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Bridging the Gap between Plasma and Condensed MatterGoal: benchmark cheaper AA method against more accurate but expensive TDDFT calculations

warm densematter
average atom           (AA) 

time-dependent    density functional      theory (TDDFT)

stopping power:friction force experienced by an ion traversing matter

condensed matter

plasma
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Time-Dependent DFT (TDDFT)
Mean-field model of quantum electron dynamics

Initial condition: ground state from DFT

Evolve electron density           over time

explicit time-dependencefrom moving proton adiabatic local densityapproximation

kinetic energy          external potential due to ions                      Coulombic e-e interaction                                            exchange-correlation
pseudopotentialapproximation

Stopping power ~
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 Stopping in cold metals well-characterized
 Free electrons ~uniform

 stopping ~independent of proton trajectory
 Core electrons highly localized

 stopping sensitive to proton trajectory

Background on Trajectories in Crystals

Schleife et al., PRB 91 (2015)

- - channel, free- - off-channel, free–– channel, free + core–– off-channel, free + core

channeling

off-channeling

But how do we know if we’ve picked a “good” trajectory?
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Quantitative Metric to Evaluate Trajectories
 Projectile should experience representative NN distances
 Ideal NN distribution: sample random points in cell
 Good trajectory achieves low Bhattacharyya distance

channeling

off-channeling
0.540.02

D B



6

Proton Stopping in Aluminum: validation
 Validated methodology for cold Al

 good agreement with earlier TDDFT and empirical data
 modest discrepancies from different trajectories, pseudopotentials

Schleife et al., PRB 91 (2015)Ziegler et al., Nucl. Instrum. Methods B 268 (2010)
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 Trajectory metric allows controlled comparisons in WDM
– across different T
– across different atomic configurations 
– thermalized vs. isochorically heated systems

 Free-electron stopping independent of ion temperature
– slight variation with projectile trajectory
– select similarly optimized trajectories

 To do: check independence of core contribution

Te=1eV

Proton Stopping in Aluminum: ion temperature
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Proton Stopping in Liquid Carbon: trajectory
 Hard to find “bad” trajectory in disordered, low-Z system
 Fewer localized electrons in carbon than aluminum
 Little sensitivity to proton trajectory 10g/cc, 10eV10g/cc, 1eV
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Proton Stopping in Liquid Carbon: atomic configurations
 Thermal fluctuations may affect stopping
 Separately optimized trajectory for several MD snapshots
 Little variation across atomic configurations
 Trajectory metric may eliminate need for configurational averaging10g/cc, 10eV10g/cc, 1eVEtot=5.87 eV/atomP=25.8 Mbar Etot=5.96 eV/atomP=25.7 Mbar

Etot=6.01 eV/atomP=25.9 Mbar
Etot=-7.13 eV/atomP=46.3 Mbar Etot=-5.98 eV/atomP=47.5 Mbar
Etot=-6.22 eV/atomP=47.1 Mbar Etot=-6.59 eV/atomP=46.8 Mbar
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Proton Stopping in Liquid Carbon: comparing to AA
 Stopping power from dielectric models: 
 RPA, Born predict more accurate peak height
 T-matrix predicts more accurate peak position, low-v slope
 Significant discrepancies with all AA models 10g/cc, 10eV10g/cc, 1eV
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:

– 11e PP: total stopping ● 256 Al atoms
● ~70 bands per atom
● ~20k bands
● ~10 million CPU-hours
● per data point

Al+1s

Proton Stopping in Aluminum: electron temperature
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:

– 11e PP: total stopping
– 3e PP: ~free-electron contribution follows same trend as total

Al+1s Al+1s,2s,2p

Proton Stopping in Aluminum: electron temperature
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 At high Te, Bragg peak lowers and shifts to higher velocities
 Different pseudizations offer rough insight:

– 11e PP: total stopping
– 3e PP: ~free-electron contribution follows same trend as total
– 11e PP – 3e PP: ~core contribution not sensitive to Te,but accounts for increasing fraction of total

Al+1s

≈
–

Al+1s

Proton Stopping in Aluminum: electron temperature

Al+1s,2s,2p
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 Competing effects obfuscated!
 Thermal excitations increase free-electron density

– 3ePP underestimates free-electron contribution at 20eV

1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.61

Proton Stopping in Aluminum: electron temperature
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 Competing effects obfuscated!
 Thermal excitations increase free-electron density

– 3ePP underestimates free-electron contribution at 20eV 
 Thermal depletion of low-energy free states and deeper 2p binding alter 2p → free energetics

1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.612p – free energy difference  (eV) 65 55 62.5

Proton Stopping in Aluminum: electron temperature
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 Competing effects obfuscated!
 Thermal excitations increase free-electron density

– 3ePP underestimates free-electron contribution at 20eV 
 Thermal depletion of low-energy free states and deeper 2p binding alter 2p → free energetics
 Thermal depletion of 2p allows 2s → 2p at 20eV
 Working to disentangle these processes

1eV 10eV 20eVfree electrons per atom 3.00 3.02 3.612p – free energy difference  (eV) 65 55 62.5
2p vacancy (%) 0 0.5 9.6

Proton Stopping in Aluminum: electron temperature
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Summary and Outlook
 Developed metric for trajectories in TDDFT stopping calculations

 most important in high-Z and/or isochoric systems like Al
 Found only slight trajectory, configurational effects in liquid C 
 Benchmarking AA + dielectric models for free-electron stopping
 Studying core electron contributions in Al at high T
 Ultimately interested in mixtures relevant to fusion


