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Motivation

• Standard deep learning (DL) methods give predictions
without associated measures of uncertainty.

• From a statistical perspective, predictions without a
measure of prediction variance are incomplete. From a
practical perspective, the usefulness of uncertainty
estimates is clear.

• Developing methods for including uncertainty estimates
along with the powerful prediction capabilities of DL is
currently an active and important area of research.
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Motivation
Our initial motivation for this work stems from analysis of a
simulated hyperspectral image data set.

Figure: Example pseudo color rendering of image with green discs (left), zoomed-in region (center), and a
single disc partially obstructed from view (right).
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Motivation
A critical question arose as part of this analysis: how to assess
the quality of the estimated uncertainty?

Figure: Proportion of predictions in which a model is ’highly confident’ for three different models trained and
evaluated on nine different hyperspectral images. This demonstrates the problems of (1) different models
producing very different uncertainties and (2) overconfidence in model predictions.
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Motivation

• From a practical standpoint, these models are producing
drastically different levels of confidence in their
predictions. Assessing the quality of the uncertainty
estimates becomes critical in high-consequence
applications, especially as the number of predictions to be
made increases.

• Our goal is to develop a framework for the principled
assessment of uncertainty estimates from deep learning
models.
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Interval Coverage and Width

• One approach is to evaluate the coverage and width of the
prediction intervals.

• Our intervals are attempting to capture the probability of
a given pixel (voxel) containing a target. The class
probabilities are not available to us, so we are unable to
assess coverage using the data at hand.

• This is a problem with classification problems in general.
Further, simulating data sets with similar properties where
ground truth class probabilities are known is a difficult
challenge in itself.
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Interval Coverage and Width

To get some idea of how various methods performed with
regard to interval coverage and width, we simulated a
two-dimensional two-class classification (TCC) data set where
class probabilities are known for every (x1, x2) pair.
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Interval Coverage and Width Results

Figure: Prediction surfaces for each model on one TCC simulation.
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Interval Coverage and Width Results

Figure: Uncertainties for each model via 90% prediction interval
widths on one TCC simulation.
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Interval Coverage and Width Results

Method Coverage Width
BNN-MCMC 0.91 (0.04) 0.22 (0.01)
BNN-VI 0.59 (0.17) 0.38 (0.07)
DE 0.48 (0.09) 0.09 (0.01)
Bootstrap 0.84 (0.06) 0.25 (0.02)
MC Dropout 0.67 (0.08) 0.15 (0.02)
GP 0.98 (0.02) 0.36 (0.02)

Table: TCC interval coverage and width results for 90% prediction
intervals. Coverage and width values are averaged (1) over all test
observations for a given simulated data set and (2) over all
simulated data sets. The standard deviation, averaged over all
simulated data sets, is given in parentheses.

10



Interval Coverage and Width Results

• As we might expect based on results from the
hyperspectral image analysis, we see a large discrepancy
in terms of prediction interval quality.

• While informative, we do not claim that these conclusions
apply generally. We believe the clearest lesson from this
analysis is that more work on assessing the quality of
uncertainty estimates is needed.
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Approximating Coverage and Width

• As mentioned, simulating realistic data sets with known
ground truth class probabilities is a difficult obstacle for
complex data sets (such as the hyperspectral image data
set we considered). This in turn can prevent us from
assessing uncertainty quality through coverage and width.

• We are currently working on another approach that will
allow us to approximate coverage and width. The idea is
to use a generative model to simulate the data for us.
With more powerful generative models (e.g. GANs), there
is potential to accurately represent even complicated data
sets.

• We illustrate this idea with the same two-class
classification data set used previously.
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Approximating Coverage and Width

Figure: Estimated probability distributions generated by Naive Bayes (Left) and QDA
(Right) with TCC data set overlaid.
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Approximating Coverage and Width

Figure: Original data (top) with Naive Bayes generated data (bottom left) and QDA
generated data (bottom right). In a real application, the ground truth class
probabilities for the top data set are unknown but known for the two bottom data sets. 14



Approximating Coverage and Width

• With the generated data sets, we know the underlying
class probabilities that generated the data, so we can
obtain interval coverage and width estimates from the
generated data.

• While the two methods shown here are simple and may
not work well on complex data sets, more sophisticated
generative models are capable of replicating much more
complex data.
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Additional Approaches

• A method for calibrating epistemic uncertainty has been
developed and has shown promising results in improving
the accuracy of a model’s predictions (this has been
developed by Chris Qian, student of Dr. Feng Liang at UIUC)

• We are currently working with conformal prediction as
coverage on a real data set can be estimated for
conformal prediction sets. We are generating conformal
prediction sets from the same models we used to assess
coverage and width.

• We are also exploring other existing metrics (e.g., expected
calibration error) to better understand what exactly each
metric describes and how each should be used in
understanding the quality of uncertainty estimates
produced by a given model.
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Thank you!

• Questions?
• Please feel free to contact me: jradams@sandia.gov
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