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2 | Project Perspective

 International Association for Fire Safety Science (IAFSS) Working Group on
Measurement and Computation of Fire Phenomena (MaCFP Working Group)
perspective:
- “Establish a structured effort in the fire research community in order to make significant

and systematic progress in fire modeling through a fundamental understanding of fire
phenomena” [1]

« Sandia motivation:

* Perform validation study of well-documented hydrocarbon pool fires in SIERRA/Fuego as
part of the process of certifying the code for use in stockpile modeling and simulation
applications [2]

Focus of analysis:
To analyze simulation data in the context of the radiation model and

other quantities of interest (QOIs) not addressed directly by main thrust
of project. To provide feedback useful in model calibration and to
provide additional analysis of model results.




Methanol Fire Background

30-31 cm diameter methanol pool fire is a specific validation case of
the IAFSS MaCFP Working Group [3]

Good validation case due to the fact that methanol flames do not
produce soot, so fluid mechanics, turbulence, and gas radiation can
be analyzed

Waterloo methanol pool flame is representative experiment

Several National Institute of Standards and Technology (NIST)

experiments done to characterize this fire
+ Temperature & velocity are typical validation variables
» Studies also focused on radiative heat transfer and chemical composition

Weckman pool flame
parameters
Pan diameter: 30.5 cm
Elevated pan (= 30.5 cm

above floor)

Steady state burning,
with 1.07 g/s fuel mass
flow

Lip height: 1 cm

Methanol

30 cm

Methanol pool fire structure, from Falkenstein-Smith et al., 2020

Reprinted courtesy of the National Institute of Standards and
Technology, U.S. Department of Commerce. Not copyrightable in the
United States.



4 I Modeling and Simulation Information

* Modeling tools: SIERRA/Fuego & Nalu

* Turbulence model: Large eddy simulation (LES)

« Turbulence closure model: Subgrid-scale turbulent kinetic energy (K-sgs)
« Combustion model: Strained laminar flamelet model (SLFM)

« Soot model: Two-equation model transporting number density and mass
concentration of soot

- Radiation model: Participating media radiation (PMR) using gray-gas

Pan:
approximation e
1 cm wall thickness
1 cm depth
Outflow B.C. e .
= ~——_Domain
h \
/ r=1m

Specified: \ |
*  Mass flux \ /

* Temperature
*  Mixture fraction
* Scalar variance

h = 2 m above pool surface

SIERRA/Fuego

« Sandia’s low-Mach, turbulent reacting flow code

* The key element of the Advanced Simulation and Computing (ASC) fire
environment simulation project

Nalu

» Generalized unstructured massively parallel low Mach flow code

f Onsmmt - I h, =25 cm below pool surface designed to support a variety of open applications of interest built on
£$p; ;r;a e the Sierra Toolkit and Trilinos solver Tpetra solver stack

Used to handle radiation modeling - coupled to Fuego



s | Mesh and Temporal Discretization

« Simulations used two mesh resolutions
* Closely follows discretization of Ahmed & Trouve

Temporal discretization:
« Max CFL number: 0.75
» Time step: 2.5e-4 s (fine)

! I L
Ahmed & Trouve 5 mm 1 mm D ! mEEa;
s 2 I
\ [
Hubbard 2.5mm 1.25 mm = uauaE
Coarse Mesh Fine Mesh 1'
Nodes: 3006446 Nodes: 6177500
Cells: 2363433 Cells: 4827253 ]
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i
0.6m
i
! i3 If'-':::"' L ot ; ; ; ]
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Coarse and fine meshes near pan, from Hubbard

A C e , i et al., 2022 I






Radiation Model Framework — Overview
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Schematic is a graphical
representation of the

framework focused on in the
radiation model analysis
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s I Integrated Buoyancy Flux & Entrainment Rate
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Turbulent Kinetic Energy (TKE)

Transport equation for subgrid TKE:

ot

) —1.825 0 1525
/ 0P 4y + f seinds = [HO, 454 / (P — D) dV.

o dr;

Dissipation:

sgs\3/2
Dk.sgs — C 5 (k )

&

Grid filter length:
A=V"

[Toz‘a/TKE=%((u VY + ) +(w') )+Subgrz'd TKE]

Closure Model

In LES, the smallest length scales
are filtered out of Navier—Stokes
equations and modeled

Turbulence closure model used here
is K-sgs (subgrid-scale TKE)

Most of the TKE is resolved, but
subgrid-scale TKE is modeled
Subgrid TKE transport is tied to
computational grid resolution by
grid filter length

Resolved TKE also depends on grid
resolution



0 | Flame Height

» Flame height commonly defined using an intermittency definition s
(value at which visible flame tip spends 50% of time above, 50% below) L=-1.02D+0.2350

» Generally linear relationship between pan diameter and flame height .
(Society of Fire Protection Engineers (SFPE) correlation) Q= H,

Calculation Steps

« Extract time series of data
at multiple heights
Pick threshold variable 1.0
(e.g. temperature) value
(informed by experiments)

L
g 8

Compare median
temperature at each height
with threshold temperature
When 5-10% agreement is
obtained, that height is 0
taken as flame height

@
3
Temperature (K)

A

»
)

_—
3 8

Z (arbitrary units)
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12 I Contour Plots — Temperature & Axial Velocity

« Temperature: 338 K at pool surface, high temperature core, decreases with height and radius
« Axial velocity: increases vertically due to buoyant acceleration, then decreases. Decreases with

radius.
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13 I Radiant Fraction

» Model was effectively calibrated to predict the experimentally-
reported radiant fraction by using radiation model prefactors

« Radiant fraction is measure of fraction of heat of combustion
lost due to radiation

» Higher radiant fraction means more radiative heat loss, cooler
gases, etc.

Gas Absorption  Gas Radiation
Radiation Coefficient Source
Model Multiplier Multiplier

Gray gas 0.5
Gray gas 0.75
Gray gas 1 1
lLla = })llLla,l €= 1)281

s, iI(S) +ul(s)=e
Oox,

https://www.citypng.com/photo/50/flame-fire-cartoon-clipart 1

0.4

0.351

o
[} o
33 w

Radiant Fraction
o
N

Hubbard calibrated radiation

model using prefactors

Grey gas, gas abs x 1, gas src x 1
Grey gas, gas abs x 0.75, gas src 0.5
Grey gas, gas abs x 0.7, gas src 0.4
Grey gas, gas abs x 0.5, gas src x 0.25

Experimentally expected value

Z (m)

0.4 0.6 0.8 1
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Integrated Buoyancy Flux

« It is related to the buoyant source term in the 0.6
momentum equation A
0.5
« Has sense of “volumetric flow of buoyant force per unit R G ot S
. o7 xR _H--0——9——9o—--0-T
volume” whereas source term is a buoyant force 04t s
) ﬁ;ﬁjgzﬂf g-B- BT TR TE A g
— /,‘g’/’ E‘I/E/
» Higher radiant fraction - cooler plume - lower buoyant 2 03l % e
. < U % =
acceleration o o
g
02 F
. Pergent d.1fference between (0.75, 0.5) case and # = Grey gas, gas abs x 1. gas sro x 1
Delichatsios’ formulas ~22% # ¢ Grey gas, gas abs x 0.75, gas src 0.5
« Formula depends on combustion efficiency & heat release rate, 0114 * Grey gas, gas abs x 0.7, gas src 0.4
which could be reduced é © Gre‘y gas,l gas abs x 0.5, gas src x 0.25
? 4 Delichatsios Formula
Oo 0.1 0.2 03 04 0
- : . . . . 5
X, -X
B(z)=g[u(p, - p)dA B, = 82X X Z (m)
A CpToo
opii, . 2, -
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5 1 Entrainment Rate

« Entrainment rate computed as vertical mass flow rate in plume
« Justified by conservation of mass & fact that mass flow rate from fire source
is low relative to mass flow rate of air in plume
» Entrainment rate is higher without floor than with

« Comparison with engineering correlation showed good

agreement after using threshold filter to reduce integration area
» Cut off mixture fraction at 1e-4

[ m, = j2ﬂzt_p rdr ]

1, (kg / 5) = 0.00580, (kW) %
ment,L (kg / S) = OOOSSQC (kW)

tit,, (kg / $) = 00710, (2= 2,)" - | 1+0.027Q,* (z = 2,) ™" |

ent

- = Eq. (8)
©  Simulation Results, No Threshold o
* Eq.(9) ggﬁfi
® Simulation Results, Threshold gs 7
og® »
===-Eq. (10) Oogg‘ el




6 | Turbulent Kinetic Energy (TKE)

« Effect of mesh resolution on subgrid and resolved TKE was significant
* Fine mesh needed to compute TKE accurately

« Computed total TKE compares reasonably well with Weckman’s

experimental data

0.12 ;
E © Coarse
: ® Fine
0.1 Peow
4 oy
NA jo ’D\VES‘\
L .08t h | ofoo .
= ¢‘ | w? e
Lu s
E 0.06 /@ H .,.-.v.-.»l.-i
_‘g o 'rt'
Sooaf : N .
3 e i Refined
° LS. i .
002 o7 " “eet ~ region ends
’P’ ./‘. E
oe" :
0 0.2 0.4 0.6 0.8 1

A \Weckman Data ,ﬁ‘
ﬁ kresol\.'ed,ﬁne s
* ktmal,ﬁne e
Y kresolved,coarse S
+ ktolal,coz:lrse //
;‘k//
fﬁ/
/’% __"j:%
S e
X AA AL A
T
m%iﬁ
0.05 0.1 0.15 0.2 0.25 0.3



Temperature (K)

17 I Flame Height

« Several time intervals were examined. 5 s was determined to be
sufficiently long. See plots of "l
* Median temperature at 5 axial locations for each time range, E o}
+ % difference between median value of given time range and that of 10 s time range 5
Fhaa Expected flame height
/
« Experimentally expected value is 0.5 m g
E 045
» Flame height prediction less sensitive to variations in mixture fraction oal
0'3350 560 5;50 660 650
1000 . Guessed Temperature (K)
o —=0.03s
— 0.65
900 \
1 06
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N § % 055 Expected flame height
700 é % 05 ‘/
a 5
2 B 45
600 3
E 04
500
0.35
400
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Guessed Mixture Fraction

03 0.4 05 06 07 001 0015
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18 I Conclusions

Analysis of methanl pool fire conducted as part of validation study for SIERRA/Fuego

Radir?tiort model was effectively calibrated by modifying radiation model parameters for
methano

Computing integrated buoyancy flux, entrainment rate, and turbulent kinetic energy
allowed for evaluation of less typical quantities in this validation study

Quantities were compared with experimental data or correlations and generally showed
agreement

TKE needed fine mesh to be computed accurately
Predicted flame height less sensitive to variations in mixture fraction than temperature

Mixture fraction is a preferrable threshold variable for this application
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Backup Slide | — Radiation Model Framework
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Backup Slide 2 — Numerics

Spatial Discretization

Control-volume finite-element
method (CVFEM)

Combines desirable features of FEM &
FVM

Truly FYM

Advection modeled using hybrid
scheme with MUSCL upwinding at high
cell Peclet numbers

Central differencing otherwise
Diffusion modeling: central
differencing

Solver used iterative segregated
pressure projection method with
Rhie-Chow smoothing

Temporal Discretization

Uses adaptive backward difference
time-stepping method (BDF2) to solve
NS equations

Up to five non-linear iterations
performed to obtain convergence at
each time step

Max. CFL number: 0.75
Time step (fine mesh): 2.5e-4 s
Time step (coarse mesh): 5.0e-4 s
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Backup Slide 3 — Flame Height Calculation

» Intermittency is defined as the fraction of time for which a point in space at a certain elevation

contains part of the flame.
* In this study, we analyzed how to define when the flame is “contained” in a computational cell.

» 5 s of data used in time series
Steps

Extract time series of data at IR C |
multiple heights ) S — |
Pick threshold variable (e.g. - Fiure 423 Prcictd lame htghtbesed on femprature throshald
temperature) value g
(informed by experiments) 2
Compare median - » i
temperature at each height 4
with threshold temperature
When 5-10% agreement is o s s s s om o
obtained, that height is taken Fours 421, Wetan temparaturs formulils tme ranges "l .

Guessed Mixture Fraction
Figure 4-24. Predicted flame height based on mixture fraction threshold

as flame height



24 I Backup Slide 4 — Flame Height Prediction Sensitivity

» Expected flame height is 0.5 m

» Mixture fraction at expected flame height: 0.015; Temperature at expected flame height: 524.24 K
» Varying the mixture fraction threshold by +0.005 (28.6%) causes an underprediction of 13.8%

» Varying the mixture fraction threshold by -0.005 (40%) causes an overprediction of 25.5%

» Varying the temperature threshold by +75.76 K (13.5%) causes an underprediction of 13.1%

» Varying the temperature threshold by -74.24 K (15.2%) causes an overprediction of 28.5%

» Variation is higher for lower threshold values of both variables

Temperature Mixture Fraction
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25 | Backup Slide 5 — Entrainment Rate

restrict integration radius and thus, the amount of the integration area S
which was outside of the pan 06]|| 5 Staumion Rl No Tesho

* Eq.(9)
05 ®  Simulation Results, Threshold

—-—-Eq.(10)

» Entrainment rate computed using mixture fraction threshold of 1e-4 to |
i

« Using threshold improved agreement with correlations, particularly at é
low heights -

Ue+
[ 1.0e-1

[v4 — 1.0e2

Mixture Fraction

1.0e-3

— 1.0e04
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