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How can we predict fusion material

performance?

* While tungsten (W) is the leading  The W-ZrC training set includes DFT calculations of W and ZrC bulk
candidate divertor material for future and surfaces, as well as expected interfaces.

What kind of training data do we need?
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t-SNE visualization of training data
bispectrum components and energies in
2D. More configuration space is reached by
including a variety of AIMD, liquids, manual
active learning, and USPEX structures.

Using first-principles to train a classical

nteratomic potential Optimizing potential hyper-parameters

« We Iev.erage machine Iearning4to train a Spectral Neighbor Analysis « Finding optimal potentials requires searching over a hyper-parameter
Potential (SNAP) on DFT data®. and group weight phase space that can easily be 20+ dimensions.
« Each neighboring atom position is mapped to a point on a 3-sphere .

To best search this variable space, we want to maintain diversity in the

along with its corresponding energy. candidate potential population during the genetic algorithm?.

* We can then describe the basis by fitting bispectrum components. . Better quality candidates can be found by increasing the population

AN size and modifying the replacement type.
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With diverse training data and an optimized search over hyper-parameters, we can now study

ZrC strengthened W thermomechanical properties.
»  The W-ZrC SNAP potential yields material properties in good agreement with xx—
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* Using the W-ZrC SNAP potential we can run millions of atom simulations at of C-terminated
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