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Introduction and Motivation

• Robust sensor-aided localization
• We take a neuro-inspired model of distributed grid-based computation and apply it in the 

context of navigation-based datasets (e.g. digital elevation models)
• Applications to intelligent navigation from sensor inputs in challenging environments and/or with 

resource constraints (e.g. terrain relative navigation, simultaneous localization and mapping)

• Neural inspiration from grid cells
• Hippocampal representation of space using grid cells (in addition to place cells)
• Characterized by a periodic, hexagonal tiling with different spatial scales, orientations, and offsets
• Intersection of multiple grid modules can be decoded yield unique locations
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Grid cell activations of the rat hippocampus 
collected over square arena [Moser et al. 

Place Cells, Grid Cells, and Memory] 

Intersection of multiple grid modules encodes locations 
as phases [Bush et al. Using Grid Cells for Navigation]Spatial Scale       Orientation                   Offset



3 Grid Cell Activations Over a Map

Equations for grid cell activations 
[Solstad et al. From grid cells to place 
cells: a mathematical model]

Sample grid cells of distinct periods, orientations, and offsets overlaid on the 
same elevation map. Centroids correspond to locations with high activation.

• Overlaying grid cell activations onto digital elevation models (DEMs) provides a 
grid-based representation of locations
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4

Grid modules defined by shared period and orientation, whereas their 
“phase” determines their offset w.r.t. a reference point (e.g. 𝜙 = (0,0))

Representation of a location (x,y) using:
• Grid cell activations (left)

• Grid module phases (right)

Grid modules: 1          2                        3
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Representing Locations Using Grid Modules

• Refinement of grid-based representation from individual grid cell activations to grid 
module phase codes enables greater representation and more tractable computation
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5 Encoding to Grid Module Phase Codes

• We construct a distributed representation of the input space over the grid modules
• Here, we transform locations associated with similar inputs

(elevation contours) into phase space (per grid module) to
obtain a dictionary of possible phase code candidates

Individual Location Transform

Full Contour Transform



6 Encoding to Grid Module Phase Codes

• Spatial displacement corresponds to phase shifts and can be integrated with respect 
to a reference time/location from multiple measurements

Displacement corrected 
phase candidates (per grid 

module) are summed to 
obtain a phase estimate Locations over a random walk corresponding to 

consistent phase estimates for a given grid module 

Σ



• By summing the grid cell activations corresponding to grid module phase codes, 
we can compute a “coincidence map” to find where they may uniquely intersect
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Decoding to the Location Estimate



8 Decoding to the Location Estimate

• This computation is scalable, where only a subset of grid modules is required for 
successful decoding, and grid modules can be encoded/trained independently



• We performed Monte Carlo simulations over arbitrary 
trajectories and computed displacement error

• We also performed robustness analysis on process noise 
as relevant to a potential neuromorphic implementation
• E.g. bit-flips in the stored map, coding noise in the phase estimate
• Redundancy through the use of multiple grid modules results in 

graceful degradation of location estimates

9 Experimental Results



10 Summary and Future Work

Goal: leverage neuro-inspired 
strategies in support of 

intelligent navigation

• We developed a neuro-inspired model of distributed grid-based 
computation to localize from a set of elevation inputs
• Applied algorithm to simulations on navigation-based datasets (DEMs)
• Robustness analysis to process noise as relevant to a potential 

neuromorphic implementation

• Current and Future Work
• Translating the linear algebra formulation onto a spiking implementation
• Analysis of tradeoff spaces (e.g. computation, storage costs, robustness)
• Learning/training phase candidates from data (e.g. mapping part of SLAM)
• Adaptation of localization algorithm to different datasets, sensor and 

noise models, and integration with filters (e.g. EKF update)



11 Backup: Representing Locations Uniquely

• To represent locations uniquely, we need the phase code dimensions to be orthogonal
• This is achieved by performing an affine/shear-like transformation per grid module
• With period and orientation fixed per grid module, the phase corresponds to the offset of the 

corresponding grid cell that is maximally active at the encoded location
• This is computed using the modulo operator in the orthogonalized space
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Sample grid cell activation transformed into orthogonalized space (and thresholded image for clarity)

Affine 
transform

Modulo 
operation


