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Magnetlzed Liner Inertial Fusion prod uces a hot (multl-keV), dense (""1 g/cc), Combining disparate data sources with Bayes’ theorem allows consistent inference Procedure Basis function expansion: Reconstruction:
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Extreme HED environments produced at Sandia’s Z pulsed power facility place o S o o S Volume
stringent constraints on diagnostic access and required robustness. Validation on 3D simulation data indicates unbiased inference N N | o S

Furthermore, experiments are costly, measurements are often highly spatially- | | _Pressure [Gbar = ]Tm"p_‘ keV] o Radius [jm] Vol. fm?] Example: Optimize radiation detector filters to minimize bias and variance in inferences X =UxXVT “
spectrally- and/or temporally- integrated, and complex Multiphysics 10} ! 2l | 65t 1 Standard MagLIF configuration | Left singular vectors = basis functions Higher-order modes
simulations are computationally expensive. These features represent significant | | %101 ‘

challenges for experiment design and physics discovery.
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Resulted in first ever inference of Lawson parameter on MagLIF experiments
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Deep-Learning-Enabled Bayesian Inference of Fuel Magnetization!6:22:10] Automated Image Processing and Morphological Assessment[11,12,13,14,15]
Nuclear diagnostics offer the only available method to characterize magnetic confinement parameter Forward model is expensive, so we use a neural network surrogate to enable inference We developed a convolutional neural network based image segmentation to largely automate image preprocessing Wavelet based image metrics may provide a useful description of morphology
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