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1. Background

1.1. Introduction: A big view of machine learning

Combustion machine learning (CombML) offers numerous opportunities in predictive
modeling, scientific discoveries, and intelligent control [1]. One of the most crucial aspects
of machine learning (ML) is the availability of data, which in combustion, typically exist in
the form of simulation data and experimental measurements. In many ML fields outside of
combustion, massive and diverse datasets are the key components in ensuring high predictive
accuracy and good generalizability [2].

For example, in computer vision, a state-of-the-art ML field, massive and diverse datasets
such as the ImageNet [3] image recognition dataset (170 GB, 1000 classes, 1.4M labeled
images) have enabled ML methods to out-perform human capabilities in image recognition |4,
5]. This achievement was made possible by the co-existence of deep learning architectures,
such as the 152-layer deep ResNet [5], and the aforementioned ImageNet dataset, along with
its corresponding community-involved image recognition competition [4], where researchers
could develop ML methods without the laborious task of data collection, and compare results
in a transparent manner via an accessible benchmark dataset.

In contrast, datasets found in flow physics, such as the (~500 TB) Johns Hopkins Turbu-
lence Database [6], are not as diverse (9 flow configurations) but can be much greater in size
due to increased degree-of-freedom and resolution requirements when compared to digital
images. The fidelity and quality of this type of dataset is highly beneficial for applications in
detailed scientific analysis, but its lack of diversity, when compared to other datasets |3, 7]
from the broader MLL community, can be detrimental for training ML algorithms, especially
for predicting in unseen configurations. In order to meet this challenge, the flow physics com-

munity has developed knowledge-guided ML [8], where domain knowledge can be leveraged
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towards augmenting datasets, constraining optimization routines, and customizing model
architectures to learn well from small scientific datasets, i.e., the small data regime.

Outside of flow physics, ML research tends to focus on big data. Many improvements
(including breakthroughs in model architecture such as residual blocks [5], batch normaliza-
tion [9], and rectified linear units [10]) in deep learning have been tailored towards developing
big models [11] that gain higher predictive accuracy with growing amounts of data [2]. We
note that both small and big data paradigms do not necessarily compete, and good results
have been achieved within CombML by combining ideas from both approaches.

Recent developments in big data ML could inspire potential research directions for
CombML. In natural language processing (NLP), foundation models [12] have led to state-
of-the-art accuracies in a wide range of language prediction tasks. A foundation model is
a broadly accessible and big ML model (typically with O(10?) trainable parameters) that
has been pre-trained on massive and diverse datasets, which can then be fine-tuned at later
stages, by further training with smaller specific datasets (through transfer learning [13]), for
application to specific problems. This eliminates the need to build and train a powerful ML
model from scratch, and reduces the amount of data required to solve a tailored ML problem
after the foundation model has been pre-trained and shared. With this new paradigm, one
can envision a future development where only small amounts of additional data is needed to
fine-tune pre-trained CombML foundation models in order to make accurate and affordable
predictions of flame physics and chemistry in unseen combustion configurations. However,
this ML approach is currently largely feasible only in NLP, where low-dimensional readily
labeled text data can be easily mined. In computer vision, while the practice of transfer
learning still persists, foundation models are comparatively nascent due to dimensionality of
images (height, width, and color channels: Ny x Ny, X N¢), and the larger cost of generating
labels, which typically involves manually annotating images for image recognition or object
detection.

In CombML, the massive, diverse, and labeled dataset required to eventually develop
foundation models can certainly exist. A recent review [1] on CombML identified over 200

direct numerical simulation (DNS) cases, which can potentially serve as the basis of a pub-
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lic CombML database. We envision that this database can be further populated with a
wide variety of existing experimental measurements and large-eddy simulation (LES) data,
as well as future data that is expected to grow in complexity and size with advancements
in measurement techniques and computational capabilities. Since simulation and exper-
imental data are readily labeled with high-resolution quantities, CombML does not face
challenges tied to laboriously annotating datasets, as seen in computer vision. Instead, this
community faces the Herculean challenge of storing and accessing data with much higher
degrees-of-freedom (Ng X Ny x N, x Ny x N, with dimensions of length, time, and number of
scalars). This becomes especially true when considering the scale of data from peta/exascale
simulations [14, 15] and high-speed measurements [16].

In summary, massive, diverse, and public combustion datasets are necessary to advance
CombML within the big data paradigm. Specifically, the existence of these datasets would

enable CombM[L researchers:

e To minimize the laborious task of data collection, which enables researchers to focus

on advancing CombML techniques.

e To make objective and transparent evaluations of predictive accuracy from different

ML approaches on common datasets.

e To further leverage existing architectural advances from the big data paradigm, and

to foster a CombML paradigm that aligns with the broader ML, community:.

e To improve accessibility to state-of-the-art transfer learning practices towards eventu-
ally building CombML foundation models that can solve a wide range of scientific and

engineering problems.

1.2. Requirements and pathways towards massive deep learning datasets in CombML

We now discuss a set of requirements for a big CombML dataset, which we note are

different to the requirements of centralized high-fidelity databases [17]:
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e Massive and diverse: Large and diverse datasets are crucial for ensuring good ac-

curacy and generalizability in state-of-the-art ML algorithms [2|. For example, super-
resolution models [18] in computer vision, which have also been applied towards tur-
bulence modeling [19], are typically trained with O(10%) samples [7] of high-resolution
images with great diversity. To establish a similar diverse dataset in CombML, we
propose a living dataset that continuously accumulates towards at least a total of 1000
individual snapshots from 100 different configurations. Since this volume of data can-
not be easily generated from any individual researcher, a community-involved approach

should be considered.

Accessible and consolidated: Significant resources will be required to store and
share at least 1000 snapshots of high-dimensional data without careful treatment.
While services, such as Globus [20], currently enable researchers to access data di-
rectly from computing and storage facilities, the private permissions required for this
service can hinder accessibility. Public accessibility to scientific data is typically
achieved by building a centralized database, such as with the Johns Hopkins Tur-
bulence Database [6] or the Sloan Digital Sky Survey [21]. These centralized scientific
public datasets typically require dedicated storage infrastructure which consist of a
database cluster, web interface system, and dedicated infrastructure for data analysis.
While this approach has lead to reliable sources of scientific data, this can incur sig-
nificant capital costs, as well as additional costs and human labor for maintaining and
updating the centralized database. An alternate approach would be to leverage open-
source and free ML repositories such as Kaggle [22], which are currently restricted by a
O(100) GB limit that may not be sufficient for high-fidelity data, as a single snapshot

of petascale DNS data can often exceed this limit.

Sufficient data quality: The availability of good quality data is without a doubt
important to data-driven methods. However, we must emphasize that this dataset
must be sufficiently good for training big supervised ML algorithms. In this context, a

recent study [23] demonstrated that ImageNet and other popular benchmark datasets
6
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contain up to 10% label error. Despite these errors in training data, ML continues
to transform numerous engineering and scientific endeavors. This is because modern
deep learning algorithms are inherently robust to noisy data [24]. In fact, it is well-
known that introducing small amounts of noise to a training set can be beneficial for
improving the generalization of neural networks [25], and is a common form of data
augmentation [26]. This has significant implications towards the use of compression
and dimensionality reduction algorithms for mitigating storage constraints. However,
since some combustion applications involve safety-critical conditions, we note that the
use of noisy data with ML under these conditions should be treated with caution and

thoroughly investigated prior to deployment.

1.3. Dimensionality reduction and lossy compression

Combustion modeling has embraced dimensionality reduction methods for chemical re-
duction, resulting in compact chemical models in turbulent reacting flows with an accept-
able amount of error. Interpretable data-driven dimensionality techniques such as principal
component analysis (PCA) [27] have also been employed to identify optimal low-dimensional
manifolds that can be transported through conservation equations [28, 29]. A related practice
involves projecting large dimensions onto low-order manifolds by leveraging well-understood
physical principles behind representative flame configurations. This approach has resulted in
the formulation of models such as the Burke-Schumann solution [30], the flame-prolongation
in intrinsic lower-dimensional manifold [31], the flamelet-generated manifold method [32],
and the flamelet/progress variable method [33, 34].

Since big ML algorithms are robust to noisy data [24], dimensionality reduction algo-
rithms can be applied towards high-fidelity data that exceed size restrictions before storage
in public ML repositories. However, errors obtained during PCA reduction can be difficult
to control, which may result in unpredictable behavior if present in an ML dataset. More
complex dimensionality reduction methods such as autoencoders [35] have been shown to be
more effective (but less interpretable) than PCA at compressing data while avoiding signif-

icant information loss [36, 37|, but can still be difficult to control and are computationally

7



O J o U bW

AT UTUTUTUTUTUTUTOTE BB B D DD DD DNWWWWWWWWWWNNNNONNNONNNONNONNNR R R PR R R e
P> WNRFROWOJdNT D WNRPRPOW®O®-IAUDRWNR,OW®OWIANTB®WNRFROW®O-JNUB®™WNROWO®W--10U D WN R O WO

160

165

170

expensive.

Recently, lossy compression algorithms [38] have gained popularity in applications with
high-fidelity data due to increasing storage and 1/0 bottlenecks as computational capabilities
and high-speed measurements outgrow disk capabilities. Similar to dimensional reduction
techniques, these algorithms reduce the size of data, while introducing small errors to the
compressed data. This is in contrast to lossless compression algorithms, which preserve all
information during compression. As shown in Table 1, lossy compression algorithms can
achieve significantly higher compression ratios (defined as the ratio between the sizes of
original data and compressed data, respectively) than lossless compression. In addition,
many of these lossy compression methods have been tailored towards compressing high-
fidelity scientific data at tractable computational costs and include error-boundedness, which
enable users to determine and control the desired error/fidelity of the compressed data.
Thus, these methods can be employed towards guaranteeing a level of desired quality when

compressing ML training data.

Compressor Type Compression Ratio
Deduplication [39] Lossless 1.5~3

gzip [40] Lossless 1.5~2

FPC [41] Lossless 1.2 ~ O(10)
ISABELA [42] Lossy 2.1 ~ O(100)
S7Z2 [43] Lossy 3 ~ O(100)
ZFP [44] Lossy 3 ~ O(100)
TTHRESH [45]  Lossy 5.1 ~ O(100)

Table 1: Comparison of compression ratios achieved by compression algorithms on scientific datasets.

Adapted from [38].

Even an O(10)-fold compression could turn the storage of high-fidelity combustion simu-
lation data into a bearable task. For instance, a ten-fold compression on petascale DNS data

(with 200 GB per snapshot) would result in a few compressed snapshots that can be readily

8
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shared on public ML repositories such as Kaggle [22|. This process could be repeated for
multiple DNS configurations, with links to each distributed dataset curated and hosted on
a single community-maintained webpage. Employing such an approach, which we detail in
Section 1.4, would eliminate the time and labor required to build and maintain a centralized

database by making use of the open-source nature of the broader ML community.

1.4. BLASTNet: A big data framework for the combustion community

In this work, we propose an affordable weakly centralized framework combining the use
of lossy compression algorithms with public open-source data repositories and community
involvement for sharing massive and diverse deep learning training data for combustion. In
particular, this framework is targeted towards improving the diversity of accessible scientific
training data, and thus serves a distinct purpose when compared to existing high-fidelity
databases [6].

Figure 1 summarizes our proposed framework, Bearable Large Accessible Scientific Train-
ing Network-of-Datasets (BLASTNet). BLASTNet is aimed at providing accessibility to raw
simulation and measurement data (from a diverse range of configurations), which can be
employed for solving a wide range of deep learning problems. This data is shared through
Kaggle [22|, which has an interface amenable for scientific clusters and also provides the
ability to register digital-object-identifiers (DOI) for each dataset. In cases where a single
sample of data exceeds (O(100) GB limit) storage limits in Kaggle, this data is compressed
at a desired level of error, with an error-bounded lossy compression algorithm. Here, we rec-
ommend the use of a consistent compression algorithm, SZ2 [43], so that all lossy compressed
datasets can be shared in consistent data formats.

The link to, description of, and all other metadata (boundary conditions, initial condi-
tions, fuel composition, DOI) from the dataset can then be shared onto a community-hosted
webpage [46], at https://blastnet.github.io/, which curates all existing distributed ML
datasets and provides a centralized search interface to enable convenient public access. In
addition, this webpage provides tutorials for compressing, decompressing, sharing, and ac-

cessing the lossy data. BLASTNet also sets standards (further detailed in Section 5), and

9
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Figure 1: BLASTNet: A community-involved pathway to big combustion data at https://blastnet.
github.io/

screens the data to ensure that these standards are met. A community discussion forum is
also hosted on BLASTNet in order to receive continuous feedback from users and to provide
a platform for additional support to users. Importantly, to ensure that fair attribution is
provided in this open-source project, a version update will be applied to BLASTNet each
time a new contribution is provided by the research community to include each individual
contributor into BLASTNet’s list of authors, which is a common practice in open-source

software [47].

1.5. Objectives

The objectives of this work can thus be summarized as follows:

e To advocate the benefits of a massive, diverse, and distributed CombML datasets for

deep learning.

e To introduce a platform, at https://blastnet.github.io/, for a community-involved

network-of-datasets (BLASTNet).

10
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e To demonstrate lossy compression as an affordable and expedited pathway for storing

and sharing state-of-the-art high-fidelity data.

e To quantify the compression gained from lossy algorithms and to demonstrate the

robustness and limitations of deep learning algorithms to the resulting lossy errors.

e To call on the combustion community to contribute data to BLASTNet.

We note that a key component of BLASTNet operates under the assumption that deep
learning methods are robust to the controllable amounts of noise introduced during lossy
compression. To investigate the applicability of this assumption within combustion, we

apply a lossy compression algorithm (SZ2 [43]) to DNS data of a turbulent lifted hydrogen

225 jet flame in heated co-flow 48], and study the effects of lossy data on training deep learning

230

models in two completely different ML problems namely, combustion regime classification
and filtered reaction rate regression. The investigated DNS dataset is described further in
Section 2, while the chosen lossy compression algorithm and deep learning architecture are
detailed in Section 3. Results from this investigation are presented in Section 4, before

concluding in Section 5.

2. DNS Dataset

A three-dimensional DNS dataset from a previous study [48] of a turbulent lifted hydro-
gen jet flame in heated co-flow air is used to demonstrate the robustness of deep learning
models to lossy errors. Figure 2 shows the schematic of the DNS configuration. A diluted
fuel mixture (65% Hy and 35% Na by volume) is issued from the central slot at an inlet
temperature of 400 K. This central jet is surrounded on either side by co-flowing heated air
streams with an inlet temperature of 850 K, at atmospheric pressure. The mean inlet axial

velocity Uy, is given by:

Ujet_Uc —
Uin = Ue + =5— <tanh<yaff11/,2) - tanh(yo.f[f)) ; (1)

where Ujer = 240 ms~! represents the mean inlet jet velocity, U, = 2 ms~! the mean inlet

co-flow velocity, and H = 2 mm the jet width at the inlet, respectively. Velocity fluctuations,
11
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obtained by generating an auxiliary homogeneous isotropic turbulence field, are fed from the
inlet using the Taylor hypothesis.

This 2000 x 1600 x 400 computational domain is 15H x 20H x 3H in the streamwise
x-, transverse y-, and spanwise z-directions, respectively, resulting in a total of 1.28 billion
cells. A uniform grid size of 15 pum is placed in z- and z-directions, while the y-directional
grid is algebraically stretched outside the flame and shear zones. Improved non-reflecting
boundary conditions [49, 50| are adopted in the z- and y-directions and periodic boundary

conditions are applied in the z-direction.

20H
Outflow

Periodic

Oxidizer

Figure 2: Hy-air direct numerical simulation [48] data used in this study.

The Sandia DNS code, S3D [51]| was employed for solving the compressible Navier-Stokes,
species continuity, and total energy equations. The employed detailed Hp-air chemical mech-
anism composed of 9 species (Ha, O2, HyO, O, H, OH, HO,, H,O5, and N5) and 21 elementary
reaction steps, was developed by Li et al. [17]. In the present study, a 1200 x 300 x 200
sub-region of the DNS field (i.e., a left half branch of the lifted jet flame) is sampled from

the a single 124 GB DNS snapshot, in order to reduce computational costs during training
12
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and analysis while maintaining the fidelity of the flame structure. We employ this 70M-cell
subvolume to demonstrate the robustness of deep learning models to noise from lossy com-
pression algorithms in both classification and regression problems, as specified in Section 2.1

and Section 2.2, respectively.

2.1. Classification dataset

Within CombML, classification can be useful for optimizing numerical computations [52],
detecting catastrophic events [53], and identifying combustion regimes [54]. As detailed in
Table 2, we generate five classes of labels for the present classification problem, with the use
of the flame index FI [55], progress variable C' = Yy, 0, and mixture fraction Z, as defined
by Bilger [56]. The flame index is defined by:

VY, - VYo,

FI = .
IV Ya, [ - [[VYo, |

(2)

These five labels were chosen (i) to account for a well-balanced proportion of classes, (ii)
to investigate the effects of lossy compression on fine thresholds, and (iii) to investigate
the effects of the gradient operator in Equation (2) in magnifying lossy errors. For each
label, we extract four flow features {Z, C, Yu,, Yo, }, and then divide the data into 268 sub-
volumes, each with 256 x 256 x 3 cells. Note that 3 cells in the z-axis is sufficient for
preserving spatial information in these samples, since this configuration is homogeneous in

the spanwise direction.

Label Definition

Premixed Flame (C'>0.01) and (FI > 0) for all Z
Non-premixed Flame (C' > 0.01) and (FI < 0) for all Z
Air (C <0.01) and (Z <0.01)

Fuel (C <0.01) and (Z > 0.90)
Fuel-air Mixture (C <0.01) and (0.01 < Z < 0.90)

Table 2: Classification labels generated with flame index FI, progress variable C', and mixture fraction Z.
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2.2. Regression dataset

Within CombML, regression is particularly popular for constructing turbulence clo-
sure [57], modeling thermodynamics and chemistry [58], and parameterizing combustion
manifolds [29]. Here, we generate our regression label by filtering and down-sampling the

DNS data to evaluate the Favre-filtered progress variable reaction rate fuc:

e = @, (3a)
with
Gele) = /V DBV ()Gl — g, Ar) dy | (3b)
3/2 )
Glx—y,Ar) = (%) exp {W] 7 (3c)

where = denotes a filtered quantity, ~ is a Favre-filtered quantity, G is a Gaussian filter,
and Ap = 8A is the filter width, which is prescribed to be 8-times larger than the DNS cell
width A. This filter width corresponds to 3 cells (in a corresponding LES) for sufficiently
resolving a laminar flame thickness of 0.3 mm, which is evaluated through a stoichiometric
1D premixed flame calculation. The quantity we from turbulence-chemistry interaction is
of interest within CombML, as shown in other studies [59, 60|, and is a suitable quantity
to test the robustness of ML models to lossy errors, due to the presence of the exponential
operator in the Arrhenius term, which can significantly magnify lossy errors. For each label,
we extract two flow features {Z, C'} from this dataset, and then divide the data into 177

sub-volumes (each with 32 x 32 x 3 cells) that encompass the flame region.

3. Methods

3.1. Deep Learning

Figure 3 shows the deep learning architecture used in both classification and regres-
sion problems. This 3-D convolutional neural network (CNN) architecture is based on the

autoencoder architecture by Glaws et al. [61], with the input channel N} of the model

14



O J o U bW

AT UTUTUTUTUTUTUTOTE BB B D DD DD DNWWWWWWWWWWNNNNONNNONNNONNONNNR R R PR R R e
P> WNRFROWOJdNT D WNRPRPOW®O®-IAUDRWNR,OW®OWIANTB®WNRFROW®O-JNUB®™WNROWO®W--10U D WN R O WO

280

modified to suit the present classification (N# = 4) and regression (N = 2) datasets and
the filter width reduced to 3. The present network contains 93 layers and approximately 1M
trainable parameters, with weights initialized via Xavier initialization [62], and contains 12
residual blocks [5] near the input and output, for improving training and avoiding vanishing
gradients during back-propagation. A key component of this architecture is its autoencoder
structure. Autoencoder networks can be thought of as a non-linear PCA [35]|, where raw
features are automatically processed by the encoder into an embedded form which can then
be forward-propagated by the decoder to generate complex predictions.

For the classification problem, a softmax output activation with five filters Ng“ = 5
(for the five classes) is used together with a categorical cross-entropy loss function, while a
linear output activation with a single filter N2“ = 1 is used for the regression problem with

a mean-absolute-error (MAE) loss function. Train and validation procedures are further

detailed in Appendix A.

Classification Input Classification Output
256x256x3x4

256x256x3x5

] Conv. Layer [] Leaky ReLU Activation
] Residual Block [ Output Activation

O Transpose Conv. Layer

: R ey e
x 16N7 16N}
=10 od s " Bottleneck "L :
L7 L /W 8N 8N / /L
P i — (Nu/8)X(Ny/8)x3xNp P e —— A
12 Residual Blocks 12 Residual Blocks

Regression Output

Regression Input
32x32x3x1

32x32x3%x2

Figure 3: Present 3-D CNN architecture. The number of filters in each layer N is represented in terms of

the number of input channels N&.
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3.2. Lossy Compression

In this work, we employ the SZ2 compressor [43|, which combines curve-fitting, the
Lorenzo predictor, and data quantization for compressing scientific data. In principle, SZ2
(1) partitions field variables into clusters, (ii) iteratively searches for regression functions that
can approximate each cluster with a guaranteed error-bound, and (iii) stores the quantized
regression coefficients of the function and indices of the field variables for recomputing the
original data during decompression. Data can be compressed effectively since the quantized
coefficients and indices are much smaller than the original variables. Compression and
decompression of the 12 quantities in the thermo-chemical state-space for the present 72M
subvolume requires a total of approximately 35 seconds wall-clock-time on a single CPU. We
note that SZ2 has been reported to be at least 2-times faster than the other lossy compressors
listed in Table 1 [43, 45].

Thus, SZ2 meets the criteria described in Section 1.3 for compressing high-fidelity data
for a large public training database: (i) capable of high compression ratios, (ii) fast, and
(iii) allows for bounded error control. While a global error bound is typically used for
controlling errors in other compressors [42, 45|, SZ2 allows for control via both global error
bound, which guarantees that the lossy error in all cells do not exceed a single user-defined
value, as well as the the point-wise relative error bound [63] b,, which guarantees that
the lossy error in each cell does not exceed a user-defined percentage of the compressed
value. Figure 4 demonstrates the range of lossy data obtained via point-wise relative error
control and a corresponding global relative error control, on a curve obtained from the
maximum conditional progress variable max(C|Z). The use of point-wise error control is
seen to ensure that values near zero are preserved, with positive values guaranteed to stay
positive after lossy compression. Point-wise error control also preserves steep gradients more
effectively than global error control between Z = 0 and Z = 0.3. Both these properties are
important for preserving the fidelity of steep gradients and small values of chemical species

seen commonly within combustion.
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Figure 4: Difference between global and point-wise error bounded control modes in SZ2, illustrated on the

maximum conditioned progress variable (C|Z)maz-

3.3. Fvaluation metrics

For the results discussed in Section 4, we employ several statistical metrics of accuracy
to evaluate the effects of lossy compression on data fidelity, and to assess the predictive
accuracy of deep learning models. We quantify the quality of lossy compressed data through
two popular image quality metrics, i.e., the structural similarity index measure [64] (SSIM)
and peak-signal-to-noise-ratio [65] (PSNR). SSIM is evaluated by passing a sliding window

Q (Ag = 6A) across two scalars ¢ and v, and volume-averaging their statistical quantities:

SSIM(¢, ¥) = (l(¢,v)s(¢, ¥)r(¢,¢)),

2,u¢,u1/) +c1 20‘¢0’¢ +c Oy + C3
= 2 2 2 2 5 (4&)
u¢+,u¢—|—cl U¢+Jw—|—01 0y0y + C3

where mean p, and variance ai of the sliding window are:

1

fe = N—Q/chdﬂa (4b)
1

g ) ()

while [ measures the similarity of p4,, s measures the similarity of a(fw, 7 measures corre-

lation of the {¢, 1}, and constants cf; 2,33 ensure numerical stability.
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PSNR is related to mean-squared-error (MSE):

()

PSNR(¢, ) = —10log,, (max<¢’ W) .

MSE(¢, )
Note that for both metrics, higher values are indicative of higher post-compression quality,
with SSIM bounded between -1 and 1, while the highest possible value for PSNR is restricted
by the maximum value of a data type, i.e., 48 dB for 8-bit images.

For the classification problem, we evaluate the class accuracy score via a one-versus-all
approach, i.e., the number of sample points that have been predicted correctly for a given
class divided by the total number of sample points. In the regression problem, SSIM is
employed to compare the similarity between filtered progress variable reaction rates from
the DNS and from the deep learning models. The normalized mean-squared-error (MSE)
for N number of cells is also employed to measure the difference between the ground truth

¢ and model predictions :

Norm. MSE(¢,¢) = %;;W (6)

4. Results

4.1. Effects of Lossy Compression on Data

This section describes the effects of lossy compression on the training data, while Sec-
tion 4.2 discusses the effects of training deep learning models with this lossy data.

We first compress flowfields required to solve both regression and classification problems
with SZ2. Figure 5 demonstrates that the total compression ratio, from 1% to 50% point-
wise error bound b,, ranges from 7- to 20-fold compression. Even if we consider only the
lowest compression ratio seen in compressing HoOs mass fraction, a 4-fold compression of
the 124 GB DNS solution file, would enable at least 3 snapshots of this data to be shared as
a single dataset on Kaggle. Data compression could be repeated on other flow configurations
of a similar scale, and shared via the framework presented in Figure 1 for building a diverse

network-of-datasets. Figure 5 also shows that greater compression ratios are seen in state
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Figure 5: SZ2 compression ratio of different scalar flowfields at varying point-wise error bounds b,. Species

quantities are expressed in mass fractions.

variables such as density p and temperature 7' than in mixture fraction Z and chemical
species.

Visualization of the uncompressed and lossy-compressed flowfields in Figure 6 provides
better insight into the different compression ratios exhibited by different quantities. In mix-
ture fraction (left), temperature 7' (center), and OH mass fraction You (right), PSNR is
shown to decrease with increasing point-wise error bound b, when compared to the uncom-
pressed flowfields in Figure 6a. SSIM also decreases for Z and T with increasing b,, but is
preserved for Yogu. At large settings of b, distortions first appear in regions with large mag-
nitudes and small gradients, as is expected from the point-wise error control, as discussed
with Figure 4. As such, large field distortions are first clearly observable in temperature
and mixture fraction Z at b, = 20% and b, = 40% in Figures 6b and 6¢, respectively, with
no temperature fluctuations visible at b, = 40% in Figure 6c. In these cases, compression
should be performed with smaller values of b, to preserve flow structure. These results also
demonstrate that the point-wise error bound is suited for preserving the large gradients and
small magnitudes as seen in Z at b, = 10% in Figure 6b, and in all b, for OH mass fraction
Yon (Figure 6a,b,c). This property is useful for preserving the flowfields of many scalar

quantities encountered in reacting flow configurations.
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Figure 6: Mixture fraction Z (left), temperature T (center), and OH mass fraction You (right) from the
train set at different levels of maximum point-wise error specified during compression. Quality metrics such

as PSNR and SSIM are included in-panel.

4.1.1. Classification

When developing an ML dataset, one can either (i) identify and target a specific super-
vised learning problem or (ii) share raw data that can then be processed for a target ML
problem just before training. Thus, in the present classification problem, we investigate two
corresponding scenarios: (i) training with lossy features and clean labels, and (ii) training
with lossy features and post-processed labels generated from lossy data.

Figure 7 compares the labels used to train the deep learning models at different levels of
point-wise error bound b,, with Figure 7a showing original uncompressed labels. Significant
noise is seen at b, = 10% (Figure 7b), especially in the premixed and non-premixed flame
regions, with a 9.3% total label error introduced to the data. This noise is present because
lossy errors are magnified by the cell width A when evaluating scalar gradients used to

determine the flame index (Equation (2)). We demonstrate this on a central-differencing
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scheme:
Xi + l' - Xi— l‘
f'(X + El(X)) — ( +1 €Z+1) ( 1 + 67,—1) (78,)
2A
Xiv1 — Xi El'+1 - El‘—l
_ 7 =1 b
oA oA (7b)
Note that in this text, we use the superscript - to denote lossy terms. In the worst case,
where lossy errors €/, = b,X;41 and €_; = —b,X;_1:
X1+ Xio
FX+ () = £(x) + 5, Tt Rn) ®)
which could be significantly larger than:
Xiv1— Xi_
FX) +e() = £(x) + 5, Kot Kt) )

Figure 7b shows that the fuel labels also become distorted at b, = 40% as the lossy errors
obfuscate the threshold (Z < 0.01) in generating the labels, as discussed with Table 2,

resulting in a total label error of 19.9%.

4.1.2. Regression

We consider the same two scenarios from Section 4.1.1: (i) targeting a specific supervised
learning problem or (ii) generating labels from shared lossy simulation data. Specifically,
we explore scenarios where (i) pre-processed filtered progress variable reaction rate cNulC are
compressed and shared, and where (ii) post-processed filtered progress variable reaction rate
ac(Tl ,p', Y}!) are generated directly from shared lossy data. The pre-processed label ;ZC is
generated by (i) evaluating w5V through inputting the thermo-chemical vector [T, p, Y]t
from each cell into the chemical mechanism, (ii) applying Favre-filtering (Equation (3a))
to form (EgNS, and applying lossy compression to form &ZC In contrast, the post-processed
label (,TJC(TZ, p', Y}) is generated by (i) applying lossy compression on thermo-chemical vector
to form [T, p', YT, (ii) evaluating wo(T",p',Y}) using the chemical mechanism, and (iii)
applying Favre-filtering to form (ZC'(TI, P, Y.

Figure 8 presents percentage of lossy errors from pre-processed (:)lc and post-processed
g}g(T’, p', Y} labels, with the uncompressed filtered progress variable reaction rate we (Fig-

~1
ure 8a). Figure 8b shows that the normalized lossy error from the pre-processed w, never
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Figure 7: Classification labels generated from lossy data at different levels of point-wise error bounds b,.

exceeds the point-wise error bound b, = 40%, while evaluating 050<T Lpl, V) from lossy data
can result in lossy errors that significantly exceed b, = 4% and b, = 8%, as shown in Fig-
ure 8c and Figure 8d, respectively. This is because exponential operators in the Arrhenius

term can magnify the lossy errors, which is also seen with gradient operators in Equation (8).

4.2. Deep Learning Predictions

We now explore the effects of lossy data on deep learning. In general, validation and
test data do not necessarily match the distribution of the training data, and are usually
sampled to represent data encountered after deployment. For instance, when building a
data-driven turbulence model in a numerical solver, training data can be extracted from
as many different sources as possible to improve generalizability, while validation and test
data should match the flow conditions simulated by in the numerical solver [1]. Thus, in the
big data framework proposed in Figure 1, we envision a scenario where large quantities of

22



O J o U bW

AT UTUTUTUTUTUTUTOTE BB B D DD DD DNWWWWWWWWWWNNNNONNNONNNONNONNNR R R PR R R e
P> WNRFROWOJdNT D WNRPRPOW®O®-IAUDRWNR,OW®OWIANTB®WNRFROW®O-JNUB®™WNROWO®W--10U D WN R O WO

(ZC &S_l]
0 2000 4000 6000 8000

(a) b, = 0% (uncompressed data).

SSIM = 0.97
PSNR = 37.5 dB

(b) Pre-processed label Z}ZC b, = 40%.
SSIM = 0.92

re,
PSNR — 40.3 dB “ .

(0) Post—pl'oéesse(l label ZC(TI 7 Y/) , by = 4%.

t

SSIM = 0.68
PSNR = 19.7

7.00 9.75 12.50 15.25 18.00
2 [mm]

(d) Post-processed label we (17, p, Y b, = 8%.

~100 —50 0 50 100

~DNS  ~train
wo  —Wo 07,

lwe |

Figure 8: Filtered progress variable reaction rate we with percentage errors from lossy compression.

lossy compressed training data can be easily obtained from public repositories, with small
quantities of clean test and validation data sampled personally by a user. As such, for the
300 classification and regression problems in Section 4.2.1 and Section 4.2.2, only the training

data are lossy-compressed data, while validation and test sets are uncompressed.
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4.2.1. Classification

Figure 9a compares class accuracy scores for different levels of point-wise error bounds b,,
for ML models trained on lossy features and clean labels. A mean class accuracy score of 87%
is seen in the baseline case of b, = 0%, which is typical in other classification/segmentation
problems [66, 52]. The mean accuracy scores are robust up to b, = 20%, corresponding to a
13-fold compression. At b, > 40%, a high mean accuracy (84%) is still observed, which is in
agreement with the well-known observation [67] that ML algorithms are reasonably robust

to feature noise.

100 100
8 e —
5o =
B \7 B
S 60 g
C{? —— Premixed Flame U)

% 40 T Non-premixed Flame :’E 40
= — Air 3
S Fuel S

- 20 Fuel-air Mixture - 20

---- Mean of Classes
0 0
0 10 20 30 40 0 10 20 30 40
by (%) by 1%)
(a) Trained on lossy features and clean labels. (b) Trained on lossy features and lossy labels.

Figure 9: Class accuracy score at different levels of maximum point-wise error specified during compression.

Figure 9b compares class accuracy scores for different b,, when training with both lossy
features and (post-processed) labels generated from lossy data. The mean accuracy scores
are robust to errors up to only b, = 10%, which still corresponds to a 11-fold compression
in the original data. At b, > 20%, class accuracy for fuel begins to decrease towards 0. This
is caused by the distorted fuel labels shown in Figure 7c. Nevertheless, the deep learning
model demonstrates reasonably robust behavior in the other classes, especially in the flame
regions, up until b, = 40%.

Figure 10 visualizes predictions from the deep learning model trained on lossy features

and post-processed labels. Figure 10b shows that the model predictions at b, = 0% are in
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agreement with the ground truth labels in Figure 10a. A slightly higher class accuracy of
89% is seen when training with clean labels and lossy features at b, = 10%, as shown in
Figure 10c. Increase in accuracy is commonly observed in ML models with the introduction
of small amounts of noise during data-augmentation [26], which is well-known to improve
neural network models [25]. However, Figure 10d shows that non-premixed flame samples
are misclassified as premixed flame near the flame boundary with air when the ML model is
trained with lossy labels and lossy features at b, = 10%. This is likely caused by the excessive
label noise between the premixed and non-premixed flame regions, as seen in Figure 7b.
Similarly, misclassification is seen in the air and premixed flame labels in Figure 10e, where
feature noise exceeds b, = 40. The aforementioned failure in classifying fuel is clearly
observed when the ML model is trained with lossy labels and lossy features at b, = 40%
(Figure 10f). Nevertheless, coherent classification is still observed in the flame regions at

b, = 40%, despite the high label noise seen in Figure 7c.

Non-
Premixed premixed Fuel-air

Flame Flame Air Fuel Mixture

Accuracy Score = 87%

a) Ground truth labels. b) b, = 0% (uncompressed data).
»

Accuracy Score = 89% Accuracy Score = 87% =

(¢) Clean labels and lossy features, b, = 10%. (d) Lossy labels and lossy features, b, = 10%.
3.6 {Accuracy Score = 84% b

Accuracy Score = 65%g =" :

0 3 6 9 12 15 (f) Lossy labels and lossy features, b, = 40%.
x [mm]

(e) Clean labels and lossy features, b, = 40%.

Figure 10: Visualization of ground truth and predictions from ML models in the classification problem.

25



O J o U bW

AT UTUTUTUTUTUTUTOTE BB B D DD DD DNWWWWWWWWWWNNNNONNNONNNONNONNNR R R PR R R e
P> WNRFROWOJdNT D WNRPRPOW®O®-IAUDRWNR,OW®OWIANTB®WNRFROW®O-JNUB®™WNROWO®W--10U D WN R O WO

425

430

435

4.2.2. Regression

Figure 11a compares regression accuracy and error metrics, namely SSIM and the nor-
malized MSE;, respectively, for different levels of point-wise error bounds b, for ML models
trained on lossy features and lossy pre-processed labels ;lc For b, = 0%, a normalized MSE
of 22% is similar to results from another study [60]. These values and the high SSIM ~ 0.92

are reasonably consistent up to b, = 40%, corresponding to a 20-fold compression.
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0 0.4- -60 = 2 0.4 -60 =

Z, Z

0.2- =30 0.2 =30

A R R —
0.0- -0 0.0- -0
0 10 20 30 10 0 2 4 6 8
by (% by (%)
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(a) Trained on pre-processed labels w. (b) Trained on post-processed labels we (T, pt, Ykl)

Figure 11: Structural similarity index measure (SSIM) and normalized mean-squared-error (MSE) at differ-

ent values of point-wise error bounds b,. Tested on clean features and clean labels.

Figure 11b compares SSIM and normalized MSE when training with both lossy features
and post-processed labels ;C(Tl, p', Y} generated from lossy data, as a function of b,. SSIM
and normalized MSE are robust to errors up to only b, = 4%, which still corresponds to a
10-fold compression. At b, > 4%, SSIM begins to increase while normalized MSE increases
significantly due to the magnification of errors during label generation, as shown in Figure 8.

Figure 12 visualizes the predictions from the ML model trained on lossy features and
post-processed labels we (T, p!, Y}!), along with the filtered DNS. Figure 12b,c shows that
the model predictions at b, = 0% and b, = 4% are in reasonable agreement with the
ground truth labels in Figure 12a. Over-prediction and under-prediction of we is observed
in Figure 12d, where b, = 8%.

Figure 13 compares mean conditional filtered progress variable <(,T)C|Z> from the ML
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Figure 12: Visualization of filtered DNS and predictions from model trained on lossy features and post-

processed labels fuc (Tl, P, Ykl), and tested on clean features and clean labels.

model (trained with post-processed labels) with ground truth labels from the filtered DNS.
The misprediction observed at b, = 8% in Figure 8d can also be observed here, where a 2-
fold over-prediction in (we|Z) occurs at Z = 0.24. (we|Z) at b, = 4% is seen to be in better
agreement with the filtered DNS than at b, = 2% and b, = 0%. Introducing small amounts
of noise is also seen to improve the classification model, as discussed with Figure 10c.

We note that while the addition of noise can improve training (as commonly done via

data augmentation [26]), an excessive amount of noise can lead to bad predictions as shown
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Figure 13: Comparison of mean conditional filtered progress variable (w¢|Z) from the filtered DNS and

predictions from the ML model, trained with post-processed labels Z)C(Tl, P, Ykl)

by b, = 8%, and thus caution should be exercised when dealing with noisy data. Hence, for
the purposes of BLASTNet, we recommend a b, = 1% (7-fold compression), unless necessary
to achieve higher compression ratio in very large datasets. Any further augmentation with
noise should be performed after downloading and during training at a user’s discretion.
Nevertheless, these results demonstrate that controlled amounts of noise does not affect

deep learning models, and in some cases can even be beneficial.

5. Conclusions

In this paper, we propose BLASTNet, a realistic framework that combines (i) community
involvement, (ii) public data repositories, and (iii) lossy compression algorithms for accessing
the wealth of combustion data that already exists in the form of high-fidelity simulations
and detailed measurements. Alongside this, we introduce a web-platform, at https://
blastnet.github.io/, for consolidating and curating the proposed network-of-datasets.

Given the limitations in public storage capacity, a key component of this framework
involves the use of lossy compression algorithms for enabling access to petascale simulation
data and large experimental measurements. Thus, we evaluate effects of lossy compression

algorithms on data quality and deep learning performance on a Hs-air lifted flame DNS. To
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this end, we train CNN models with labels and features, extracted from lossy DNS data in
two completely different regression and classification problems.

In scientific supervised learning, two broad categories of datasets can be encountered:
(i) a dataset targeted at a specific problem, and (ii) raw simulation data or measurements.
Thus, in the 5-class classification problem, two corresponding scenarios are investigated: (i)
where lossy features are shared into the repository with clean labels, and (ii) where lossy
labels are generated from raw lossy data obtained from the repository, respectively. In the
clean label scenario, the classification model is robust to lossy errors in the features up to
a point-wise error bound of b, = 20%, which corresponds to a 13-fold compression. In the
case of lossy labels and features, the CNN is robust up to b, = 10%, corresponding to a
11-fold compression ratio.

For the regression problem where the filtered progress variable source term is modeled,
the two corresponding scenarios are: (i) where lossy features are trained with lossy pre-
processed labels c:i, and (ii) where lossy features are trained with post-processed labels
ac(T Lp!, YY) generated from lossy simulation data. In the pre-processed scenario, the per-
formance of the regression model is unhindered even at b, = 40%. Due to the magnification
of the lossy errors by Arrhenius term calculations, large lossy errors are seen in the post-
processed training labels even at b, = 4%. Nevertheless, the regression model still predicts
We accurately, and the presence of small amounts of noise is even seen to improve the per-
formance of the deep learning model. However, model predictive accuracy drops sharply at
b, > 4%. In both regression and classification problems, our results demonstrate that deep
learning models applied to combustion can be robust to small amounts of noise.

We now summarize the findings from all sections of this paper towards recommendations
for standards in BLASTNet. Based on the requirements a good training datasets listed in
Section 1.2, we envision DNS and LES data, covering ~100 different configurations with a
total of ~1000 different snapshots for the first iteration of BLASTNet, with later versions
considering experimental data. Since this work demonstrates that deep learning models can
train on labels that are post-processed from lossy data, the flowfield in these datasets should
T

contain at least [p, w, T, p, Yi]*, with additional files required for evaluating thermodynamic
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and transport properties provided to BLASTNet as metadata, so users can recreate any
labels required for training in the wide range of supervised learning problems that are of
interest to CombM[L, For the choice of the public repository for BLASTNet, we recommend
the use of Kaggle [22], due to the platform’s command-line interface that can enable data
access from computing clusters, and ability to provide each data contribution a unique
digital-object-identifier (DOI),

We recommend the use of a consistent lossy compressor (SZ2 [43]) to allow for a consistent
data format that would expedite the construction of a data pipeline during training. Since
caution should be exercised as the performance of deep learning algorithms are seen here to
degrade rapidly in the presence of excessive noise, lossy compression should only be applied
when necessary, which is largely relevant for bigger DNS cases that exceed 100 GB per
snapshot. In these cases, we recommend a soft-constraint of b, = 1% with SZ2 so that
a few snapshots from a petascale simulation can be stored onto Kaggle. Since the total
compression ratio observed in this study (7-fold compression) is limited by compression of
the chemical species, we expect that a 5 to 10 compression ratio would also be observed in
other flame configurations since the volumetric ratio of reacting to non-reacting gases should
be relatively similar across different simulation configurations.

To help facilitate these standards and guidelines, tutorials on Kaggle, SZ2, and read-
ing/writing with the recommended data format are provided in BLASTNet. BLASTNet
also curates information (boundary conditions, initial conditions, fuel composition, chemical
mechanism, DOI) regarding individual simulation configurations, and provides a centralized
search interface that enables users to download individual cases, along with scripts that
enable batch access to all shared data. In this web-platform, a BLASTNet discussion forum
is also hosted in order to receive community feedback and to provide user support.

We remind the readers that each BLASTNet contributor will be included to the list-
of-authors in order to cultivate a truly community-involved big training database for com-
bustion. Thus, we call on the combustion community to contribute to this bearable large

accessible scientific training network—of-datasets.
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Supplementary Material

The web-platform for consolidating BLASTNet [46] is found in https://blastnet.
github.io/, which also provides standards for contributing data and tutorials on read-
ing and accessing shared data. The code and models used for this study can found in

https://github.com/IhmeGroup/lossy_ml.
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Appendix A. Training and Validation

In both classification and regression problems, training is performed with the Adam [68]
optimizer. In the classification problem, we employ raw learning rates of 1E-4, 1E-5, and 1E-
6 for 100, 300, and 300 epochs, respectively, and early-stopping is employed when necessary.
Prior to training, the raw learning rates are multiplied by the square root of the batch size.
Here, the batch size is 24.

In the regression problem, we employ raw learning rates of 1E-4, 5E-5, and 1E-5, for 300
epochs each, with batch size of 36. Training both regression and classification models on
four Tesla V100 GPUs requires a total of approximately 4 hours of wall-clock-time for each
case.

Training and validation losses for selected cases are shown in Figure A.14. In Fig-
ures A.14b and A.14d, the converged validation loss can be lower than the training loss,
leading to higher validation accuracy than training accuracy. This is caused by the absence
of lossy errors in the validation set, as described in Section 4. Otherwise, training shows no

sign of overfitting in Figures A.14a and A.l4c
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(c) Regression: Lossy features and lossy pre-processed labels, (d) Regression: Lossy features and post-processed labels,

by = 10%.

by = 8%

Figure A.14: Loss during training.
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Highlight

— Highlights —

BLASTNet: A Call for Community-Involved Big Data in Combustion

Machine Learning
Wai Tong Chung, Ki Sung Jung, Jacqueline H. Chen, Matthias Ihme

e Present weakly centralized framework for enabling access to diverse scientific data for
combustion machine learning

e BLASTNet: Bearable Large Accessible Scientific Training Network-of-Datasets combines
community involvement, public data repository, lossy compression, and consolidation
through community-hosted webpage: https://blastnet.github.io

e Demonstrate framework and data compression in application of DNS data to two
diverse CombML-problems: regression and classification

e Provide recommendation for community-contribution to shared database for deep
learning algorithms



https://blastnet.github.io/

