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Bridging the Gap between Plasma and Condensed Matter

Goal: benchmark cheaper AA method against more

accurate but expensive TDDFT calculations
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Time-Dependent DFT (TDDFT)

Mean-field model of quantum electron dynamics

qu( t) = Hln(r, t)]¢;(r,1)

Initial condition: ground state from DFT
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Background on Trajectories in Crystals

* Stopping in cold metals well-characterized

e Free electrons ~uniform

stopping ~independent of proton trajectory

* Core electrons highly localized
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if we’ve picked a
“good” trajectory?



Quantitative Metric to Evaluate Trajectories

* Projectile should experience representative NN distances

* Ideal NN distribution: sample random points in cell

* Good trajectory achieves low Bhattacharyya distance
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Proton Stopping in Aluminum: validation

* Validated methodology for cold Al
- good agreement with earlier TDDFT and empirical data

- modest discrepancies from different trajectories, pseudopotentials
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Proton Stopping in Aluminum: ion temperature

Trajectory metric allows controlled comparisons in WDM
— across different T

— across different atomic configurations

— thermalized vs. isochorically heated systems
Free-electron stopping independent of ion temperature

— slight variation with projectile trajectory

— select similarly optimized trajectories

To do: check independence of core contribution
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Proton Stopping in Liquid Carbon: trajectory

Hard to find “bad” trajectory in disordered, low-7Z system

Fewer localized electrons in carbon than aluminum

Little sensitivity to proton trajectory
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Proton Stopping in Liquid Carbon: atomic configurations

Thermal fluctuations may affect stopping

Separately optimized trajectory for several MD snapshots

Little variation across atomic configurations

Trajectory metric may eliminate need for configurational averaging
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Proton Stopping in Liquid Carbon: comparing to AA

272 dk: kv ~1
* Stopping power from dielectric models: S(v =—3 dw w Im o)
* RPA, Born predict more accurate peak height
* T-matrix predicts more accurate peak position, low-v slope

* Significant discrepancies with all AA models
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Proton Stopping in Aluminum: electron temperature

At high T , Bragg peak lowers and shifts to higher velocities

Different pseudizations offer rough insight:

— 11e PP: total stopping
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* 256 Al atoms
* ~70 bands per atom
* ~20k bands

* ~10 million CPU-hours
* per data point
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Proton Stopping in Aluminum: electron temperature

« At high T , Bragg peak lowers and shifts to higher velocities

Different pseudizations offer rough insight:
— 11e PP: total stopping

— 3e PP: ~free-electron contribution follows same trend as total
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Proton Stopping in Aluminum: electron temperature

« At high T , Bragg peak lowers and shifts to higher velocities

Different pseudizations offer rough insight:
— 11e PP: total stopping
— 3e PP: ~free-electron contribution follows same trend as total

— 1le PP — 3e PP: ~core contribution not sensitive to T ,
but accounts for increasing fraction of total
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Proton Stopping in Aluminum: electron temperature

stopping power (eV/A)

Competing effects obfuscated!

Thermal excitations increase free-electron density

— 3ePP underestimates free-electron contribution at 20eV
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Proton Stopping in Aluminum: electron temperature

Competing effects obfuscated!

Thermal excitations increase free-electron density

— 3ePP underestimates free-electron contribution at 20eV

Thermal depletion of low-energy free states and deeper 2p binding

alter 2p — free energetics
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Proton Stopping in Aluminum: electron temperature

Competing effects obfuscated!
Thermal excitations increase free-electron density
— 3ePP underestimates free-electron contribution at 20eV

Thermal depletion of low-energy free states and deeper 2p binding
alter 2p — free energetics

Thermal depletion of 2p allows 2s — 2p at 20eV

Working to disentangle these processes
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Summary and Outlook

Developed metric for trajectories in TDDFT stopping calculations

- most important in high-Z and/or isochoric systems like Al
* Found only slight trajectory, configurational effects in liquid C
* Benchmarking AA + dielectric models for free-electron stopping
* Studying core electron contributions in Al at high T

* Ultimately interested in mixtures relevant to fusion
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