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2 ‘ Flow of Presentation:

®

* Dosimetry Metrics — Terminology
* Focus on Calculated Metrics vs. Observed Behavior

e Electronic Materials of Interest
 Main semiconductor materials: Si, GaAs, GaN, SiGe, SiC ‘
e Other materials:

« Semiconductors: [HfSe,]; Dielectrics: [SIO,, HfO,, Hd, :Zr, :O,]; Dopants: [B,
P, Sb, In]; Metals: [Au, Cu, W]; Capacitors [Ta, gel];

« Examples of Nuclear Data Needs (with motivation for uncertainties)
for Semiconductors

Why is the understanding of energy-dependent uncertainties in
semiconductor damage metrics important? Consider the use of
semiconductors in space and for instrumentation in power reactors.



3 ‘Formulation of Calculated Damage Metrics
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Nuclear Data is used to determine the response functions for radiation damage to
semiconductors.



Applied Damage Metrics for Semiconductors

Damage Metrics

Comments / Description / Application

Total Dose

Used to measure the response of calorimeters.
Approximated by the calculated total kerma assuming charged particle equilibrium.

Displacement Dose

Approximated by the calculated displacement kerma in complex materials.

NIEL

Proportional to displacement dose; defined for all incident particles; at high incident
energies, includes the effect from nuclear interactions. Corrected for nuclear
reactions and CP transport.

1-MeV(GaAs)-Equivalent
1-MeV(GaAs) Fluence

Derived from 1-MeV(matl) damage energy by dividing the damage energy by the
reference 1-MeV damage energy, 95/70 MeV-mb for Si/GaAs. Corrected for
recombination.

lonizing Dose

Used to measure transient response of some detectors, e.g., photoconductive
detectors (PCDs). Approximated by the calculated ionizing kerma.

Frenkel Pair Density

Proportional to the NRT damage energy. Computed using 2*E /B, where 8 is an
atomic scattering correction term, to account for the energy per Frenkel pair.
Recombination corrected.

Track Density

Used as a fluence monitor. Proportional to the total cross section. Treashold
tratment,.

Minority Carrier
Recombination Lifetime

An experimental metric derived from carrier removal rates in bulk materials, lifetime
changes in optoelectronics, or gain degradation in BJTs and HBTSs.

':+L‘\ Mf\*ﬁlﬁ:f\l Alﬂf\ nlﬁl\“l\lﬁ*:f\lﬁ\f\l +I\ +I¢'\f\ kIDT Af\m ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

I Iﬂf\A +f\ f\l\lﬁlﬁf\lf\+l\ . A



. |Semiconductors — Nuclear-data related Sources of

Uncertaintg/
 Cross Section

* Cross reaction correlations — can be addressed using TENDL random libraries
» Recoil Spectra
 Limited availability in ENDF/B-VIII.O; found in TENDL-2021
* No uncertainty even supported in ENDF-6 format ‘

®

« Sparse experimental validation data (none for semiconductor materials)
« Stopping Power

« Lack of experimental data for GaAs or GaN, so calculations used
 Damage Partition Function

. T_rela’%mdent of alpha particle damage — limitations in Robinson formalism
violate

* Treatment of polyatomic lattice materials — limitation in Robinson formalism for
dissimilar A/Z for lattice/recoil atoms, requires use of BCA/MD. CP studies.

A common theme is the lack of experimental data and limitations of nuclear
data library formats.



i ‘ ulrceriallity Lorisiderauoris i SermiCorndauclors
Metrics

« Uncertainty components (std. dev. & correlation) reside in:
* Nuclear data evaluations (data and model) — [previous slide]

Unaccounted for model-defect used to generate the data representations.

« Systematic correlations due to optical model representation that go beyond what is
captured by parameter variation. ‘

Models used to generate damage metrics, e.g.:
« Damage partition function

* Threshold treatment in Frenkel pair generation
Propagation of uncertainty into damage metrics, e.g.:
* Cross reaction-channel correlations

« Stopping power correlation over energy and between different recoil atoms

Relationship between a calc. damage metric and an observed damage mode:
* e.g., use of primary Frenkel pair creation for transistor gain degradation.

There are many uncertainty aspects to consider, e.g., how the data is used.



: ‘ Radiation Damage in Semiconductors - kerma

* First quality metric: Energy Balance (kerma / kinematic kerma limit)
» Easily assessed with codes, such as NJOY-2016 (MT301/MT443)

« Serious issues in ENDF/B-VI and prior versions.

Status is now adequate. Modern cross section evaluations are,
generally, checked for this.
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The energy balance in nuclear data remains a concern. Nuclear data and model-
dependent aspects. An acceptable evaluation can usually be found.




: ‘ Radiation Damage in Semiconductors - kerma

« Second quality metric: Recoil Energy Distribution ) T
« Comparisons are best metric: 025 | == renpL otz
 Little experimental data, use model-based variation % _m ;
between different evaluations / codes aro] TERC a0 azes ey
- Serious issues in ENDF/B-VI and prior versions.
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Significant variations observed when kinematics do not constrain spectrum —
and when close to the reaction threshold energy.



° |'It is even worse when data verification is not performed.

the uncertainty in recoil spectrum. e ENDF/BVIILO ]

» Some literature reports big differences — o BVilLosmol
often code bug, user error or data format = |/ .. = e EMPIRE-32.3 |
ISsue.

« Data verification steps too often fail to carefull
look at the MF6 data — many errors occur — often
related to the CM/Lab coordinate system.

* Direct experimental data for heavy recoil
particles Is very limited. Rather, it’is
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* Comparison of MF6 and reaction Recoil energy (keV)
kinematics is a good verification step — and Recoil Spectra of '*W(n,2n)!®W at 14-MeV Incident Energy
ShOU|d be re ulred (Chen S. Chen, D. Bernard, J. Nucl. Matl., Vol 562, April 2022.
recommendation).

There is a major need to look more closely at recoil atom spectra and the
associated uncertainty.



“ IImplications for Displacement Kerma Due to Recaoll
Spectra Uncertainty:
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» Consider the displacement kerma (damage
cross section) in tungsten.
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* Presumed format errors caused a 3X error
« Evaluation differences were still resulted in ]
~25% variation in the damage metric. ot ‘
 These are all recent evaluations! Incident neutron energy (MeV)
* Low energy elastic damage is in good Total Damage Cross Section of "W

agreement because the recoll is derived
purely from conservation of momentum and
energy.

There is a major need to look more closely at recoil atom spectra and the |

S. Chen, D. Bernard, J. Nucl. Matl., Vol 562, April 2022. ‘

associated uncertainty.



: \Radiation Damage in Si Semiconductors - kerma

« Consideration: Photon Spectra for neutron capture

» Quality metric: consistent treatment

« Photon spectrum matters — not just energy:1 photon vs. 2 photons with same
energy

e Consider NJOY-2016 treatment of thermal capture

 MF6 vs. MF12 representation (e.g., Konno and Chen)
» Difference seen in TENDL evaluations that have both formats

* Discrete vs. continuum representation [NJOY treatment issue]

« Kimura et al., 9t ISRD found ASTM thermal displacement kerma
Si kerma 2X too large based on reactor experimental damage.

» Use of PGAA spectra vs. modeled with limited nuclear structure
 Fidelity of thermal neutron capture vs. high energy neutron capture
 Status is poor.

Serious limitations seen even in (n,g) reaction treatment.
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2 ‘ Semiconductors — further complexities

®

* Responses (calc.) mapped to experimental damage metrics (obs.)

* lonizing dose (calc.) — trapped charge in oxide (obs.)
* |ssue 1: charge recombination due to local density of ionization
* [ssue 2: presence of high-Z materials: vias and high-k dielectrics
* Issue 3: small feature size and lack of electron equilibrium ‘
 Damage energy (calc.) — change in minority carrier lifetime (obs.)
* Issue 1: recoil-energy depended correction, arc-dpa
* [ssue 2: sensitivity to charge state of residual defect, e.g. V-V° vs. V-V-
* [ssue 3: annealing of defects — interplay between temperature/time and
current injection on defect populations, e.g. Si DLTS observations.

Our easily calculated damage metrics do not always capture some of the important
physics in the device response. Application-dependent!



: ‘Statistical Issues: there is a significant cascade-to- |
cascade variation in FPs

pdf for Si Ions pdf for 1-MeV neutrons in Si.
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The distribution is critical! At the neutron level, it is not even a normal I

distribution. The variation in the pdf can be as large as the mean value.



Damage Metric (MeV-mb)

‘ Semiconductor Response Functions
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We can generate energy-dependent response functions for most semiconductor
materials. The issue is the ability of these calculated responses to capture the
observed behavior!



‘There IS a strong energy-dependent correlation in
the damage partition function

Neutron-based Si ion-based
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Neutron-based uncertainty based upon TENDL-2015 random ENDF files for recoil spectra.
Si ion-based uncertainty based on MARLOW-based BCA calculations.

A strong energy-dependent correlation can result in a 2X change in integral
uncertainties!
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Uncertainty for the Radiation Response in
Semiconductors ‘

16

* Matching a computed response function to an observed radiation
effect of interest

» Correlations between reaction channels
* Uncertainty in the recoil spectrum ‘
* Verification of the recolil spectra in nuclear data evaluations

* Uncertainty in the treatment of the damage partition function for
polyatomic materials

« Equivalence of damage metrics due to contributions of light and
heavy recoil atoms, e.g., proton damage vs. neutron damage.

« Characterization of stochastic variation in applications

There is a big need for fundamental advances here — both in the characterization of
the underlying nuclear data and in modeling the damage metric!




Questions?




