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Outline

Introduction.

An interesting story about complex perovskites.
- Ba,CeMn;0O,, and Ba,PrMn;0O,,

Searching for a commercially viable metal oxide.
> Navigating a highly constrained requirement space

> Application of first principles theory and machine learning to material discovery

Summary.
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Hydrogen As Far As The Eye Can See
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DOE’s HydroGEN Advanced Water Splitting Materials consortium (H,AWSM):
> Enables access to 5 core National Laboratories through collaborations with awarded projects
o Experimental facilities, computational resources, subject matter experts

US DOE heavily invested in developing advanced water splitting technology pathways.
> Electrolysis, photoelectrochemical, thermochemical, microbial



Solar Thermochemical Water Splitting Is A Simple
Concept: Heat + H,O In, H, + O, Out

Chueh et al., Science, 10.1126/science.1197834 (2010).

Abanades et al., Energy. 31, 2805-2822 (20006).
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DOE’s HydroGEN Advanced Water Splitting Materials (H,AWSM) consortium is focused
on two-step, non-volatile MO,.

> h2awsm.org


https://doi.org/10.1126/science.1197834

7 | Principal Material Challenges For Non-Stoichiometric

Oxides:

Reduction Temneratiira (T_) & Snlid State Q-atnm A rtivity .
(“O SO|Id) | challenge: decrease T, and increase Adqy ) o P

Oxygen storage materials with a twist.
> O-atom “harvested” from H,O not Air
> Bulk phenomena largely govern O-atom exchange with environme

Material subject to extreme environments.
> Redox cycling on the order of seconds

o Large thermal stress per cycle

> 800 °C< T <1450 °C; ATgare ~100 °C/sec
o Large chemical stress per cycle

o 101 atm< pg, <10-1 atm

Water splitting at extremely low p,

> Strongly reducing “oxidizing” atmosphere “0” :Cotf\lflity in Ho,gas > Mo sotid | HMo,gas~10"%atm
2112




REACTOR CONCENTRATOR
Pilot and Near Commercial Scaly - N B e
Reactors Exist

Hydrosol Plant project is the largest solar N
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i
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Advancing particle receiver design of solzc
thermochemical fuels.
- Sandia National Labs (USA) and DLR (Germgl e & —
- Two-step metal oxide cycle @ 50 kW,, on mi o AT

Large scale production plants that offer advantages in efficiency angi
> Can thermochemical H, challenge largest SMR facility in the world @ 345t H,/(



An Interesting Story About
Layered Perovskites




10 ‘ Ba,CeMn;0,, — A Promising STCH Perovskite Oxide

Barcellos et al., Energy & Environmental Science, 10.1039/C8EE01989D (2018).

Ba,CeMn;0,,
(BCM) J To=850C, 40% H,O for 1200s, Tr=1350C for 330s
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BCM is a perfectly ordered 12R-phase line compound at full
stoichiometry.

 Disconnected network of face-sharing MnOg4 octahedron trimers
> Two unique O-atom sites, no B-site mixing

BCM - first perovskite material demonstrated to lower Tg¢; and
maintain Adyy in H,O:H, mixtures.
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‘ Hot Stage In Situ Vacuum Reduction Of BCM: Electron Energy
" Loss Spectroscopy (EELS) Probes Local Electronic States

Precision FIB Cutout ~ between structure and performance J
ﬂ! :: y : : no | C;K-edge | —ascc I b M1n L-edgel —as0°c

theory needed to resolve interrelationships '
i

2 a ——550°C | # 0.006 I
[= —600°C | € —600°
§ 0.002 + e g :;ggg
5 < 0.004
Q Q
FIB precision sample prep. S 0001 -
> Orient FIB cutout along low index crystal planes S S
. ™ . | . | ] 0 | . .
Heating rates >> 100 °C per second. 530 540 550 560 640 650 660 670
. . Energy (eV) Energy (eV)
Clear and obvious changes to electronic , | , 0008
structure local to MnO,; manifold in BCM. g fc | BaMewe EE|, |d  CeMeie —HI
o Features in O K-edge and Mn L-edge change 3 | V 70 | 3 o004 ; e
shape and intensity B 0004t |z |
. . . . . N N
o Coordination chemistry and Mn oxidation state E 8 0002}
change 5 0002y 18
Trend-wise loss of intensity in Ce electronic ok J hnart . / WM, WL L
780 800 820 840 890 900 910 920 930
states. Energy (eV) Energy (eV)

o Unclear to what extent O 2p — Ce 4f manifold



2 | DFT Probes Electronic Structure Of Reduced 1
12R-BCM

Two unique O-atom sites exist in 12R- : :
BCM Mn L-edge

o Internal to Mn trimer (O1-face sharing), ends of
Mn trimer (O2-corner sharing)

o AH(02) > AH,(O1)

O K-edge EELS:

> Near edge — O2 p hybridized with Mn 3d spin
states and Ce 4f !

> Mid edge — O 2p interacting with Ba d states o490 0% 060
energy (eV)
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—— Reduced BCM

normalized EELS

w
—
L
L
T
7]
N
®
E
o
o

Reduction of BCM by forming V:

> V, attenuates O-p DOS as nearest cations CeM-edge || — Raesssou
reduce (Mn** — Mn3*) and defect states in
band gap appear

> Mn-O coordination changes (6-fold — 5-fold) o
> Altered geometry of neighboring Mn changes J \\\‘%J ° v
a00
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Strange et al., Inorg. Chem., 61, 6128—6137 (2022)

B C M ,S PO Iym O rp h M e rry'GO' RO u n d Trindell et al., in review Chem.Mat. (2022)

10H-BCM “nucleation"
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14 ‘ A New Water Splitting Compound: Pr-Based

Compositional Variant To BCM

I ] w I |
UHP Argon
Ty =1350°C

BCM

0.16 atm O,
T = 1100-1350 °C

BCM Ba,PrMn;0,, (BPM) | 1000k
1w - 2 095}
* Prfor Ce i
F £
a = 990f
vin = 3
@
0 2 985F
. . 98.04
100

Ce#:[Xe] 4f° 5d0 6s°
Pr4+:[Xe] 4f" 6s°

Pr has TWO additional 4f
electrons and empty d-states

BCM and BPM identical space group symmetry.
o Perfectly ordered 12R-phase @ full stoichiometry

Oxidation state Pr*4 = Ce*4; Aradii ~ -2%.
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12R-BPM | 12R-BCM
Bandgap (eV) | 1.401 1.956
AH(Vg,) (eV) | 2.64 2.66
AH(V,,) (eV) | 2.92 3.29

Significant variations in
Adyx may be due to
difference in AH,
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‘ Experiments Reveal Different Redox Crystallography And

Redox Functionality Within BXM Family Mn-Ledge s
BCM BPM "
RT
1400 °C. e .
< %
v ©
RT I S 3
[—— -
i g’
1400 °C_|_.-ce .G
AN [ | WY
Cdeg.26 deg. 20

920 930 940 950 960
Energy (eV)

12R to 6H polytype transition in BCM is reversible.

> MnQg timer reduced to a dimer, partial occupancy of Mn on Ce site increases configurational
entropy

BPM clearly exhibits more complicated redox phase behavior.
o Both Mn and Pr cations are redox active

o Crystallographic phase transformations more complex

970



6 I Summary: Rich And Interesting Behavior At The Atomic
Scale

Examined the behavior of a complex layered perovskite to unravel structure —
property relationships important to high performing thermochemical water
splitting materials.

o Forensic and in situ Hot Stage HR/STEM with EELS
o Operando HT-XRD
o DFT

Ba,CeMn;0,, is the first perovskite material demonstrated that lowers thermal
reduction temperature while maintaining “decent” Ad,y in H,O:H, mixtures.

> High configurational entropy upon reduction is important, the 12R — 10H — 6H transition
provides a clue

Substituting Pr for Ce dramatically degrades redox behavior.
o |sostructural variant with ONE additional valence electron
- Ba,PrMn;0,, redox behavior is much more complex than Ce variant

- BPM is a good model system to unravel the details of electronic effects in these materials and
gain an understanding of atomistic processes that engender favorable water-splitting
thermodynamic behavior
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18 ‘ Computational Search For 4H,(V,) € [2.3, 4.0] eV Rapidly
Encounters Scaling Issues

Need the vacancy formation enthalpy,
AH,, of all N symmetry sites:

First-principles DFT workflow is robust but costly (using NRELMatDb hosts)

( Relaxed host energy, E), )

Relaxed defect energy, E4
N=1 defect N=2 defect

©
®
@

MMy = Eq = By + ) mu
i

v v o v

Defect Relaxed Atomic
Formation Defect and Host Reference
Energy  Supercell Energy Energy

\Requires N+1 DFT relaxations /

"\
( - A. Material Space
Monoclinic Tetragonal Hexagonal . .. . .
) Diversity in Training:
= 63 space groups
51 unique stoichiometries
. o 14 cations
Trigonal Cubic J, B. Host Calculations
g O © ~
: ‘A, § Relaxed structure,
w0 [C % Atomic spin and oxidation state,
o %o & S Enthalpy of formation,
) _ Eilssach ) E \_ Bandgap, Electron effective mass )
Li Be space B G M (0]
'Na | Mg | Training Al lsi (P s
4+ C. Defect Calculations
K Ca |S |Ti |V |Cr |[Mn|Fe |Co |Ni |Cu |Zn |Ga |Ge |As |Se ~ \
Rb |Sr |Y |2r |Nb |Me |Tc |Ru |Rh |Pd |Ag |Cd |In [Sn |Sb |Te Cal;géa;edtmtudetspace:
- ost structures
Cs |Ba [La |Hf [Ta |W |Re |Os |Ir [Pt |[Au |Hg (TI |Pb |Bi |Po / -1500 defect relaxations
Fr_[Ra [Ae ~1 years’ work
Ce |Pr |Nd |Pm [Sm |Eu |Gd |Tb OV |r|0 |r_r TITT | T |
' - - ' Existing oxide space:
_p ~10,000s host structures
I 100+ years’ work... so more efficient model needed ~1Ms defect relaxations |
~ - /




19

Use Graph Neural Network (GNN) Model To Perform
“Automated Feature Extraction” Directly from Host

Crystal Structure

Interpret crystal structures as a graph.
> Nodes = Atoms, “Bonds” = Edges

> Pass information between neighboring nodes

Pool atom features to create crystal
feature vector (y).

Input host properties.
> Relaxed host crystal structure
o Optional: atom oxidation state, atom magnetic

moment, compound formation enthalpy,
bandgap, e- effective mass

Output the atom site-specific defect
formation energy without knowing the
relaxed defect structure.

Automatically extract the feature vector
from the crystal, e.g. GNNs!l

R Conv L, hidden Pooling L, hidden

[1] Xie, et al. P.R.L. 120 (14), 2018



20 I Defect GNN Approach Validated For Use In High-
throughput Screening Exercise+ https://doi.ora/10.26434/chemrxiv-2022-frcns

NRELMatDb vs. Materials Project (MP) structure inputs

Benchmark accuracy has been met for HT screening

Compound-wise CV:
2.5
— 2.0 1
>
2,
S 1.5
Il
x
g 1.0 1
2
0.5 -
0.0 ——
102 103
\ Num. Defects

AHg (dGNN) [eV]

—
(%]
1

—t
[ ]
1

= Oxygen
= Other

10

7

AHy4 (DFT) [eV]

.

Expected AH, MAE for unseen compounds <450

meV.

> Robust prediction of O and non-O vacancies.

MAE = mean absolute error

~\

MgAI204
1 MnAI204
Al2FeO4
LaAlO3
Y3AI5012
MgTiO3
TiMnO3
TiNiO3
Caln204
Mnin204
MgMn204
Mn(Fe02)2
MnCoO3
MnNiO3
MnNiQO3
SrFeO3

@ MP
O NRELMatDb
—— MAD=0.35

P4
g

o
L

&

(AHY) K [eV]
e E=3 (5]
1 1 1

%]
1
LY
~

—
1
E\.
h
LY
LY

AHS (DFT) [eV]

Robust to small variations in
structure.

Metrics

573 Views
284
Content Downloads

Can screen using a different
database (MP) than training set.



21 ‘ ML Screens 10,000’s

Of MP Structures In Minutes

(2) Screen the Materials Project for all defects

) ) e # Defects )
Metric Requirement Exclude 5
non-metals mp-1247717
Frac. of defects w/AHS >2.3 eV Xmin =1
E; <01 . 102
Frac. of defects w/AH € [2.3,4.0] eV Xrpg >0 eV/atom cationsin >
e : train set o
Host stability criteria (ranges intersect) ﬂ‘u{h n ﬂpg‘:{x =0 ran se J = 0l
Aug, = uo, operating range for STCH
ﬂpg;"{x = [p, range where host’s grand energy above hull (¢ ) is <X Needs tobe L7 7 s 0 o
excluded! AH, [V /atom]
- - - - - - \-_ J
(3) Identify and filter increasingly promising targets
'\
197 formulas 114 formulas 34 formulas 16 formulas 9 formulas . . . . . .
(48 training) (3 training) (17 training) (11 training) (@ training) » Filter candidates with increasingly certain performance
F Xmin1 = 1 » Lminz = 1 4 Xmins = 1 » Tmin3 = 1 = Xmins = 1
» "m:ljf » xmfjl“ 4 *qu:ﬂ'g » "mfj“ » g3 = . » Mainly identifies known, synthesizable compounds
¥ dugr ¥ Aug, ¥ Bug, » Aug!  Bug,
SreTisFeOse La:MnCoOs BaSr(FeOy). BasSrLasFe.Ou Basin:Os N
(mp-1645141) (mp-19208) (mp-1228024) (mp-698793) (mp-20352) » ~100 are not AXO;, A, X,05,., , Fe;. .M, O,, CeO, , etc.
LI 1 o ala
§+0 N+ E+ 8+ 8+ - -—
fare Tataterel
T e ‘
\ y,

Screening workflow on MP structures reduces time from 1,000’s of DFT months to

minutes.
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Summary: Prospecting Beyond Perovskite Space For
A Commercially Viable Metal Oxide Using DFT+ML

Use GNN to predict global defect
properties (site-specific AH ) encoded in
ground-state crystal structure.

Diverse and unique DFT training space
comprised of 200 BINARY and TERNARY
oxides.

° 63 unique crystal structures, 51 unique
stoichiometries, 14 cations

o Range of oxidation states (2+ to 5+), ionic
radii, coordination environments

Identified ~100’s of materials, many
unknown to STCH community.

> Found quaternaries and quinaries not in
training set

> AH, and stability criteria under low pO,

Conducting second round of DFT defect
relaxations to include more cations.

MP screen @ STCH "base" [0 Ba-(Fe,ln)

@TRrep=1673K @Toxp=1073K

-2.0 . . -0.23 -7.65

4 -6.26 -17.0
®
@
]
*‘\— -12.3 -26.4
° ~~ CeO,
@

5.0

!
!
|
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