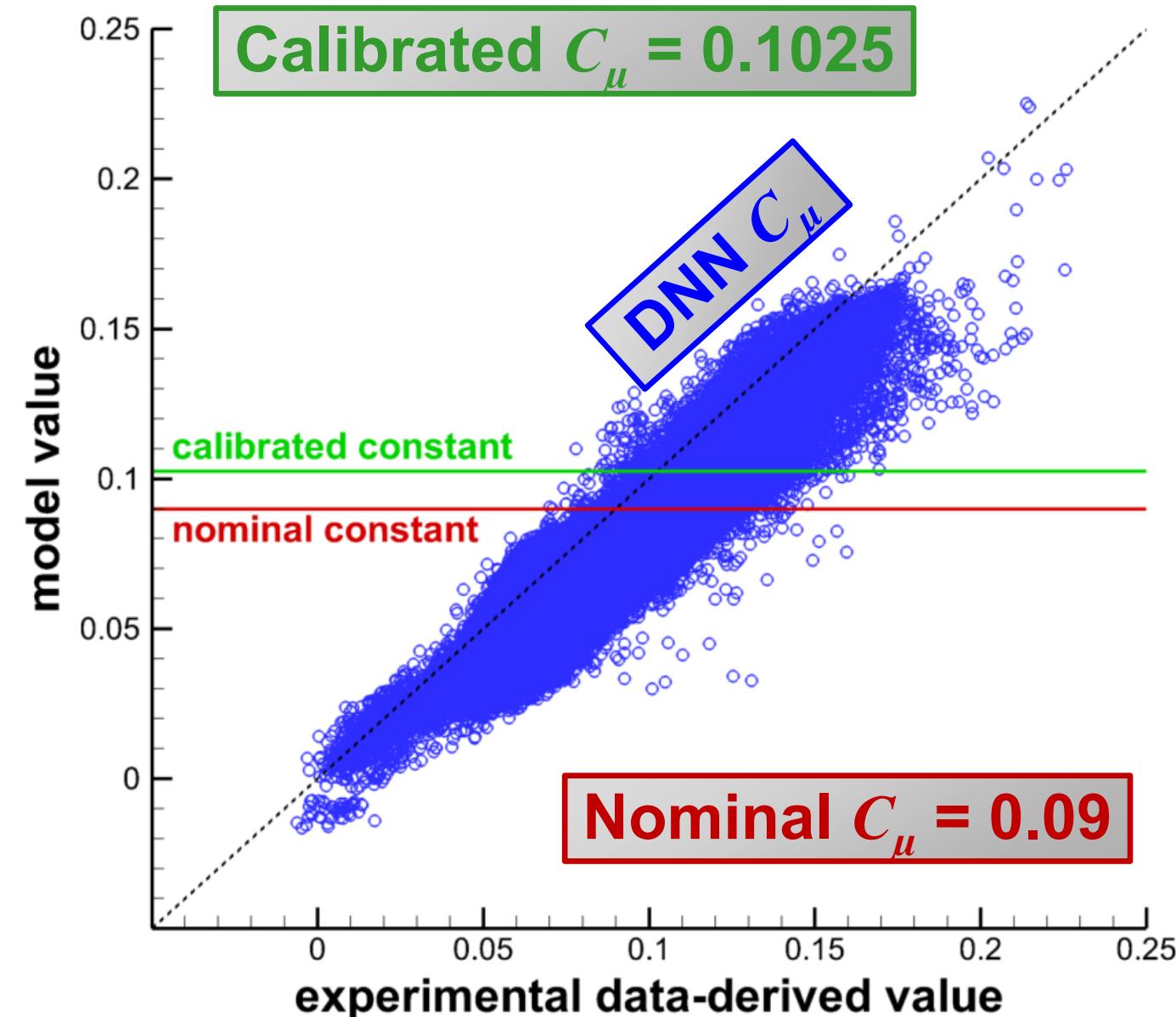
$$C_\mu = f(\lambda_{1-5})$$

$$\lambda_1 = \{\hat{\mathbf{S}}^2\}, \lambda_2 = \{\hat{\boldsymbol{\Omega}}^2\},$$

$$\lambda_3 = \{\hat{\mathbf{S}}^3\}, \lambda_4 = \{\hat{\mathbf{S}} \hat{\boldsymbol{\Omega}}^2\}, \lambda_5 = \{\hat{\mathbf{S}}^2 \hat{\boldsymbol{\Omega}}^2\}$$

- Deep Neural Network (DNN)

- Multiple (3) hidden layers
 - 18, 9, 3 nodes per layer
- ReLU activation function
- Ensembles of networks

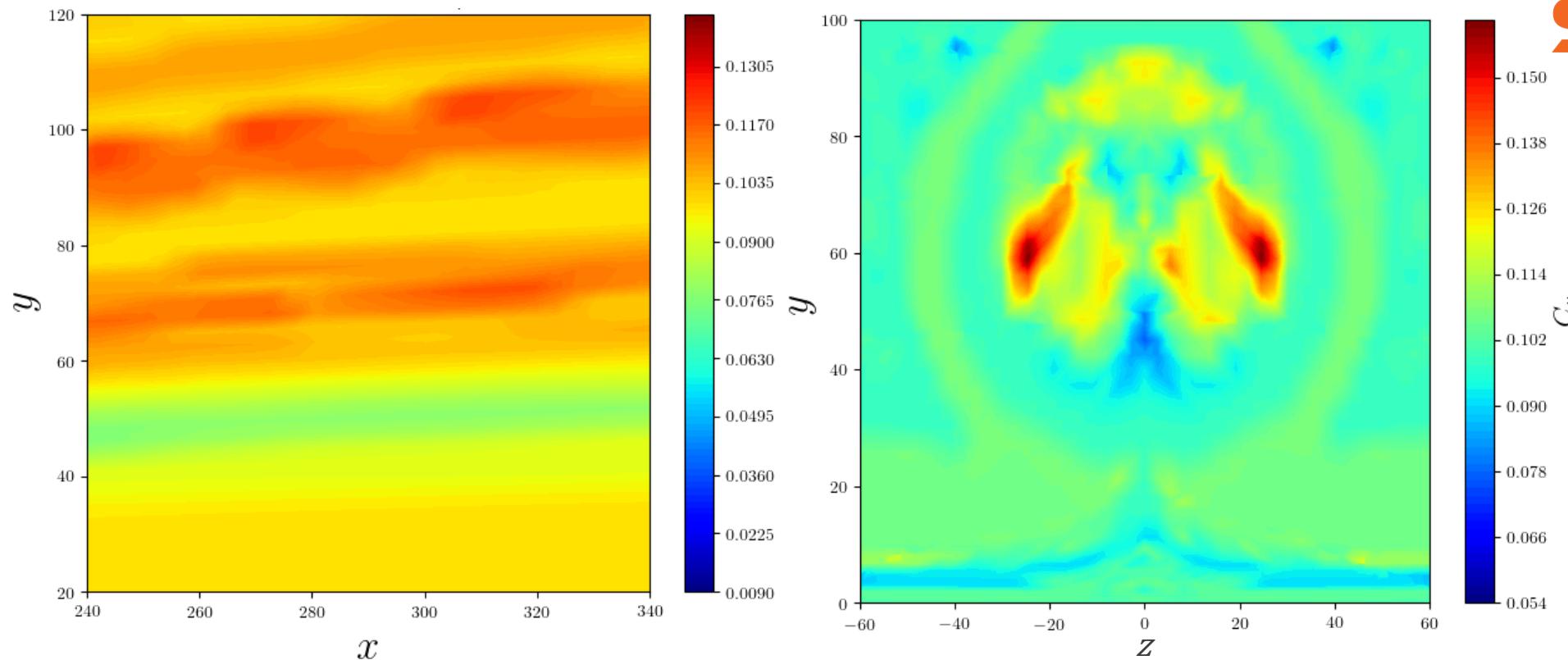


Implementation

Sandia Parallel Aero Reentry Code (SPARC)

- Nominal, Calibrated, & Variable C_μ models
 - Variable C_μ model queries ensemble of networks trained on 2 planes of PIV data

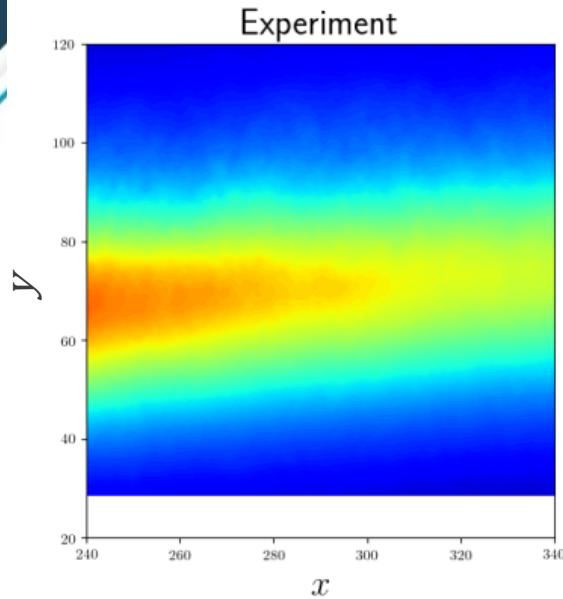
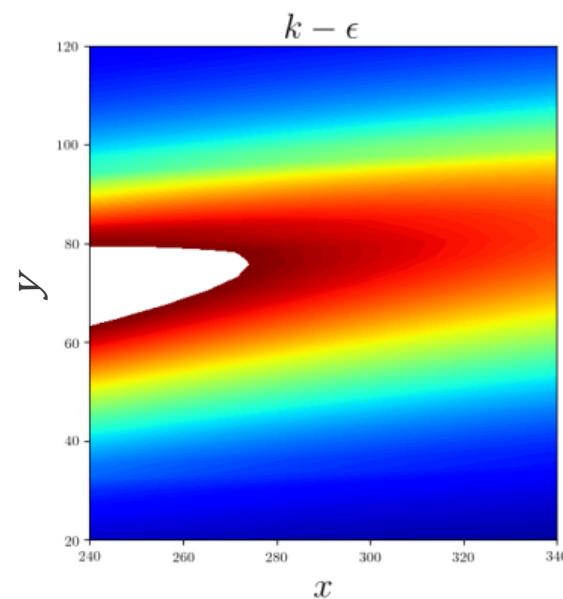
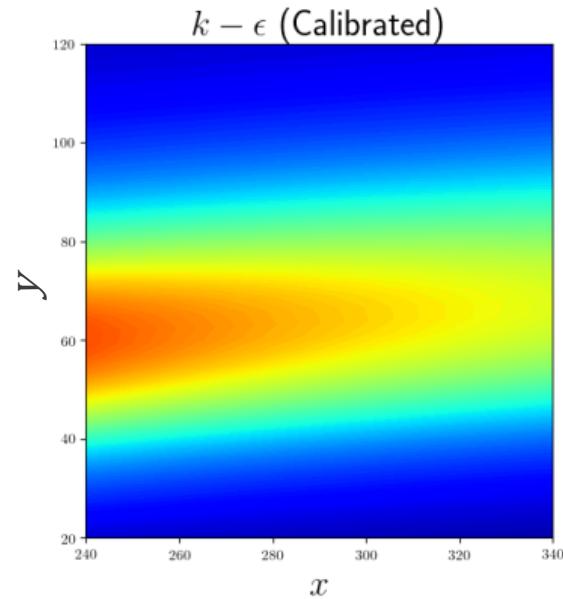
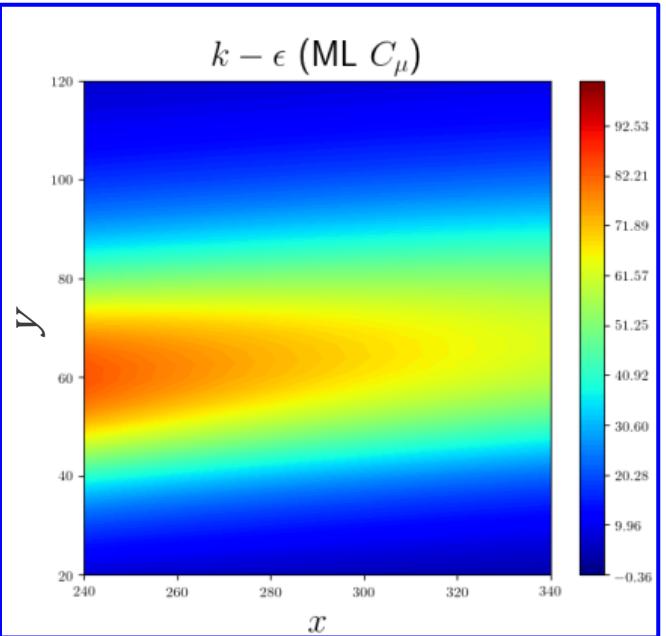
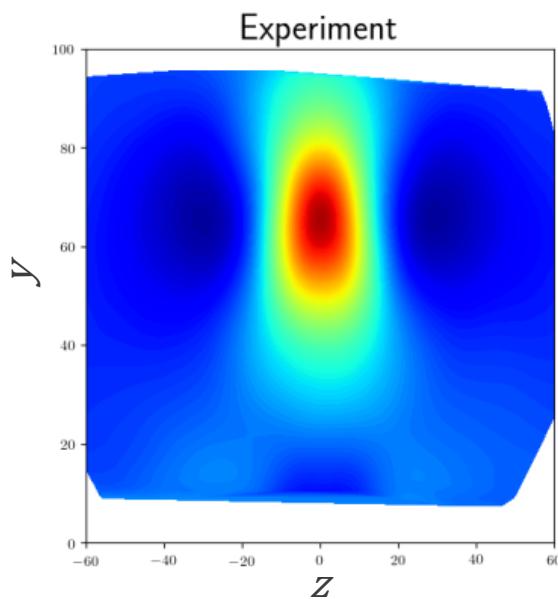
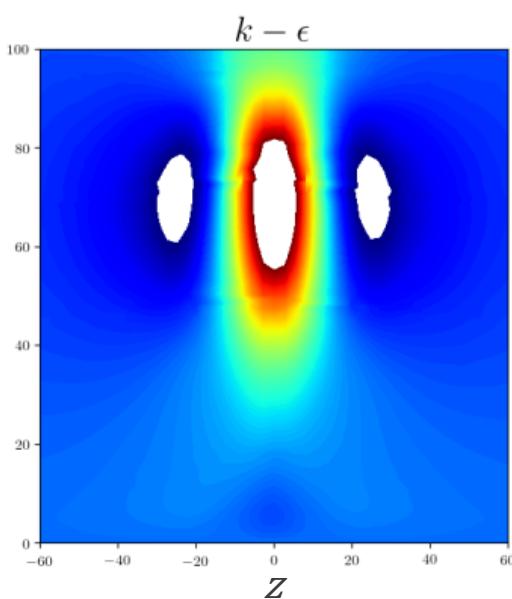
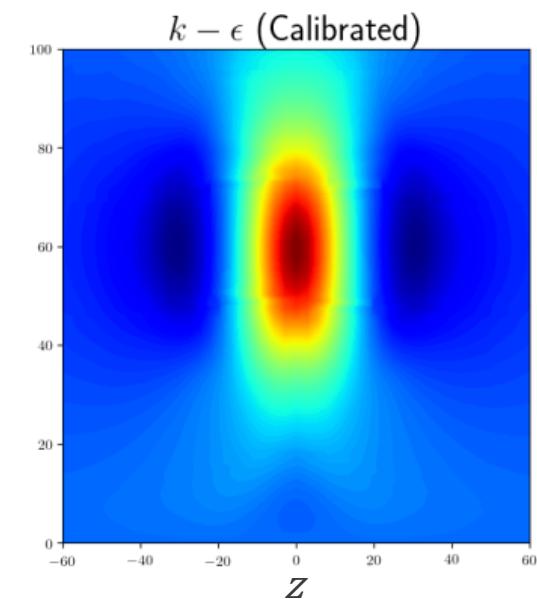
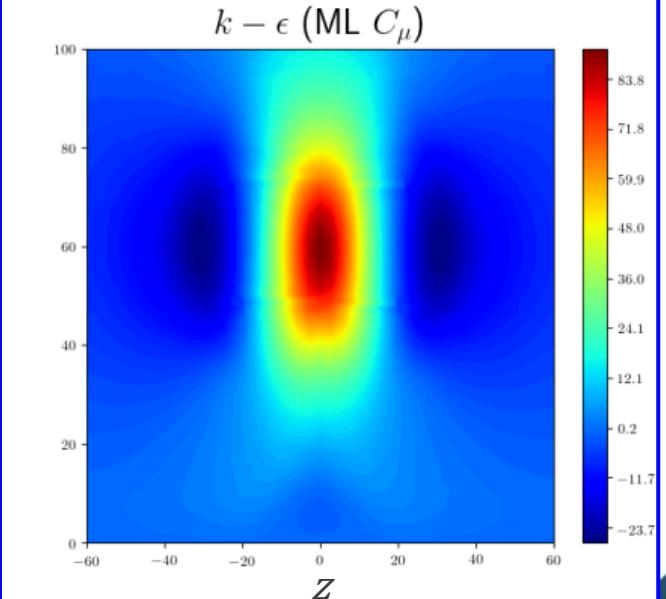
SPARC



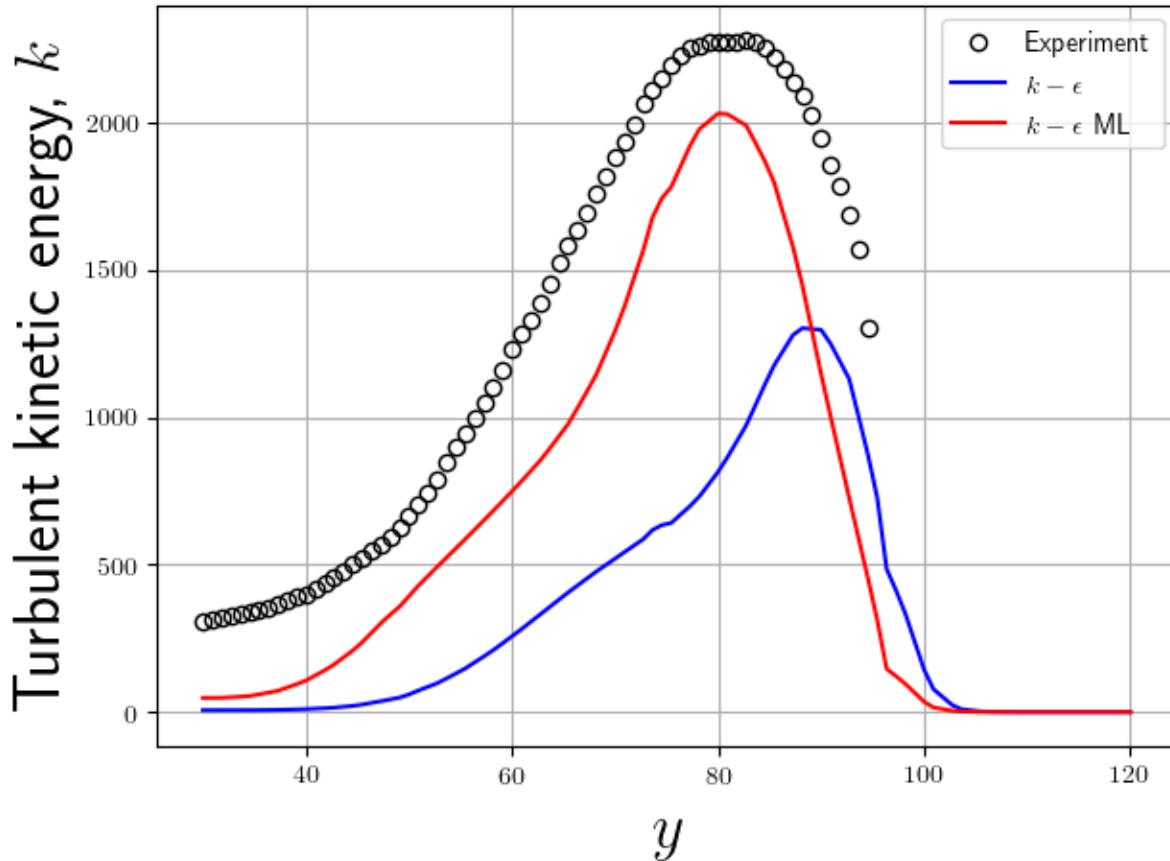
Variable C_μ across the JIC domain

Defaults back to $C_\mu = 0.1025$

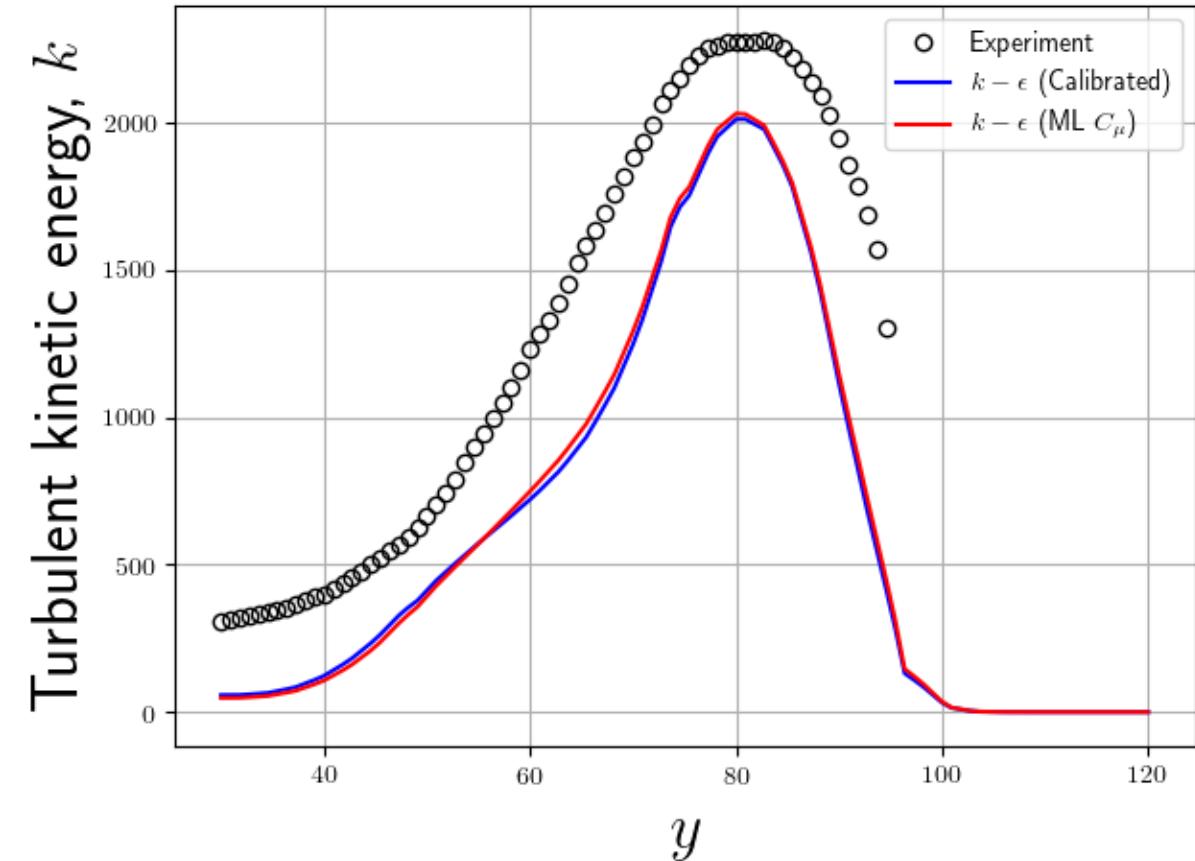
How well does this work?



How well does this work?



**Significant improvement over nominal
But we already knew that....**



Slight improvement over Calibrated?

What's going on?

Default C_μ to 0.1025

Avoid extrapolation or variance

Result: Default C_μ dominates the result

What is C_μ in unmeasured regions?

The PIV data miss important physics near the wall and the jet nozzle

Another issue is data consistency

C_μ model trained using measured k and ε , but RANS k and ε values may be in error

Conclusions & what's next?

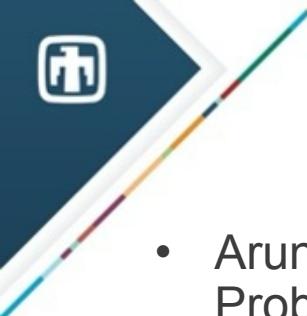
**Data-driven CFD trained with PIV-measured physics
rather than trained with LES/DNS**

**Model as implemented may be an improvement over
best Calibrated model**

**Default Calibrated value dominates:
More data needed?**

**Formalized validation with same 6 metrics ongoing:
Stay tuned**

**Improve PIV data consistency
Use same data in TBNN: Eric Parish**

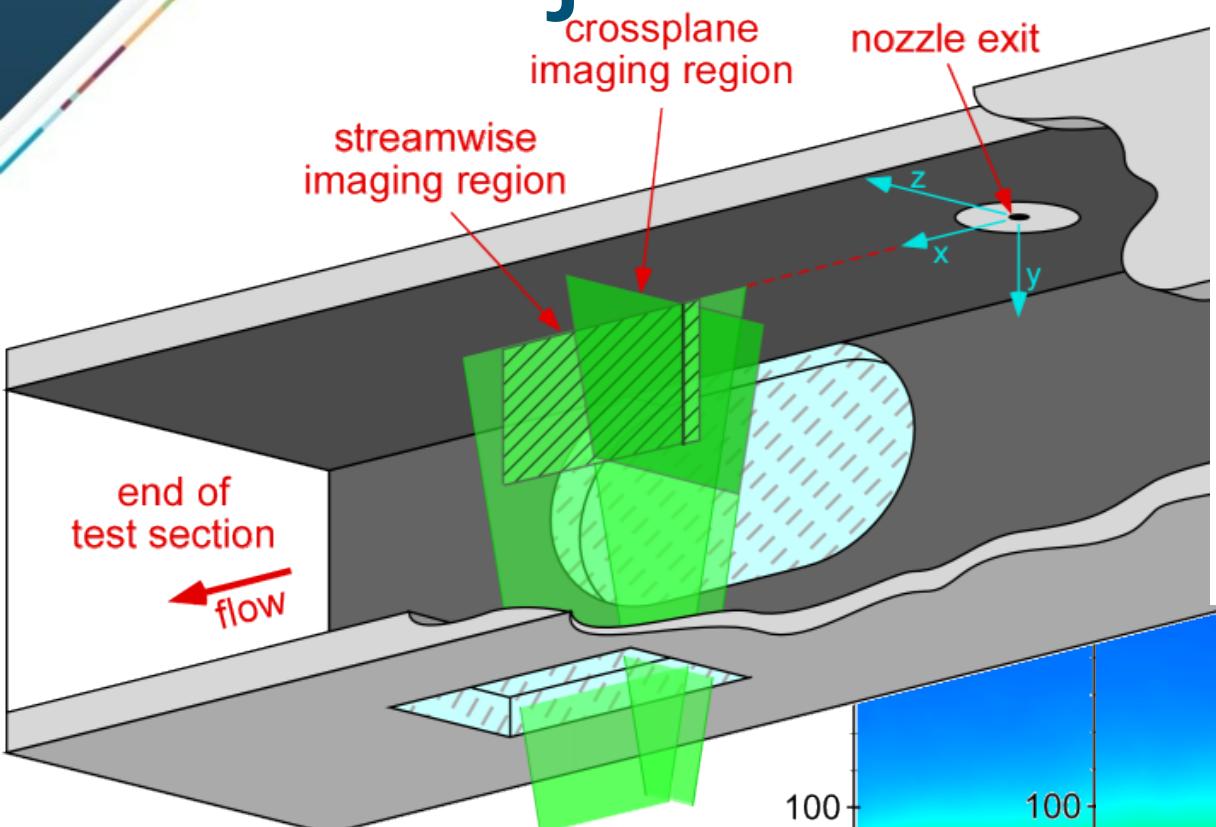
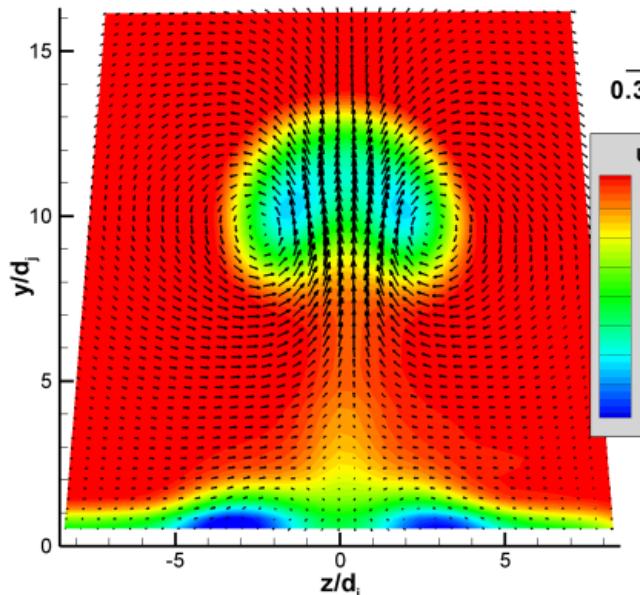
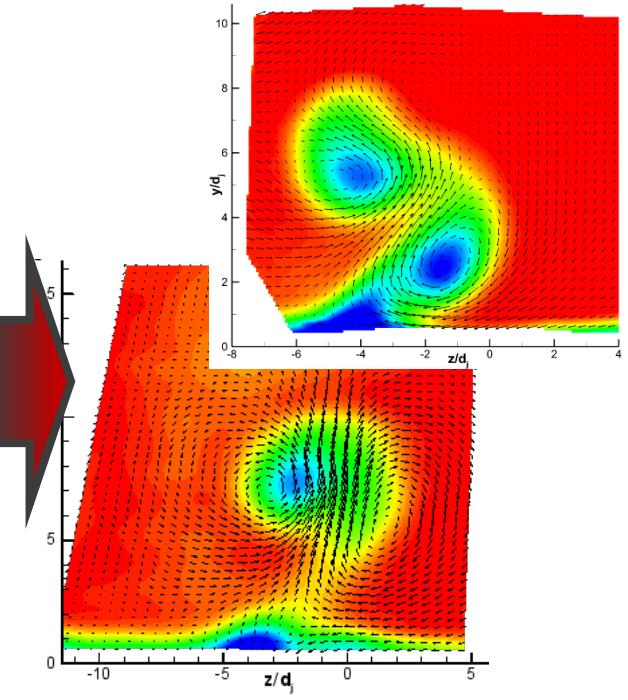
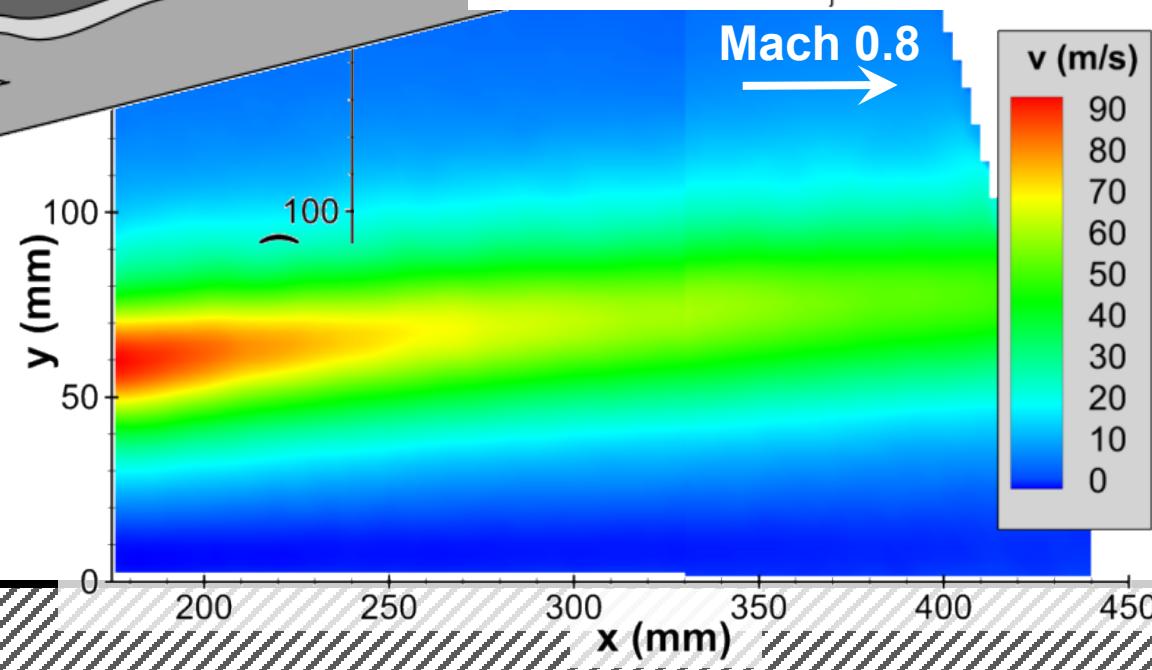


Citations

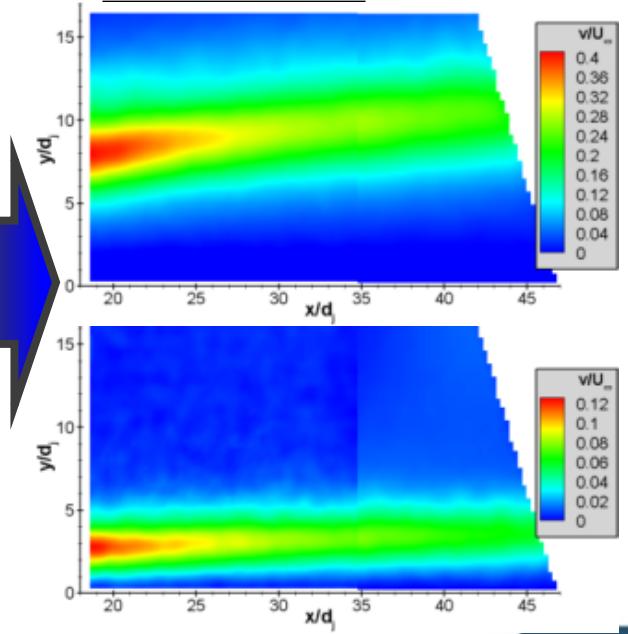
- Arunajatesan, S., "Evaluation of Two-Equation RANS Models for Simulation of Jet-in-Crossflow Problems," AIAA Paper 2012-1199, January 2012
- Beresh, S. J., Henfling, J. F., Erven, R. J., & Spillers, R. W., "Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow," AIAA Journal, Vol. 43, No. 2, 2005, pp. 379–389
- Beresh, S. J., Henfling, J. F., Erven, R. J., & Spillers, R. W., "Vortex Structure Produced by a Laterally Inclined Supersonic Jet in Transonic Crossflow," J. of Prop. and Power, Vol. 23, No. 2, 2007, pp. 353–363
- Beresh, S. J., Heineck, J. T., Walker, S. M., Schairer, E. T., & Yaste, D. M., "Planar Velocimetry of Jet/Fin Interaction on a Full-Scale Flight Vehicle Configuration," AIAA Journal, Vol. 45, No. 8, 2007, pp. 1827–1840
- Ray, J., Lafantzi, S., Arunajatesan, S., & Dechant, L., "Bayesian Parameter Estimation of a $k-\epsilon$ Model for Accurate Jet-in-Crossflow Simulations," AIAA Journal, Vol. 54, No. 8, 2016, pp. 2432–2448.
- Ray, J., Dechant, L., Lafantzi, S., Ling, J., & Arunajatesan, S., "Robust Bayesian Calibration of a $k-\epsilon$ Model for Compressible Jet-in-Crossflow Simulations," AIAA Journal, Vol. 56, No. 12, 2018, pp. 4893–4909.
- Miller, N. E., & Beresh, S. J., "Using Particle Image Velocimetry to Determine Turbulence Model Parameters," AIAA Journal, Vol. 59, No. 3, 2021, pp. 842–854
- Miller, N. E., Beresh, S. J., & Ray, J., "Validation of calibrated $k-\epsilon$ model parameters for jet-in-crossflow," AIAA Journal, <https://doi.org/10.2514/1.J061396>

Backup Slides

The jet interaction data set



Mach 3.7 jet exit



Metrics

- Quality metrics, predicted (X_{RANS}) vs true (X_{PIV}):
- Mean Squared Error (normalized): **0.0 = perfect**
 - **Measures peak accuracy**

$$MSE = \frac{\langle (X_{PIV} - X_{RANS})^2 \rangle}{\langle X_{PIV}^2 \rangle}$$

- Geometric Mean Error (normalized): **0.0 = perfect**
 - **Measures bulk accuracy**

$$GME = \frac{\exp[\langle \ln(|X_{PIV} - X_{RANS}|) \rangle]}{\exp[\langle \ln(|X_{PIV}|) \rangle]}$$

- 2-D Correlation Coefficient: **1.0 = perfect**
 - **Measures spatial alignment**

$$corr = \frac{\sum_i \sum_j (X_{PIV} - \langle X_{PIV} \rangle) (X_{RANS} - \langle X_{RANS} \rangle)}{\sqrt{\sum_i \sum_j (X_{PIV} - \langle X_{PIV} \rangle)^2 \sum_i \sum_j (X_{RANS} - \langle X_{RANS} \rangle)^2}}$$

- Vortex Perimeters (normalized): **1.0 = perfect**
 - **Measures vortex size**
- Vortex Circulation (normalized): **1.0 = perfect**
 - **Measures vortex strength**

$$P^* = \frac{P_{RANS}}{P_{PIV}}$$

$$\Gamma^* = \frac{\Gamma_{RANS}}{\Gamma_{PIV}}, \quad \Gamma = \int \bar{\omega} dA$$

- Vortex center difference: **0.0 = perfect**
 - **Measures vortex alignment**

$$E^* = \frac{\sqrt{(\bar{y}_{PIV} + \bar{y}_{RANS})^2 + (\bar{z}_{PIV} + \bar{z}_{RANS})^2}}{P_{PIV}}, \quad [\bar{y}, \bar{z}] = \int [y, z] \bar{\omega} dA$$