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Introduction and Motivation

* Robust sensor-aided localization

* We take a neuro-inspired model of distributed grid-based computation and apply it in the
context of navigation-based datasets (e.g. digital elevation models)

 Applications to intelligent navigation from sensor inputs in challenging environments and/or with
resource constraints (e.g. terrain relative navigation, simultaneous localization and mapping)

* Neural inspiration from grid cells
* Hippocampal representation of space using grid cells (in addition to place cells)
* Characterized by a periodic, hexagonal tiling with different spatial scales, orientations, and offsets
* Intersection of multiple grid modules can be decoded yield unique locations
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Grid cell activations of the rat hippocampus
collected over square arena [Moser et al.
Place Cells, Grid Cells, and Memory]

Intersection of multiple grid modules encodes locations
Spatial Scale Orientation Offset as phases [Bush et al. Using Grid Cells for Navigation]



Grid Cell Activations Over a Map

* Overlaying grid cell activations onto digital elevation models (DEMs) provides a
grid-based representation of locations

Sample DEM map
(area around
Albuquerque)
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Sample grid cells of distinct periods, orientations, and offsets overlaid on the
same elevation map. Centroids correspond to locations with high activation.




Representing Locations Using Grid Modules

* Refinement of grid-based representation from individual grid cell activations to grid
module phase codes enables greater representation and more tractable computation

Grid modules defined by shared period and orientation, whereas their
Grid modules: 1 5 3 “phase” determines their offset w.r.t. a reference point (e.g. ¢ = (0,0))
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Encoding to Grid Module Phase Codes

* We construct a distributed representation of the input space over the grid modules

* Here, we transform locations associated with similar inputs
(elevation contours) into phase space (per grid module) to [
obtain a dictionary of possible phase code candidates ‘
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Encoding to Grid Module Phase Codes

* Spatial displacement corresponds to phase shifts and can be integrated with respect
to a reference time/location from multiple measurements

Sensor Input over Trajectory
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Decoding to the Location Estimate

* By summing the grid cell activations corresponding to grid module phase codes,
we can compute a “‘coincidence map” to find where they may uniquely intersect
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5 Decoding to the Location Estimate

* This computation is scalable, where only a subset of grid modules is required for
successful decoding, and grid modules can be encoded/trained independently
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Experimental Results

* We performed Monte Carlo simulations over arbitrary
trajectories and computed displacement error

* We also performed robustness analysis on process noise
as relevant to a potential neuromorphic implementation
* E.g. bit-flips in the stored map, coding noise in the phase estimate

* Redundancy through the use of multiple grid modules results in
graceful degradation of location estimates
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©° Summary and Future Work

* We developed a neuro-inspired model of distributed grid-based
computation to localize from a set of elevation inputs
 Applied algorithm to simulations on navigation-based datasets (DEMs)

* Robustness analysis to process noise as relevant to a potential
neuromorphic implementation

* Current and Future Work
* Translating the linear algebra formulation onto a spiking implementation
* Analysis of tradeoff spaces (e.g. computation, storage costs, robustness)
* Learning/training phase candidates from data (e.g. mapping part of SLAM)

* Adaptation of localization algorithm to different datasets, sensor and
noise models, and integration with filters (e.g. EKF update)
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" Backup: Representing Locations Uniquely

* To represent locations uniquely, we need the phase code dimensions to be orthogonal

* This is achieved by performing an affine/shear-like transformation per grid module

* With period and orientation fixed per grid module, the phase corresponds to the offset of the |
corresponding grid cell that is maximally active at the encoded location
 This is computed using the modulo operator in the orthogonalized space ]
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Sample grid cell activation transformed into orthogonalized space (and thresholded image for clarity)




