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RANS Performance
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Jet-in-crossflow (JIC)
• CVP, HSV, shear layer, etc.

S. Arunajatesan AIAA (2012):
“[T]he predictive capabilities of the family 
of models examined here for the jet-in-

crossflow problem are marginal at best.”
• overpredicted velocity deficit
• overpredicted CVP strength, wrong 

location
• poor Reynolds stress predictions

Two causes:
1. Model-form error → Missing physics

2. Inadequate coefficient calibration

Top: Beresh et al. JSR (2018), Bottom: Arunajatesan AIAA (2012)



Application: Supersonic jet in transonic crossflow
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Redefine RANS model 
coefficients via a data-driven 
calibration. 
Two approaches: 
1. Best scalar
2. Spatially-varying state-based

PIV data from Sandia 
experiments circa 2005.

Beresh et al. AIAA Journal, 43:2, 2005
Beresh et al. JPP, 23:2, 2007
etc.



Approach #1:
Calibrate Model 
Coefficients via PIV



Calibrate RANS based on PIV data
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Standard
k-ε model

Calibrated
k-ε model

MODEL

DATA

DATA

Standard
k-ε model

Calibrated
k-ε model

Figures from Ray et al, 
AIAAJ, 54:8, 2016.
See also AIAAJ, 56:12, 
2018.



The jet interaction data set
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Calibrated based on only four PIV 
planes:

Transverse jet of varying strength.
The full data set contains 48 test 
cases, varying:
• Jet strength
• Nozzle inclination
• Measurement station

Also, PIV test case on a full-scale 
vehicle with spin rockets.

RANS run using SIERRA Aero CFD Code

Beresh et al, AIAAJ, 45:8, 2007



Validating the calibrated Cμ model
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Here’s one:

MSE = mean square error
Overall picture of the error
of the CFD w.r.t. the PIV.



Validating the calibrated Cμ model

8

Here’s one: Here’s another:

MSE = mean square error
Overall picture of the error
of the CFD w.r.t. the PIV.Γ* = normalized circulation

of the vortices

We examined six quality metrics (Miller et al. 2022)



Validating the calibrated Cμ model
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Here’s one: Here’s another:

MSE = mean square error
Overall picture of the error
of the CFD w.r.t. the PIV.

flight vehicle data points

We examined six quality metrics (Miller et al. 2022)



Validating the calibrated Cμ model
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Here’s one: Here’s another:

MSE = mean square error
Overall picture of the error
of the CFD w.r.t. the PIV.

This simply uses the mean vorticity field 
from four PIV planes. 
Experimental calibration yielded coefficients 
with general JIC improvement.

Five of the six metrics showed substantial 
improvement for nearly every case.
The sixth showed mixed results.

We examined six quality metrics (Miller et al. 2022)





A look inside a turbulence closure model
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Turbulent eddy viscosity:
Linear Boussinesq:

Ordinary Least Squares:

A simple computation based on the above equations will not suffice.
The full story: see Miller and Beresh, AIAA Journal, 2021.

We can calculate all of these terms directly from PIV!

In a k-ε model:

ε
t.k.e.

dissipation
rate

model
constant

How realistic? Consistency issue?



Move to a spatially-variable Cμ model
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Move to a spatially-variable Cμ model
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Nominal Cµ = 0.09

Calibrated Cµ = 0.1025

• Deep Neural Network (DNN) 
• Multiple (3) hidden layers

• 18, 9, 3 nodes per layer
• ReLU activation function
• Ensembles of networks

DNN C µ
 



Implementation 
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How well does this work?
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How well does this work?
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Significant improvement over nominal
But we already knew that….

Slight improvement over Calibrated?



What’s going on?

What is Cµ in unmeasured regions?
The PIV data miss important physics near the wall and the 
jet nozzle

Default Cµ to 0.1025
Avoid extrapolation or variance
Result: Default Cµ dominates the result

Another issue is data consistency
Cµ model trained using measured k and ε, but RANS k and ε 
values may be in error



Conclusions & what’s next?
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Data-driven CFD trained with PIV-measured physics 
rather than trained with LES/DNS

Model as implemented may be an improvement over 
best Calibrated model

Formalized validation with same 6 metrics ongoing:
Stay tuned

Default Calibrated value dominates: 
More data needed?

Improve PIV data consistency
Use same data in TBNN: Eric Parish
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The jet interaction data set

Mach 3.7
jet exit

Mach 0.8



Metrics
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• Vortex Perimeters (normalized):      1.0 = perfect
• Measures vortex size

• Vortex Circulation (normalized):      1.0 = perfect
• Measures vortex strength

• Vortex center difference:      0.0 = perfect
• Measures vortex alignment


