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Motivation

• Decentralization in the power industry makes power systems more 
vulnerable to attacks. 

• Prior work on grid resilience primarily uses optimization techniques
• May not scale to large systems
• Not designed to  defend against an active adversary

• Can a reinforcement learning (RL) agent defend a distribution power 
system by controlling a collection of utility-owned distributed energy 
resources?
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Contributions

• Prior work on RL-based grid resilience focus on discrete-action settings or 
continuous-action settings. We are the first to consider a parameterized-
action setting, a more natural setting for grid resilience tasks.

• Agent can learn optimal DER setpoints as well as the optimal path to the optimal 
setpoints.

• We introduce a deterministic greedy algorithm, and find that it performs 
quite well.

• We empirically demonstrate that RL agents can successfully regulate 
distribution systems and outperform the greedy algorithm.

• We evaluate several RL algorithms and observe that algorithms specially 
designed for parameterized action tasks are significantly more data efficient.

• This work takes an additional step towards a more realistic multi-player 
distribution system control game
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Reinforcement Learning Interaction Protocol
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action

observation (state), 
reward

environment
agent

(wants to maximize reward)

Action Left Down Up Right

Probability 0.4 0.1 0.2 0.3



Power System 1: IEEE 13-bus Model

• 14 controllable DERs
• Agent controls the active and reactive 

power of each DER
• On-load tap changing transformers 

(LTCs) adjust the number of windings 
on the transformer to correct 
low/high voltages. We assume the 
agent makes decisions very quickly, 
allowing us to ignore the LTC 
dynamics.

• IEEE-balanced: LTCs are tapped to 
default values.

• IEEE-unbalanced: LTCs are tapped to 
the 0.95 pu state to produce a severe 
voltage condition in which all bus 
voltages are less than 0.95 pu.
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Power System 2: EPRI Ckt5 Model

• 701 total controllable DERs
• Agent controls the power factor of 

each DER 
• Power factor = ratio of active 

and reactive power

• EPRI-14: Agent only controls DERs 
with the 14-largest power ratings.

• EPRI-32: Agent only controls DERs 
with the 32-largest power ratings.
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Discrete Environment Experimentation

• As part of a discrete version of the environment we experimented with 
splitting the range of busses that a given agent can control.

• With training they often found equilibriums where each agent would settle 
on a small set of actions 1-2 it would repeat alternating between turns.

• An example score after training:
• Good Agent: -0.45708
• Bad Agent: 0.04969*

*The Bad Agent was able to get the best reward in this case.

• Future Work: Training the agent to act optimally with any subset of busses.
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Continuous Environment Experimentation
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Continuous Environment Experimentation
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Parameterized Action Spaces
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Greedy Algorithm
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Experiments: Setup

• RL algorithms: 
• Proximal Policy Optimization (PPO)
• Deep Deterministic Policy Gradient (DDPG)
• Soft Actor-Critic (SAC)
• Multi-Pass Deep Q-Network (MPDQN)

• IEEE Model: Train agents over 10k episodes, evaluate performance 
every 100 episodes

• EPRI Model: Train agents over 50k episodes, evaluate performance 
every 1k episodes.
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Experiments: Evaluation Metrics

1. Data efficiency: How many environment interactions are 
required to train each agent to convergence?

2. Final state reward: How good is the final state achieve by 
each agent?

3. Path to final state: In a episode, how many steps does it 
take the agent to reach it’s final solution?
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IEEE 13-bus: Balanced
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IEEE 13-bus: Unbalanced
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PV-14 Model
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PV-14 Model
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Results Summary

• MPDQN is significantly more data efficient than the other RL 
algorithms and finds a good final state in all tasks.

• SAC can find a slightly better solution, but requires 4x as much data

• DDPG and PPO can only stabilize the simpler IEEE model

• MPDQN and SAC can outperform the greedy algorithm on the more 
complex EPRI Ckt5 model
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Conclusions

• DRL agents can learn to stabilize distribution power systems in a 
parameterized-action environment.

• This works marks an additional step towards more realistic multi-
player distribution system control game which could train an agent 
to defend the power grid under a potential cyberattack.

• Future considerations:
• Study larger systems
• Study simple two-player settings
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