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Motivation

* Decentralization in the power industry makes power systems more
vulnerable to attacks.

* Prior work on grid resilience primarily uses optimization techniques

* May not scale to large systems
* Not designed to defend against an active adversary

* Can a reinforcement learning (RL) agent defend a distribution power
system by controlling a collection of utility-owned distributed energy
resources?



Contributions

* Prior work on RL-based grid resilience focus on discrete-action settings or
continuous-action settings. We are the first to consider a parameterized-
action setting, a more natural setting for grid resilience tasks.

e Agent can learn optimal DER setpoints as well as the optimal path to the optimal
setpoints.

* We introduce a deterministic greedy algorithm, and find that it performs
quite well.

* We empirically demonstrate that RL agents can successfully regulate
distribution systems and outperform the greedy algorithm.

* We evaluate several RL algorithms and observe that algorithms specially
designed for parameterized action tasks are significantly more data efficient.

* This work takes an additional step towards a more realistic multi-player
distribution system control game



Reinforcement Learning Interaction Protocol &
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Power System 1: [EEE 13-bus Model

* 14 controllable DERs

* Agent controls the active and reactive

power of each DER GIH)
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* |IEEE-balanced: LTCs are tapped to
default values.

* |[EEE-unbalanced: LTCs are tapped to
the 0.95 pu state to produce a severe
voltage condition in which all bus
voltages are less than 0.95 pu.
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Power System 2: EPRI Ckt5 Model

Substation

e 701 total controllable DERs
PV System

* 9%

* Agent controls the power factor of

each DER
* Power factor = ratio of active

and reactive power

* EPRI-14: Agent only controls DERs
with the 14-largest power ratings.

* EPRI-32: Agent only controls DERs
with the 32-largest power ratings.
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Discrete Environment Experimentation

* As part of a discrete version of the environment we experimented with
splitting the range of busses that a given agent can control.

* With training they often found equilibriums where each agent would settle
on a small set of actions 1-2 it would repeat alternating between turns.

* An example score after training:
* Good Agent: -0.45708
* Bad Agent: 0.04969*

*The Bad Agent was able to get the best reward in this case.
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Attacker Defender
* Future Work: Training the agent to act optimally with any subset of busses.
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Continuous Environment Experimentation

* Let n = number of controllable DERs (i.e.
number of discrete actions)

* Parameter space X': The set of possible

setpoints for a single DER

* |EEE: X = unit disk
* EPRL X =[-1,+1]

* Action space: {0,...,n — 1} X X
* For the EPRI model, action (7, 0.4) changes the

setpoint of DER 7to 0.4
* For the IEEE model, action (7, (0.4, —0.2)) changes

the setpoint of DER 7 to (0.4, -0.2)

 State space: The current setpoints of all DERs
(i.e. alist of n points in X)

* Initial state distribution: All bus states are
initialized to a point in or on the unit circle

mifavmalis sk vam Al

SAND2021-8185C

7/20/2022 8:00 AM

GBOEPLEy 2,
%

Y, %
Reactive Power
F Y
¥
L
/" ) ..."'-\
// \-\.
(1,00 | x
< { .*“-D’ » Real Power
ENEE

Parameter space for the IEEE model

| »

dl I
Il |
-1 +1

Parameter space for the EPRI model



GBOEPLEy 2,
%

MO

NEL
GCE Leg,
Y,

Continuous Environment Experimentation

* Reward: negative sum of squared errors of bus voltages compared to nominal voltage

values.
n-=1

r==->) (i-V)?

=0

where V; and V;" are the current voltage and nominal voltage of DER i, respectively.

* Objective: Maximize the expected discounted reward
T
] =E; Z ytrt
t=1

where y € (0,1) is a discounting factor and T = 100 is the horizon

* Objective Interpretation: Stabilize the system by bringing voltages as close to nominal as

nossible.
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Parameterized Action Spaces &

* At each step, the agent chooses which DER to modify (a discrete action) and a
new setpoint for the chosen DER (continuous parameters).

* We generalize continuous-action RL algorithms to handle parameterized actions
using the technique introduced in [https://arxiv.org/pdf/1511.04143.pdf]:
* Choosing a discrete action: Use n output weights followed by a softmax activation, and then
a sample from the resulting distribution.

* Choosing the continuous parameters: output continuous parameters for all discrete actions,
and then select the parameters corresponding to the choses discrete action.

* This is an ad-hoc technique: the agent must learn that only the continuous parameters
corresponding to the chosen discrete action affect the environment.

* The Multi-Pass Deep Q-Network (MPDQN) algorithm is specially designed to

handle parametrized actions
» Special architecture lets the agent know that only the continuous parameters corresponding
to the chosen discrete action affect the environment.
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Greedy Algorithm

* Coordinate descent-based approach

* At each step, the algorithm identifies a set of promising actions—one for each
DER—and then chooses the action from this set that maximally increase its

immediate reward.

* Define:
* § = current state

* 5; = current state of DER i
* 1;(s, x) = immediate reward for changing the setpoint of DER i to x in state s.

* For each DER, we approximate the gradient V,.7; (s, x).

* Letx; = s5; + nV,1;(s, x), where 1 is a small step size parameter
* The agent then chooses the action (i, x;) with the maximum immediate reward

11
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Experiments: Setup

* RL algorithms:
* Proximal Policy Optimization (PPO)
e Deep Deterministic Policy Gradient (DDPG)
 Soft Actor-Critic (SAC)
* Multi-Pass Deep Q-Network (MPDQN)

* IEEE Model: Train agents over 10k episodes, evaluate performance
every 100 episodes

* EPRI Model: Train agents over 50k episodes, evaluate performance
every 1k episodes.



Experiments: Evaluation Metrics

1. Data efficiency: How many environment interactions are
required to train each agent to convergence?

2. Final state reward: How good is the final state achieve by
each agent?

3. Path to final state: In a episode, how many steps does it
take the agent to reach it's final solution?



IEEE 13-bus: Balanced
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IEEE 13-bus: Unbalanced
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PV-14 Model
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PV-14 Model
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Results Summary

* MPDQN is significantly more data efficient than the other RL
algorithms and finds a good final state in all tasks.

* SAC can find a slightly better solution, but requires 4x as much data
* DDPG and PPO can only stabilize the simpler IEEE model

* MPDQN and SAC can outperform the greedy algorithm on the more
complex EPRI Ckt5 model




Conclusions

* DRL agents can learn to stabilize distribution power systems in a
parameterized-action environment.

* This works marks an additional step towards more realistic multi-
player distribution system control game which could train an agent
to defend the power grid under a potential cyberattack.

* Future considerations:
* Study larger systems
e Study simple two-player settings




