
Sensitivity Analysis in Coupled Radiation Transport Simulations 
Christopher M. Perfettia, Brian Frankeb, Ron Kensekb, Aaron Olsonb 

 
a University of New Mexico, 1 University of New Mexico, Albuquerque, NM 87131, USA, cperfetti@unm.edu 

b Sandia National Laboratories, Albuquerque, NM 87185, USA, aolson@sandia.gov 

INTRODUCTION 
 

Sensitivity coefficients have found extensive use in 
nuclear criticality safety applications; for example, by 
allowing analysts to propagate the impact of uncertainty in 
evaluated neutron data, by determining the degree of 
similarity between benchmark experiments and a target 
validation application, and by using the results of integral 
benchmark measurements to calibrate neutron cross section 
data.  The goal of this work was to explore whether recently 
developed generalized perturbation theory (GPT) reaction 
rate sensitivity methods can be extended to coupled photon-
electron Monte Carlo radiation transport simulations. 

As shown in Eq. (1), sensitivity coefficients predict the 
impact of changes to or uncertainties in the nuclear data 
parameter 𝛴! on some integral response of interest, 𝑅. 
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Sensitivity coefficients for eigenvalue responses (i.e. 

𝑅 = 𝑘%&&) have historically been computed using first-order 
perturbation theory, which relies on determining some 
representation of the adjoint flux, or “importance”.  The 
derivation of first-order perturbation theory is well-
documented by various sources, and it has recently been 
applied to compute sensitivity coefficients in continuous-
energy, eigenvalue simulations. 

Recent work by Perfetti [1, 2] has developed a 
methodology for estimating sensitivity coefficients for 
responses that are ratios of reaction rates using continuous-
energy Monte Carlo neutron transport methods, i.e.: 

 

 𝑅 =
〈𝛴'𝜙〉
〈𝛴(𝜙〉

	 (2) 

 
Algorithms for computing these GPT sensitivity estimates 
use a combination of the CLUTCH methodology [3] and a 
modified version of the IFP method [4] (which is only needed 
for sensitivity analysis of eigenvalue problems). 

This work has demonstrated proof of principle for 
extending these GPT sensitivity analysis methods to coupled 
photon-electron Monte Carlo radiation transport simulations.  
Theoretical developments provide a methodology for 
extending these methods in these coupled simulations, and a 
simple 1-D Monte Carlo test code was developed to achieve 
proof-of-principle for the new methodology. 

 
CONTRIBUTON THEORY FOR COUPLED 
RADIATION TRANSPORT SIMULATIONS 
 

Consider a photon flux, Φ, and an electron flux, ψ.  A 
response, R)*), is a combination of response functionals 
generated by the photon and electron fluxes integrated over 
some phase space: 

 
 R)*) = 〈RΦ〉 +	〈r	ψ〉 (4) 

 
These response operators are arbitrary, but are here 
considered to be linear functionals, i.e. the product of a flux 
and some cross section Σ": 

 
 R+,*. = 〈RΦ〉 = 〈Σ",+,*.Φ〉 (5a) 
 R%.%. = 〈r	ψ〉 = 〈Σ",%.%.ψ〉 (5b) 

 
The change in the total response that occurs in response 

to perturbations or uncertainties in system parameters 
(typically nuclear data) is given by: 

 
 𝛿R)*) = 〈𝛿R	Φ〉 + 〈𝛿r	ψ〉 + 〈R	𝛿Φ〉 + 〈r	𝛿ψ〉 (6) 

 
The 〈𝛿R	Φ〉 and 〈𝛿r	ψ〉 terms in Eq. (6) represent the “direct 
effect” of data perturbations on the response, i.e. the impact 
of perturbating the nuclear data that is directly contained in 
the responses of interest from Eq. (5).  The terms containing 
the flux perturbations in Eq. (6) represent the “indirect effect” 
that the data perturbations will have on the response by 
changing the flux encountered by the response [2].  In Eq. (7), 
the direct effect terms from Eq. (6) are combined into a single 
term, and all perturbations are recast as derivatives with 
respect to an arbitrary nuclear data parameter, Σ/: 
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(7) 

 
The direct effect sensitivity terms are generally simple to 
calculate, and this work will focus on developing expressions 
to estimate the indirect effect sensitivities. 

 

SAND2022-10040CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



The transport equations governing the balance of photon 
and electron fluxes in a system are given below.  These 
equations assume that photons create electrons via the 𝑝Φ 
operator, that electrons create photons via the 𝑃ψ operator, 
and that the system is subject to an external source of photons 
and electrons (Q and 𝑞, respectively). 

 
 Photons:  TΦ = Q)*)0. = Q+ Pψ (8a) 
 Electrons: t	ψ = 𝑞)*)0. = 𝑞 + 𝑝Φ (8b) 

 
Adjoint transport equations will now be defined and 

manipulated to calculate the indirect effect of data 
perturbations from Eqs. (5) and (6).  The adjoint transport 
equations for the coupled photon and electron fluxes can be 
shown to be: 

 
 T1Φ1 = S1 + 𝑝1ψ1 (9a) 
 t1	ψ1 = 𝑠1 + 𝑃1Φ1 (9b) 

 
The adjoint source terms, S1 and 𝑠1, can be defined in a way 
that enables computing the indirect effect terms: 

 

 S1 ≡
1
R)*)

𝜕R)*)
𝜕Φ = Σ",+,*. (10a) 

 𝑠1 ≡
1
R)*)

𝜕R)*)
𝜕ψ = Σ",%.%. (10b) 

 
Multiplying Eqs. (9a) and (9b) by perturbations in the 

photon and electron flux, respectively, and integrating over 
all phase space gives: 

 
 〈𝛿Φ	T1Φ1〉 = 〈𝛿Φ	S1〉 + 〈𝛿Φ	𝑝1ψ1〉 (11a) 
 〈𝛿ψ	t1	ψ1〉 = 〈𝛿ψ	𝑠1〉 + 〈𝛿ψ	𝑃1Φ1〉 (11b) 

 
Applying the property of the adjoint (e.g. 〈Φ1	T	𝛿Φ〉 =
〈𝛿Φ	T1Φ1	〉) several times to Eq. 11 gives: 

 
 〈Φ1	T	𝛿Φ〉 = 〈𝛿Φ	S1〉 + 〈ψ1	𝑝	𝛿Φ〉 (12a) 
 〈ψ1	t	𝛿ψ〉 = 〈𝛿ψ	𝑠1〉 + 〈Φ1	𝑃	𝛿ψ〉 (12b) 

 
Eq. (12) will be revisited momentarily, but first we will: 

allow perturbations to occur to all terms in Eqs. (8a) and (8b); 
ignore all higher order (𝛿() terms; multiply the two equations 
by Φ1 and ψ1, respectively; and take the inner product to 
give: 

 
〈Φ1	𝛿T	Φ〉 + 〈Φ1	T	𝛿Φ〉

= 〈Φ1	𝛿Q〉 + 〈Φ1	𝛿𝑃	ψ〉
+ 〈Φ1	𝑃	𝛿ψ〉 

(13a) 

 
〈ψ1	𝛿t	ψ〉 + 〈ψ1	t	𝛿ψ〉

= 〈ψ1	𝛿𝑞〉 + 〈ψ1	𝛿𝑝	Φ〉
+ 〈ψ1	𝑝	𝛿Φ〉 

(13b) 

Upon examination, one notices that Eq. (12a) contains one 
term in both Eq. (13a) and Eq. (13b), and that Eq. (12b) 
contains one term in both Eq. (13a) and Eq. (13b).  These 
terms can be made to cancel by summing Eq. (13a) and Eq. 
(13b), and by then subtracting Eq. (12a) and (12b), giving: 

𝛿𝑅!"!#$%&'()! = 〈
1
R!"!

𝜕R!"!
𝜕Φ 𝛿Φ〉 + 〈

1
R!"!

𝜕R!"!
𝜕ψ 𝛿ψ〉

= 〈𝛿Φ	S*〉 + 〈𝛿ψ	𝑠*〉	
                =  〈Φ*	𝛿Q〉 − 〈Φ*	𝛿T	Φ〉 + 〈Φ*	𝛿𝑃	ψ〉 

+	〈ψ*	𝛿𝑞〉 − 〈ψ*	𝛿t	ψ〉 + 〈ψ*	𝛿𝑝	Φ〉 

(14) 

This expression allows for the estimation of the indirect effect 
if the photon and electron adjoint fluxes are known. 
 

Contributon Equations 
 

We will now develop a method for computing the adjoint 
fluxes in Eq. (14).  This method is based on Contributon 
Theory, which was developed originally by Williams [5], and 
adapted to continuous-energy Monte Carlo simulations by 
Perfetti [3]. 

 
Consider the version of Eqs. 8a and 8b that examines the 

balance of particles in response to the total sources of each 
type of particle (Q)*)0. and 𝑞)*)0.).  Weighting these 
equations by Φ1 and ψ1, respectively, and taking the inner 
product gives: 

 
 〈Φ1	T	Φ〉 = 〈Φ1	Q)*)0.〉 (15a) 
 〈ψ1	t	ψ〉 = 〈ψ1	𝑞)*)0.〉 (15b) 

 
Next, the adjoint balance equations in Eqs. (9a) and (9b) are 
weighted by Φ and ψ, respectively, the inner product is taken, 
and the property of the adjoint is applied.  Noting that the left-
hand sides of these equations and Eqs. (15a) and (15b) are 
equivalent gives: 

 
 〈Φ1	Q)*)0.〉 = 〈Φ	S1〉 + 〈ψ1	𝑝	Φ〉 (16a) 
 〈ψ1	𝑞)*)0.〉 = 〈ψ	𝑠1〉 + 〈Φ1	𝑃	ψ〉 (16b) 

 
Consider a photon or electron source that consist of one 

single particle traveling in phase space, i.e. Q)*)0.(𝜏) =
𝑄*	𝛿(𝜏) or q)*)0.(𝜏) = 𝑞*	𝛿(𝜏).  It should be noted that this 
source is either one photon or one electron, and no 
combination of the two.  This assumption allows one to 
compute the adjoint flux for photons and electrons using the 
following Green’s Function interpretation: 

 
Φ1	(𝜏) = 〈Φ(𝜏 → 𝑟)	S1(𝑟)〉

+ 〈ψ1(𝑟)	𝑝(𝑟)	Φ(𝜏 → 𝑟)〉 (17a) 

ψ1	(𝜏) = 〈ψ(𝜏 → 𝑟)	𝑠1(𝑟)〉
+ 〈Φ1(𝑟)	𝑃(r)	ψ(𝜏 → 𝑟)〉 (17b) 

 



The definitions for S1 and s1 in Eqs. (10a) and (10b) mean 
that the first inner products on the right-hand side of Eqs. 
(17a) and (17b) can be computed by tallying the contribution 
of the source particle in phase space 𝜏 after it is emitted.  In 
practice, this means that the importance of an event is equal 
to the response (R+,*. or R%.%.) that is generated by the 
particle from the time it leaves the event until its death.  The 
second inner products on the right-hand side of Eqs. (17a) 
and (17b) rely on computing the importance of any secondary 
electrons or photons that are created by the source photons or 
electrons, respectively, from the time they are emitted until 
their deaths.  In essence, Eqs. (17a) and (17b) compute the 
importance of an event by tracking the cumulative response 
that is generated by the particle after it leaves the event and 
by all of its daughter secondary particles. 

 
PROOF OF PRINCIPLE 
 

A simple Monte Carlo test code was developed to 
demonstrate proof of principle for the proposed, “coupled 
CLUTCH” methodology of computing response sensitivity 
coefficients in coupled photon-electron transport simulations.  
The Monte Carlo code examined the sensitivity of responses 
in a simple 1-D slab geometry that occurred in response to an 
incident flux of a spectrum of photons and electrons.  These 
particles were assumed to have an initial direction that was 
normal to the surface of the slab and scattered isotropically 
once inside the slab.  These simulations assumed a three-
group energy format and used artificial nuclear data for the 
simulation cross sections, emission probabilities, scattering 
kinematics, and secondary particle production probabilities.  
The slab in these simulations was divided into 10 1-cm-thick 
regions, for an overall slab thickness of 10 cm. 

The CLUTCH methodology for estimating GPT 
response sensitivities was implemented in the test Monte 
Carlo code and was used to estimate the sensitivity of GPT 
responses to the various nuclear data in this simulation.  
These simulations assumed the GPT responses of interest to 
be particle absorption rates in each of the 10 regions, i.e.: 

 𝑅 = 〈𝛴234*53𝜙〉	6%..	8 (18) 

Responses and response sensitivities were computed for each 
of the 10 cell regions for either photon or electron absorption 
rates: Response 1 refers to the photon absorption rate in the 
cell upon which the particles are incident and Response 10 
refers to the photon absorption rate in the cell in the deepest 
part of the slab; likewise, Response 11 refers to the electron 
absorption rate in the cell upon which the particles are 
incident and Response 20 refers to the electron absorption 
rate in the cell in the deepest part of the slab. Figure 1 plots 
the photon and electron fluxes throughout the slab. 

 

 
Fig. 1. Photon and electron fluxes in a sample 1-D slab. 

 
Direct perturbation simulations were used to obtain 

reference sensitivity coefficient estimates.	 For the sake of 
time, these direct perturbation calculations were performed 
for only the photon cross section data.  Select perturbations 
were performed for select electron data and successfully 
confirmed the accuracy of electron data sensitivity 
coefficients; however, these perturbations generally took 
much longer than the photon data perturbations due to the 
generally smaller magnitude of these electron sensitivities.  
The electron sensitivities share the exact same methodology 
and implementation as the photon sensitivities, and it is 
reasonable to assume that the electron sensitivities are 
accurate if the photon sensitivities can be shown to be 
accurate. 

 
RESULTS 
 

Table I compares sensitivity coefficients from the 
coupled CLUTCH methodology with the reference direct 
perturbation sensitivities – the difference (Diff.) between the 
sensitivity coefficients is expressed in terms of the number of 
effective standard deviations of disagreement.  For brevity, 
Table I gives only the sensitivity of the absorption responses 
in each Cell to the photon Group 1 total cross sections. 

These results found that the coupled CLUTCH 
sensitivity coefficients agreed well with the direct 
perturbation sensitivity coefficients, generally exhibiting 
random disagreement of less than two standard deviations.  
Several sensitivities (not shown) disagreed with the reference 
direct perturbation sensitivities by more than three standard 
deviations (with a maximum disagreement of 6.21 σ), but a 
large majority of the sensitivities disagreed by one or fewer 
standard deviations. 

Computing these reference sensitivities required 
performing a large number of simulations – in doing this it 
was sometimes difficult to perturb the cross sections 
significantly enough to overcome noise in the results while 
also avoiding higher-order sensitivity effects.  Individual 
sensitivities could be resolved to a significant degree (and in 



some cases, were resolved this way) by simulating more 
histories or by performing cross section perturbations that 
were tailored to that specific sensitivity, but the perturbations 
could not be precisely tailored to highly resolve all of the 
reference direct perturbation sensitivities at once.  It is worth 
noting that during the process of debugging this code, a 
significant number of bugs were resolved through 
comparison with these reference direct perturbation 
sensitivities.  The resolution of the direct perturbation 
sensitivities was always sufficient to clearly indicate when a 
bug was present in a given sensitivity coefficient calculation 
routine.  Future studies could further resolve these direct 
perturbation reference sensitivities and remove the few 
instances where sensitivities disagreed by more than three 
standard deviations, but historical trends in sensitivity 
accuracy and our experience from benchmarking sensitivities 
in the past suggests that the coupled CLUTCH sensitivity 
methodology produces accurate sensitivity coefficient 
estimates. 

 
TABLE I. Sensitivity of Responses to Photon Total 

Cross Sections 
Response 
in Cell: 

Calculated 
Sensitivity 

Direct Pert. 
Sensitivity Diff. 

Photon Absorption Response Sensitivity 
1 0.368 ± 0.001 0.365 ± 0.010 0.28 σ 
2 -0.023 ± 0.003 -0.025 ± 0.013 0.13 σ 
3 -0.802 ± 0.006 -0.783 ± 0.033 -0.58 σ 
4 -1.674 ± 0.010 -1.700 ± 0.012 1.62 σ 
5 -2.583 ± 0.018 -2.549 ± 0.126 -0.27 σ 
6 -3.459 ± 0.030 -3.611 ± 0.264 0.57 σ 
7 -4.384 ± 0.048 -4.484 ± 0.335 0.29 σ 
8 -5.332 ± 0.079 -5.176 ± 0.709 -0.22 σ 
9 -6.055 ± 0.131 -6.353 ± 0.865 0.34 σ 
10 -6.952 ± 0.226 -6.694 ± 1.439 -0.18 σ 

Electron Absorption Response Sensitivity 
1 0.214 ± 0.001 0.211 ± 0.022 0.14 σ 
2 0.002 ± 0.005 -0.043 ± 0.024 1.88 σ 
3 -0.719 ± 0.010 -0.671 ± 0.053 -0.90 σ 
4 -1.612 ± 0.018 -1.669 ± 0.070 0.80 σ 
5 -2.544 ± 0.031 -2.338 ± 0.035 -4.42 σ 
6 -3.451 ± 0.049 -3.472 ± 0.119 0.16 σ 
7 -4.187 ± 0.079 -3.897 ± 0.397 -0.72 σ 
8 -5.676 ± 0.136 -4.806 ± 1.113 -0.78 σ 
9 -5.923 ± 0.197 -6.728 ± 1.206 0.66 σ 
10 -6.924 ± 0.370 -8.258 ± 2.000 0.66 σ 

CONCLUSIONS 
 
This work has outlined an extension of Contributon 

theory that enables adjoint-based sensitivity coefficient 
calculations in coupled particle Monte Carlo transport 
simulations.  This new sensitivity methodology was 
implemented into a simple 1-D test Monte Carlo code, and 
direct perturbation calculations were used to confirm the 
accuracy of the new sensitivity methodology.  Future work 
includes implementing this methodology in a production-
level coupled transport Monte Carlo code, such as the 
Integrated Tiger Series (ITS) code [6], and using this 
methodology to quantify the impact of uncertainty in photon 
and electron nuclear data. 
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