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Abstract

Many state-of-the-art machine learning (ML) fields rely on large datasets and massive deep

learning models (with O(109) trainable parameters) to predict target variables accurately

without overfitting. Within combustion, a wealth of data exists in the form of high-fidelity

simulation data and detailed measurements that have been accumulating since the past

decade. Yet, this data remains distributed and can be difficult to access. In this work,

we present a realistic framework which combines (i) community involvement, (ii) public

data repositories, and (iii) lossy compression algorithms for enabling access to high-fidelity

data via a network-of-datasets approach. This Bearable Large Accessible Scientific Train-

ing Network-of-Datasets (BLASTNet) is consolidated on a community-hosted web-platform

(at https://blastnet.github.io/), and is targeted towards improving accessibility to di-

verse scientific data for deep learning algorithms. For datasets that exceed the storage

limitations in public ML repositories, we propose employing lossy compression algorithms

on high-fidelity data, at the cost of introducing controllable amounts of error to the data.

This framework leverages the well-known robustness of modern deep learning methods to

noisy data, which we demonstrate is applicable in combustion machine learning (CombML)

by training deep learning models on lossy direct numerical simulation (DNS) data in two

completely different CombML problems – one in combustion regime classification and the

other in filtered reaction rate regression. Our results show that combustion DNS data can be

compressed by at least 10-fold without affecting deep learning models, and that the resulting

lossy errors can even improve their training. We thus call on the research community to
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contribute to opening a bearable pathway towards accessible big data in combustion.

Keywords: Big Data, Deep Learning, Direct Numerical Simulation , BLASTNet
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1. Background

1.1. Introduction: A big view of machine learning25

Combustion machine learning (CombML) offers numerous opportunities in predictive

modeling, scientific discoveries, and intelligent control [1]. One of the most crucial aspects

of machine learning (ML) is the availability of data, which in combustion, typically exist in

the form of simulation data and experimental measurements. In many ML fields outside of

combustion, massive and diverse datasets are the key components in ensuring high predictive30

accuracy and good generalizability [2].

For example, in computer vision, a state-of-the-art ML field, massive and diverse datasets

such as the ImageNet [3] image recognition dataset (170 GB, 1000 classes, 1.4M labeled

images) have enabled ML methods to out-perform human capabilities in image recognition [4,

5]. This achievement was made possible by the co-existence of deep learning architectures,35

such as the 152-layer deep ResNet [5], and the aforementioned ImageNet dataset, along with

its corresponding community-involved image recognition competition [4], where researchers

could develop ML methods without the laborious task of data collection, and compare results

in a transparent manner via an accessible benchmark dataset.

In contrast, datasets found in flow physics, such as the (∼500 TB) Johns Hopkins Turbu-40

lence Database [6], are not as diverse (9 flow configurations) but can be much greater in size

due to increased degree-of-freedom and resolution requirements when compared to digital

images. The fidelity and quality of this type of dataset is highly beneficial for applications in

detailed scientific analysis, but its lack of diversity, when compared to other datasets [3, 7]

from the broader ML community, can be detrimental for training ML algorithms, especially45

for predicting in unseen configurations. In order to meet this challenge, the flow physics com-

munity has developed knowledge-guided ML [8], where domain knowledge can be leveraged

3
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towards augmenting datasets, constraining optimization routines, and customizing model

architectures to learn well from small scientific datasets, i.e., the small data regime.

Outside of flow physics, ML research tends to focus on big data. Many improvements50

(including breakthroughs in model architecture such as residual blocks [5], batch normaliza-

tion [9], and rectified linear units [10]) in deep learning have been tailored towards developing

big models [11] that gain higher predictive accuracy with growing amounts of data [2]. We

note that both small and big data paradigms do not necessarily compete, and good results

have been achieved within CombML by combining ideas from both approaches.55

Recent developments in big data ML could inspire potential research directions for

CombML. In natural language processing (NLP), foundation models [12] have led to state-

of-the-art accuracies in a wide range of language prediction tasks. A foundation model is

a broadly accessible and big ML model (typically with O(109) trainable parameters) that

has been pre-trained on massive and diverse datasets, which can then be fine-tuned at later60

stages, by further training with smaller specific datasets (through transfer learning [13]), for

application to specific problems. This eliminates the need to build and train a powerful ML

model from scratch, and reduces the amount of data required to solve a tailored ML problem

after the foundation model has been pre-trained and shared. With this new paradigm, one

can envision a future development where only small amounts of additional data is needed to65

fine-tune pre-trained CombML foundation models in order to make accurate and affordable

predictions of flame physics and chemistry in unseen combustion configurations. However,

this ML approach is currently largely feasible only in NLP, where low-dimensional readily

labeled text data can be easily mined. In computer vision, while the practice of transfer

learning still persists, foundation models are comparatively nascent due to dimensionality of70

images (height, width, and color channels: NH×NW×NC), and the larger cost of generating

labels, which typically involves manually annotating images for image recognition or object

detection.

In CombML, the massive, diverse, and labeled dataset required to eventually develop

foundation models can certainly exist. A recent review [1] on CombML identified over 20075

direct numerical simulation (DNS) cases, which can potentially serve as the basis of a pub-

4
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lic CombML database. We envision that this database can be further populated with a

wide variety of existing experimental measurements and large-eddy simulation (LES) data,

as well as future data that is expected to grow in complexity and size with advancements

in measurement techniques and computational capabilities. Since simulation and exper-80

imental data are readily labeled with high-resolution quantities, CombML does not face

challenges tied to laboriously annotating datasets, as seen in computer vision. Instead, this

community faces the Herculean challenge of storing and accessing data with much higher

degrees-of-freedom (NH×NW×NL×Nt×Nφ with dimensions of length, time, and number of

scalars). This becomes especially true when considering the scale of data from peta/exascale85

simulations [14, 15] and high-speed measurements [16].

In summary, massive, diverse, and public combustion datasets are necessary to advance

CombML within the big data paradigm. Specifically, the existence of these datasets would

enable CombML researchers:

• To minimize the laborious task of data collection, which enables researchers to focus90

on advancing CombML techniques.

• To make objective and transparent evaluations of predictive accuracy from different

ML approaches on common datasets.

• To further leverage existing architectural advances from the big data paradigm, and

to foster a CombML paradigm that aligns with the broader ML community.95

• To improve accessibility to state-of-the-art transfer learning practices towards eventu-

ally building CombML foundation models that can solve a wide range of scientific and

engineering problems.

1.2. Requirements and pathways towards massive deep learning datasets in CombML

We now discuss a set of requirements for a big CombML dataset, which we note are100

different to the requirements of centralized high-fidelity databases [17]:

5

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



• Massive and diverse: Large and diverse datasets are crucial for ensuring good ac-

curacy and generalizability in state-of-the-art ML algorithms [2]. For example, super-

resolution models [18] in computer vision, which have also been applied towards tur-

bulence modeling [19], are typically trained with O(103) samples [7] of high-resolution105

images with great diversity. To establish a similar diverse dataset in CombML, we

propose a living dataset that continuously accumulates towards at least a total of 1000

individual snapshots from 100 different configurations. Since this volume of data can-

not be easily generated from any individual researcher, a community-involved approach

should be considered.110

• Accessible and consolidated: Significant resources will be required to store and

share at least 1000 snapshots of high-dimensional data without careful treatment.

While services, such as Globus [20], currently enable researchers to access data di-

rectly from computing and storage facilities, the private permissions required for this

service can hinder accessibility. Public accessibility to scientific data is typically115

achieved by building a centralized database, such as with the Johns Hopkins Tur-

bulence Database [6] or the Sloan Digital Sky Survey [21]. These centralized scientific

public datasets typically require dedicated storage infrastructure which consist of a

database cluster, web interface system, and dedicated infrastructure for data analysis.

While this approach has lead to reliable sources of scientific data, this can incur sig-120

nificant capital costs, as well as additional costs and human labor for maintaining and

updating the centralized database. An alternate approach would be to leverage open-

source and free ML repositories such as Kaggle [22], which are currently restricted by a

O(100) GB limit that may not be sufficient for high-fidelity data, as a single snapshot

of petascale DNS data can often exceed this limit.125

• Sufficient data quality: The availability of good quality data is without a doubt

important to data-driven methods. However, we must emphasize that this dataset

must be sufficiently good for training big supervised ML algorithms. In this context, a

recent study [23] demonstrated that ImageNet and other popular benchmark datasets

6
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contain up to 10% label error. Despite these errors in training data, ML continues130

to transform numerous engineering and scientific endeavors. This is because modern

deep learning algorithms are inherently robust to noisy data [24]. In fact, it is well-

known that introducing small amounts of noise to a training set can be beneficial for

improving the generalization of neural networks [25], and is a common form of data

augmentation [26]. This has significant implications towards the use of compression135

and dimensionality reduction algorithms for mitigating storage constraints. However,

since some combustion applications involve safety-critical conditions, we note that the

use of noisy data with ML under these conditions should be treated with caution and

thoroughly investigated prior to deployment.

1.3. Dimensionality reduction and lossy compression140

Combustion modeling has embraced dimensionality reduction methods for chemical re-

duction, resulting in compact chemical models in turbulent reacting flows with an accept-

able amount of error. Interpretable data-driven dimensionality techniques such as principal

component analysis (PCA) [27] have also been employed to identify optimal low-dimensional

manifolds that can be transported through conservation equations [28, 29]. A related practice145

involves projecting large dimensions onto low-order manifolds by leveraging well-understood

physical principles behind representative flame configurations. This approach has resulted in

the formulation of models such as the Burke-Schumann solution [30], the flame-prolongation

in intrinsic lower-dimensional manifold [31], the flamelet-generated manifold method [32],

and the flamelet/progress variable method [33, 34].150

Since big ML algorithms are robust to noisy data [24], dimensionality reduction algo-

rithms can be applied towards high-fidelity data that exceed size restrictions before storage

in public ML repositories. However, errors obtained during PCA reduction can be difficult

to control, which may result in unpredictable behavior if present in an ML dataset. More

complex dimensionality reduction methods such as autoencoders [35] have been shown to be155

more effective (but less interpretable) than PCA at compressing data while avoiding signif-

icant information loss [36, 37], but can still be difficult to control and are computationally

7
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expensive.

Recently, lossy compression algorithms [38] have gained popularity in applications with

high-fidelity data due to increasing storage and I/O bottlenecks as computational capabilities160

and high-speed measurements outgrow disk capabilities. Similar to dimensional reduction

techniques, these algorithms reduce the size of data, while introducing small errors to the

compressed data. This is in contrast to lossless compression algorithms, which preserve all

information during compression. As shown in Table 1, lossy compression algorithms can

achieve significantly higher compression ratios (defined as the ratio between the sizes of165

original data and compressed data, respectively) than lossless compression. In addition,

many of these lossy compression methods have been tailored towards compressing high-

fidelity scientific data at tractable computational costs and include error-boundedness, which

enable users to determine and control the desired error/fidelity of the compressed data.

Thus, these methods can be employed towards guaranteeing a level of desired quality when170

compressing ML training data.

Compressor Type Compression Ratio

Deduplication [39] Lossless 1.5 ∼ 3

gzip [40] Lossless 1.5 ∼ 2

FPC [41] Lossless 1.2 ∼ O(10)
ISABELA [42] Lossy 2.1 ∼ O(100)
SZ2 [43] Lossy 3 ∼ O(100)
ZFP [44] Lossy 3 ∼ O(100)
TTHRESH [45] Lossy 5.1 ∼ O(100)

Table 1: Comparison of compression ratios achieved by compression algorithms on scientific datasets.

Adapted from [38].

Even an O(10)-fold compression could turn the storage of high-fidelity combustion simu-

lation data into a bearable task. For instance, a ten-fold compression on petascale DNS data

(with 200 GB per snapshot) would result in a few compressed snapshots that can be readily

8
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shared on public ML repositories such as Kaggle [22]. This process could be repeated for175

multiple DNS configurations, with links to each distributed dataset curated and hosted on

a single community-maintained webpage. Employing such an approach, which we detail in

Section 1.4, would eliminate the time and labor required to build and maintain a centralized

database by making use of the open-source nature of the broader ML community.

1.4. BLASTNet: A big data framework for the combustion community180

In this work, we propose an affordable weakly centralized framework combining the use

of lossy compression algorithms with public open-source data repositories and community

involvement for sharing massive and diverse deep learning training data for combustion. In

particular, this framework is targeted towards improving the diversity of accessible scientific

training data, and thus serves a distinct purpose when compared to existing high-fidelity185

databases [6].

Figure 1 summarizes our proposed framework, Bearable Large Accessible Scientific Train-

ing Network-of-Datasets (BLASTNet). BLASTNet is aimed at providing accessibility to raw

simulation and measurement data (from a diverse range of configurations), which can be

employed for solving a wide range of deep learning problems. This data is shared through190

Kaggle [22], which has an interface amenable for scientific clusters and also provides the

ability to register digital-object-identifiers (DOI) for each dataset. In cases where a single

sample of data exceeds (O(100) GB limit) storage limits in Kaggle, this data is compressed

at a desired level of error, with an error-bounded lossy compression algorithm. Here, we rec-

ommend the use of a consistent compression algorithm, SZ2 [43], so that all lossy compressed195

datasets can be shared in consistent data formats.

The link to, description of, and all other metadata (boundary conditions, initial condi-

tions, fuel composition, DOI) from the dataset can then be shared onto a community-hosted

webpage [46], at https://blastnet.github.io/, which curates all existing distributed ML

datasets and provides a centralized search interface to enable convenient public access. In200

addition, this webpage provides tutorials for compressing, decompressing, sharing, and ac-

cessing the lossy data. BLASTNet also sets standards (further detailed in Section 5), and

9
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Step 5: 
Training Data is 
now Accessible

Step 4: 
Consolidate Kaggle Links 
and Important Metadata

Step 3: 
Upload to 

Kaggle

Step 2: 
Compress

Step 1: 
Collect Data

www

Figure 1: BLASTNet: A community-involved pathway to big combustion data at https://blastnet.

github.io/

screens the data to ensure that these standards are met. A community discussion forum is

also hosted on BLASTNet in order to receive continuous feedback from users and to provide

a platform for additional support to users. Importantly, to ensure that fair attribution is205

provided in this open-source project, a version update will be applied to BLASTNet each

time a new contribution is provided by the research community to include each individual

contributor into BLASTNet’s list of authors, which is a common practice in open-source

software [47].

1.5. Objectives210

The objectives of this work can thus be summarized as follows:

• To advocate the benefits of a massive, diverse, and distributed CombML datasets for

deep learning.

• To introduce a platform, at https://blastnet.github.io/, for a community-involved

network-of-datasets (BLASTNet).215

10
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• To demonstrate lossy compression as an affordable and expedited pathway for storing

and sharing state-of-the-art high-fidelity data.

• To quantify the compression gained from lossy algorithms and to demonstrate the

robustness and limitations of deep learning algorithms to the resulting lossy errors.

• To call on the combustion community to contribute data to BLASTNet.220

We note that a key component of BLASTNet operates under the assumption that deep

learning methods are robust to the controllable amounts of noise introduced during lossy

compression. To investigate the applicability of this assumption within combustion, we

apply a lossy compression algorithm (SZ2 [43]) to DNS data of a turbulent lifted hydrogen

jet flame in heated co-flow [48], and study the effects of lossy data on training deep learning225

models in two completely different ML problems namely, combustion regime classification

and filtered reaction rate regression. The investigated DNS dataset is described further in

Section 2, while the chosen lossy compression algorithm and deep learning architecture are

detailed in Section 3. Results from this investigation are presented in Section 4, before

concluding in Section 5.230

2. DNS Dataset

A three-dimensional DNS dataset from a previous study [48] of a turbulent lifted hydro-

gen jet flame in heated co-flow air is used to demonstrate the robustness of deep learning

models to lossy errors. Figure 2 shows the schematic of the DNS configuration. A diluted

fuel mixture (65% H2 and 35% N2 by volume) is issued from the central slot at an inlet

temperature of 400 K. This central jet is surrounded on either side by co-flowing heated air

streams with an inlet temperature of 850 K, at atmospheric pressure. The mean inlet axial

velocity Uin is given by:

Uin = Uc +
Ujet−Uc

2

(
tanh

(
y+H/2
0.1H

)
− tanh

(
y−H/2
0.1H

))
, (1)

where Ujet = 240 ms−1 represents the mean inlet jet velocity, Uc = 2 ms−1 the mean inlet

co-flow velocity, and H = 2 mm the jet width at the inlet, respectively. Velocity fluctuations,
11
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obtained by generating an auxiliary homogeneous isotropic turbulence field, are fed from the

inlet using the Taylor hypothesis.235

This 2000 × 1600 × 400 computational domain is 15H × 20H × 3H in the streamwise

x-, transverse y-, and spanwise z-directions, respectively, resulting in a total of 1.28 billion

cells. A uniform grid size of 15 µm is placed in x- and z-directions, while the y-directional

grid is algebraically stretched outside the flame and shear zones. Improved non-reflecting

boundary conditions [49, 50] are adopted in the x- and y-directions and periodic boundary240

conditions are applied in the z-direction.

x

y
z

Fuel 

Oxidizer

Outflow

O
u
tf

lo
w

O
u
tf

lo
w

Periodic

H

20H
3H

1
5
H

Figure 2: H2-air direct numerical simulation [48] data used in this study.

The Sandia DNS code, S3D [51] was employed for solving the compressible Navier-Stokes,

species continuity, and total energy equations. The employed detailed H2-air chemical mech-

anism composed of 9 species (H2, O2, H2O, O, H, OH, HO2, H2O2, and N2) and 21 elementary

reaction steps, was developed by Li et al. [17]. In the present study, a 1200 × 300 × 200245

sub-region of the DNS field (i.e., a left half branch of the lifted jet flame) is sampled from

the a single 124 GB DNS snapshot, in order to reduce computational costs during training
12
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and analysis while maintaining the fidelity of the flame structure. We employ this 70M-cell

subvolume to demonstrate the robustness of deep learning models to noise from lossy com-

pression algorithms in both classification and regression problems, as specified in Section 2.1250

and Section 2.2, respectively.

2.1. Classification dataset

Within CombML, classification can be useful for optimizing numerical computations [52],

detecting catastrophic events [53], and identifying combustion regimes [54]. As detailed in

Table 2, we generate five classes of labels for the present classification problem, with the use

of the flame index FI [55], progress variable C = YH2O, and mixture fraction Z, as defined

by Bilger [56]. The flame index is defined by:

FI =
∇YH2 · ∇YO2

‖∇YH2‖ · ‖∇YO2‖
. (2)

These five labels were chosen (i) to account for a well-balanced proportion of classes, (ii)

to investigate the effects of lossy compression on fine thresholds, and (iii) to investigate

the effects of the gradient operator in Equation (2) in magnifying lossy errors. For each255

label, we extract four flow features {Z,C, YH2 , YO2}, and then divide the data into 268 sub-

volumes, each with 256 × 256 × 3 cells. Note that 3 cells in the z-axis is sufficient for

preserving spatial information in these samples, since this configuration is homogeneous in

the spanwise direction.

Label Definition

Premixed Flame (C > 0.01) and (FI > 0) for all Z

Non-premixed Flame (C > 0.01) and (FI ≤ 0) for all Z

Air (C ≤ 0.01) and (Z ≤ 0.01)

Fuel (C ≤ 0.01) and (Z > 0.90)

Fuel-air Mixture (C ≤ 0.01) and (0.01 < Z ≤ 0.90)

Table 2: Classification labels generated with flame index FI, progress variable C, and mixture fraction Z.

.
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2.2. Regression dataset260

Within CombML, regression is particularly popular for constructing turbulence clo-

sure [57], modeling thermodynamics and chemistry [58], and parameterizing combustion

manifolds [29]. Here, we generate our regression label by filtering and down-sampling the

DNS data to evaluate the Favre-filtered progress variable reaction rate ˜̇ωC :

˜̇ωC =
ρω̇C
ρ
, (3a)

with

ω̇C(x) =

∫

V

ω̇DNSC (y)G(x− y,∆F ) dy , (3b)

G(x− y,∆F ) =

(
6

π∆2
f

)3/2

exp

[−6(x− y)2

∆2
F

]
, (3c)

where · denotes a filtered quantity, ·̃ is a Favre-filtered quantity, G is a Gaussian filter,

and ∆F = 8∆ is the filter width, which is prescribed to be 8-times larger than the DNS cell

width ∆. This filter width corresponds to 3 cells (in a corresponding LES) for sufficiently

resolving a laminar flame thickness of 0.3 mm, which is evaluated through a stoichiometric

1D premixed flame calculation. The quantity ˜̇ωC from turbulence-chemistry interaction is265

of interest within CombML, as shown in other studies [59, 60], and is a suitable quantity

to test the robustness of ML models to lossy errors, due to the presence of the exponential

operator in the Arrhenius term, which can significantly magnify lossy errors. For each label,

we extract two flow features {Z,C} from this dataset, and then divide the data into 177

sub-volumes (each with 32× 32× 3 cells) that encompass the flame region.270

3. Methods

3.1. Deep Learning

Figure 3 shows the deep learning architecture used in both classification and regres-

sion problems. This 3-D convolutional neural network (CNN) architecture is based on the

autoencoder architecture by Glaws et al. [61], with the input channel N in
F of the model275

14
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modified to suit the present classification (N in
F = 4) and regression (N in

F = 2) datasets and

the filter width reduced to 3. The present network contains 93 layers and approximately 1M

trainable parameters, with weights initialized via Xavier initialization [62], and contains 12

residual blocks [5] near the input and output, for improving training and avoiding vanishing

gradients during back-propagation. A key component of this architecture is its autoencoder280

structure. Autoencoder networks can be thought of as a non-linear PCA [35], where raw

features are automatically processed by the encoder into an embedded form which can then

be forward-propagated by the decoder to generate complex predictions.

For the classification problem, a softmax output activation with five filters N out
F = 5

(for the five classes) is used together with a categorical cross-entropy loss function, while a285

linear output activation with a single filter N out
F = 1 is used for the regression problem with

a mean-absolute-error (MAE) loss function. Train and validation procedures are further

detailed in Appendix A.

eC eZ

ė!C

eC eZ

ė!C

eC eZ

ė!C

YH2
YO2

C Z

5 classes
YH2

YO2

C Z

5 classes

YH2
YO2

C Z

5 classes

YH2
YO2

C Z

5 classes

YH2
YO2

C Z

5 classes

Classification Input
256⨉256⨉3⨉4

Classification Output 
256⨉256⨉3⨉5

12 Residual Blocks

Bottleneck
(NH/8)⨉(NW/8)⨉3⨉NF

Leaky ReLU Activation
Output Activation

Conv. Layer
Residual Block

Transpose Conv. Layer

Regression Output 
32⨉32⨉3⨉1

Regression Input
32⨉32⨉3⨉2

12 Residual Blocks
4N in

F

N
H
⇥

N
W

⇥
3

4N in
F

8N in
F

16N in
F 16N in

F

8N in
F

4N in
F Nout

F

Figure 3: Present 3-D CNN architecture. The number of filters in each layer NF is represented in terms of

the number of input channels N in
F .
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3.2. Lossy Compression

In this work, we employ the SZ2 compressor [43], which combines curve-fitting, the290

Lorenzo predictor, and data quantization for compressing scientific data. In principle, SZ2

(i) partitions field variables into clusters, (ii) iteratively searches for regression functions that

can approximate each cluster with a guaranteed error-bound, and (iii) stores the quantized

regression coefficients of the function and indices of the field variables for recomputing the

original data during decompression. Data can be compressed effectively since the quantized295

coefficients and indices are much smaller than the original variables. Compression and

decompression of the 12 quantities in the thermo-chemical state-space for the present 72M

subvolume requires a total of approximately 35 seconds wall-clock-time on a single CPU. We

note that SZ2 has been reported to be at least 2-times faster than the other lossy compressors

listed in Table 1 [43, 45].300

Thus, SZ2 meets the criteria described in Section 1.3 for compressing high-fidelity data

for a large public training database: (i) capable of high compression ratios, (ii) fast, and

(iii) allows for bounded error control. While a global error bound is typically used for

controlling errors in other compressors [42, 45], SZ2 allows for control via both global error

bound, which guarantees that the lossy error in all cells do not exceed a single user-defined305

value, as well as the the point-wise relative error bound [63] bp, which guarantees that

the lossy error in each cell does not exceed a user-defined percentage of the compressed

value. Figure 4 demonstrates the range of lossy data obtained via point-wise relative error

control and a corresponding global relative error control, on a curve obtained from the

maximum conditional progress variable max(C|Z). The use of point-wise error control is310

seen to ensure that values near zero are preserved, with positive values guaranteed to stay

positive after lossy compression. Point-wise error control also preserves steep gradients more

effectively than global error control between Z = 0 and Z = 0.3. Both these properties are

important for preserving the fidelity of steep gradients and small values of chemical species

seen commonly within combustion.315
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Figure 4: Difference between global and point-wise error bounded control modes in SZ2, illustrated on the

maximum conditioned progress variable (C|Z)max.

3.3. Evaluation metrics

For the results discussed in Section 4, we employ several statistical metrics of accuracy

to evaluate the effects of lossy compression on data fidelity, and to assess the predictive

accuracy of deep learning models. We quantify the quality of lossy compressed data through

two popular image quality metrics, i.e., the structural similarity index measure [64] (SSIM)

and peak-signal-to-noise-ratio [65] (PSNR). SSIM is evaluated by passing a sliding window

Ω (∆Ω = 6∆) across two scalars φ and ψ, and volume-averaging their statistical quantities:

SSIM(φ, ψ) = 〈l(φ, ψ)s(φ, ψ)r(φ, ψ)〉,

=

〈(
2µφµψ + c1
µ2
φ + µ2

ψ + c1

)(
2σφσψ + c1
σ2
φ + σ2

ψ + c1

)(
σφψ + c3
σφσψ + c3

)〉
, (4a)

where mean µφ and variance σ2
φ of the sliding window are:

µφ =
1

NΩ

∫

Ω

φ dΩ, (4b)

σ2
φ =

1

NΩ

∫

Ω

(φ− µφ)2 dΩ, (4c)

while l measures the similarity of µφ,ψ, s measures the similarity of σ2
φ,ψ, r measures corre-

lation of the {φ, ψ}, and constants c{1,2,3} ensure numerical stability.
17
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PSNR is related to mean-squared-error (MSE):

PSNR(φ, ψ) = −10 log10

(
max(φ, ψ)2

MSE(φ, ψ)

)
. (5)

Note that for both metrics, higher values are indicative of higher post-compression quality,

with SSIM bounded between -1 and 1, while the highest possible value for PSNR is restricted320

by the maximum value of a data type, i.e., 48 dB for 8-bit images.

For the classification problem, we evaluate the class accuracy score via a one-versus-all

approach, i.e., the number of sample points that have been predicted correctly for a given

class divided by the total number of sample points. In the regression problem, SSIM is

employed to compare the similarity between filtered progress variable reaction rates from

the DNS and from the deep learning models. The normalized mean-squared-error (MSE)

for N number of cells is also employed to measure the difference between the ground truth

φ and model predictions ψ:

Norm. MSE(φ, ψ) =

∑N
i=1(φ− ψ)2∑N

i=1 φ
2

. (6)

4. Results

4.1. Effects of Lossy Compression on Data

This section describes the effects of lossy compression on the training data, while Sec-

tion 4.2 discusses the effects of training deep learning models with this lossy data.325

We first compress flowfields required to solve both regression and classification problems

with SZ2. Figure 5 demonstrates that the total compression ratio, from 1% to 50% point-

wise error bound bp, ranges from 7- to 20-fold compression. Even if we consider only the

lowest compression ratio seen in compressing H2O2 mass fraction, a 4-fold compression of

the 124 GB DNS solution file, would enable at least 3 snapshots of this data to be shared as330

a single dataset on Kaggle. Data compression could be repeated on other flow configurations

of a similar scale, and shared via the framework presented in Figure 1 for building a diverse

network-of-datasets. Figure 5 also shows that greater compression ratios are seen in state

18
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Figure 5: SZ2 compression ratio of different scalar flowfields at varying point-wise error bounds bp. Species

quantities are expressed in mass fractions.

variables such as density ρ and temperature T than in mixture fraction Z and chemical

species.335

Visualization of the uncompressed and lossy-compressed flowfields in Figure 6 provides

better insight into the different compression ratios exhibited by different quantities. In mix-

ture fraction (left), temperature T (center), and OH mass fraction YOH (right), PSNR is

shown to decrease with increasing point-wise error bound bp when compared to the uncom-

pressed flowfields in Figure 6a. SSIM also decreases for Z and T with increasing bp, but is340

preserved for YOH. At large settings of bp, distortions first appear in regions with large mag-

nitudes and small gradients, as is expected from the point-wise error control, as discussed

with Figure 4. As such, large field distortions are first clearly observable in temperature

and mixture fraction Z at bp = 20% and bp = 40% in Figures 6b and 6c, respectively, with

no temperature fluctuations visible at bp = 40% in Figure 6c. In these cases, compression345

should be performed with smaller values of bp to preserve flow structure. These results also

demonstrate that the point-wise error bound is suited for preserving the large gradients and

small magnitudes as seen in Z at bp = 10% in Figure 6b, and in all bp for OH mass fraction

YOH (Figure 6a,b,c). This property is useful for preserving the flowfields of many scalar

quantities encountered in reacting flow configurations.350
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Figure 6: Mixture fraction Z (left), temperature T (center), and OH mass fraction YOH (right) from the

train set at different levels of maximum point-wise error specified during compression. Quality metrics such

as PSNR and SSIM are included in-panel.

4.1.1. Classification

When developing an ML dataset, one can either (i) identify and target a specific super-

vised learning problem or (ii) share raw data that can then be processed for a target ML

problem just before training. Thus, in the present classification problem, we investigate two

corresponding scenarios: (i) training with lossy features and clean labels, and (ii) training355

with lossy features and post-processed labels generated from lossy data.

Figure 7 compares the labels used to train the deep learning models at different levels of

point-wise error bound bp, with Figure 7a showing original uncompressed labels. Significant

noise is seen at bp = 10% (Figure 7b), especially in the premixed and non-premixed flame

regions, with a 9.3% total label error introduced to the data. This noise is present because

lossy errors are magnified by the cell width ∆ when evaluating scalar gradients used to

determine the flame index (Equation (2)). We demonstrate this on a central-differencing

20
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scheme:

f(X + εl(X)) =
(Xi+1 + εli+1)− (Xi−1 + εli−1)

2∆
(7a)

=
Xi+1 −Xi−1

2∆
+
εli+1 − εli−1

2∆
. (7b)

Note that in this text, we use the superscript ·l to denote lossy terms. In the worst case,

where lossy errors εli+1 = bpXi+1 and εli−1 = −bpXi−1:

f(X + εl(X)) = f(X) + bp
(Xi+1 +Xi−1)

2∆
, (8)

which could be significantly larger than:

f(X) + εl(f) = f(X) + bp
(Xi+1 −Xi−1)

2∆
. (9)

Figure 7b shows that the fuel labels also become distorted at bp = 40% as the lossy errors

obfuscate the threshold (Z ≤ 0.01) in generating the labels, as discussed with Table 2,

resulting in a total label error of 19.9%.

4.1.2. Regression360

We consider the same two scenarios from Section 4.1.1: (i) targeting a specific supervised

learning problem or (ii) generating labels from shared lossy simulation data. Specifically,

we explore scenarios where (i) pre-processed filtered progress variable reaction rate ˜̇ωlC are

compressed and shared, and where (ii) post-processed filtered progress variable reaction rate

˜̇ωC(T l, pl, Y l
k) are generated directly from shared lossy data. The pre-processed label ˜̇ωlC is365

generated by (i) evaluating ω̇DNSC through inputting the thermo-chemical vector [T, p, Yk]
T

from each cell into the chemical mechanism, (ii) applying Favre-filtering (Equation (3a))

to form ˜̇ωDNSC , and applying lossy compression to form ˜̇ωlC . In contrast, the post-processed

label ˜̇ωC(T l, pl, Y l
k) is generated by (i) applying lossy compression on thermo-chemical vector

to form [T l, pl, Y l
k ]T, (ii) evaluating ω̇C(T l, pl, Y l

k) using the chemical mechanism, and (iii)370

applying Favre-filtering to form ˜̇ωC(T l, pl, Y l
k).

Figure 8 presents percentage of lossy errors from pre-processed ˜̇ωlC and post-processed

˜̇ωC(T l, pl, Y l
k) labels, with the uncompressed filtered progress variable reaction rate ˜̇ωC (Fig-

ure 8a). Figure 8b shows that the normalized lossy error from the pre-processed ˜̇ωlC never
21
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(a) bp = 0% (uncompressed data).

(b) bp = 10%.

Correct Labels = 90.7%

0 3 6 9 12 15
x [mm]

(c) bp = 40%.
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y
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m
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Fuel-air
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Figure 7: Classification labels generated from lossy data at different levels of point-wise error bounds bp.

exceeds the point-wise error bound bp = 40%, while evaluating ˜̇ωC(T l, pl, Y l
k) from lossy data375

can result in lossy errors that significantly exceed bp = 4% and bp = 8%, as shown in Fig-

ure 8c and Figure 8d, respectively. This is because exponential operators in the Arrhenius

term can magnify the lossy errors, which is also seen with gradient operators in Equation (8).

4.2. Deep Learning Predictions380

We now explore the effects of lossy data on deep learning. In general, validation and

test data do not necessarily match the distribution of the training data, and are usually

sampled to represent data encountered after deployment. For instance, when building a

data-driven turbulence model in a numerical solver, training data can be extracted from

as many different sources as possible to improve generalizability, while validation and test385

data should match the flow conditions simulated by in the numerical solver [1]. Thus, in the

big data framework proposed in Figure 1, we envision a scenario where large quantities of
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(a) bp = 0% (uncompressed data).

(b) Pre-processed label ˜̇ωlC , bp = 40%.

SSIM = 0.97
PSNR = 37.5 dB

(c) Post-processed label ˜̇ωC(T l, pl, Y l
k) , bp = 4%.

SSIM = 0.92
PSNR = 40.3 dB

7.00 9.75 12.50 15.25 18.00
x [mm]

(d) Post-processed label ˜̇ωC(T l, pl, Y l
k) , bp = 8%.

1.2

3.1

5

y
[m

m
]

SSIM = 0.68
PSNR = 19.7

0 2000 4000 6000 8000
˜̇ωC [s−1]

−100 −50 0 50 100
˜̇ωDNSC −˜̇ωtrainC

|˜̇ωDNSC |
[%]

Figure 8: Filtered progress variable reaction rate ˜̇ωC with percentage errors from lossy compression.

lossy compressed training data can be easily obtained from public repositories, with small

quantities of clean test and validation data sampled personally by a user. As such, for the

classification and regression problems in Section 4.2.1 and Section 4.2.2, only the training390

data are lossy-compressed data, while validation and test sets are uncompressed.
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4.2.1. Classification

Figure 9a compares class accuracy scores for different levels of point-wise error bounds bp,

for ML models trained on lossy features and clean labels. A mean class accuracy score of 87%

is seen in the baseline case of bp = 0%, which is typical in other classification/segmentation395

problems [66, 52]. The mean accuracy scores are robust up to bp = 20%, corresponding to a

13-fold compression. At bp > 40%, a high mean accuracy (84%) is still observed, which is in

agreement with the well-known observation [67] that ML algorithms are reasonably robust

to feature noise.
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(a) Trained on lossy features and clean labels.
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(b) Trained on lossy features and lossy labels.

Figure 9: Class accuracy score at different levels of maximum point-wise error specified during compression.

Figure 9b compares class accuracy scores for different bp, when training with both lossy400

features and (post-processed) labels generated from lossy data. The mean accuracy scores

are robust to errors up to only bp = 10%, which still corresponds to a 11-fold compression

in the original data. At bp ≥ 20%, class accuracy for fuel begins to decrease towards 0. This

is caused by the distorted fuel labels shown in Figure 7c. Nevertheless, the deep learning

model demonstrates reasonably robust behavior in the other classes, especially in the flame405

regions, up until bp = 40%.

Figure 10 visualizes predictions from the deep learning model trained on lossy features

and post-processed labels. Figure 10b shows that the model predictions at bp = 0% are in
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agreement with the ground truth labels in Figure 10a. A slightly higher class accuracy of

89% is seen when training with clean labels and lossy features at bp = 10%, as shown in410

Figure 10c. Increase in accuracy is commonly observed in ML models with the introduction

of small amounts of noise during data-augmentation [26], which is well-known to improve

neural network models [25]. However, Figure 10d shows that non-premixed flame samples

are misclassified as premixed flame near the flame boundary with air when the ML model is

trained with lossy labels and lossy features at bp = 10%. This is likely caused by the excessive415

label noise between the premixed and non-premixed flame regions, as seen in Figure 7b.

Similarly, misclassification is seen in the air and premixed flame labels in Figure 10e, where

feature noise exceeds bp = 40. The aforementioned failure in classifying fuel is clearly

observed when the ML model is trained with lossy labels and lossy features at bp = 40%

(Figure 10f). Nevertheless, coherent classification is still observed in the flame regions at420

bp = 40%, despite the high label noise seen in Figure 7c.

(a) Ground truth labels. (b) bp = 0% (uncompressed data).

Accuracy Score = 87%

(c) Clean labels and lossy features, bp = 10%.

Accuracy Score = 89%

(d) Lossy labels and lossy features, bp = 10%.

Accuracy Score = 87%

0 3 6 9 12 15
x [mm]

(e) Clean labels and lossy features, bp = 40%.

0.0
0.9
1.8
2.7
3.6

y
[m

m
] Accuracy Score = 84%

(f) Lossy labels and lossy features, bp = 40%.

Accuracy Score = 65%

Premixed
Flame

Non-
premixed

Flame Air Fuel
Fuel-air
Mixture

Figure 10: Visualization of ground truth and predictions from ML models in the classification problem.

25

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4.2.2. Regression

Figure 11a compares regression accuracy and error metrics, namely SSIM and the nor-

malized MSE, respectively, for different levels of point-wise error bounds bp, for ML models

trained on lossy features and lossy pre-processed labels ˜̇ωlC . For bp = 0%, a normalized MSE425

of 22% is similar to results from another study [60]. These values and the high SSIM ≈ 0.92

are reasonably consistent up to bp = 40%, corresponding to a 20-fold compression.
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(a) Trained on pre-processed labels ˜̇ωl
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(b) Trained on post-processed labels ˜̇ωC(T l, pl, Y l
k).

Figure 11: Structural similarity index measure (SSIM) and normalized mean-squared-error (MSE) at differ-

ent values of point-wise error bounds bp. Tested on clean features and clean labels.

Figure 11b compares SSIM and normalized MSE when training with both lossy features

and post-processed labels ˜̇ωC(T l, pl, Y l
k) generated from lossy data, as a function of bp. SSIM

and normalized MSE are robust to errors up to only bp = 4%, which still corresponds to a430

10-fold compression. At bp ≥ 4%, SSIM begins to increase while normalized MSE increases

significantly due to the magnification of errors during label generation, as shown in Figure 8.

Figure 12 visualizes the predictions from the ML model trained on lossy features and

post-processed labels ˜̇ωC(T l, pl, Y l
k), along with the filtered DNS. Figure 12b,c shows that

the model predictions at bp = 0% and bp = 4% are in reasonable agreement with the435

ground truth labels in Figure 12a. Over-prediction and under-prediction of ˜̇ωC is observed

in Figure 12d, where bp = 8%.

Figure 13 compares mean conditional filtered progress variable 〈˜̇ωC |Z̃〉 from the ML
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(a) Filtered DNS.

(b) ML, bp = 0% (uncompressed data).

SSIM = 0.92

(c) 4% ML, bp = 4%.

SSIM = 0.93

7.00 9.75 12.50 15.25 18.00
x [mm]

(d) ML, bp = 8%.
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Figure 12: Visualization of filtered DNS and predictions from model trained on lossy features and post-

processed labels ˜̇ωC(T
l, pl, Y l

k), and tested on clean features and clean labels.

model (trained with post-processed labels) with ground truth labels from the filtered DNS.

The misprediction observed at bp = 8% in Figure 8d can also be observed here, where a 2-440

fold over-prediction in 〈˜̇ωC |Z̃〉 occurs at Z̃ = 0.24. 〈˜̇ωC |Z̃〉 at bp = 4% is seen to be in better

agreement with the filtered DNS than at bp = 2% and bp = 0%. Introducing small amounts

of noise is also seen to improve the classification model, as discussed with Figure 10c.

We note that while the addition of noise can improve training (as commonly done via

data augmentation [26]), an excessive amount of noise can lead to bad predictions as shown445
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Figure 13: Comparison of mean conditional filtered progress variable 〈˜̇ωC |Z̃〉 from the filtered DNS and

predictions from the ML model, trained with post-processed labels ˜̇ωC(T
l, pl, Y l

k).

by bp = 8%, and thus caution should be exercised when dealing with noisy data. Hence, for

the purposes of BLASTNet, we recommend a bp = 1% (7-fold compression), unless necessary

to achieve higher compression ratio in very large datasets. Any further augmentation with

noise should be performed after downloading and during training at a user’s discretion.

Nevertheless, these results demonstrate that controlled amounts of noise does not affect450

deep learning models, and in some cases can even be beneficial.

5. Conclusions

In this paper, we propose BLASTNet, a realistic framework that combines (i) community

involvement, (ii) public data repositories, and (iii) lossy compression algorithms for accessing

the wealth of combustion data that already exists in the form of high-fidelity simulations455

and detailed measurements. Alongside this, we introduce a web-platform, at https://

blastnet.github.io/, for consolidating and curating the proposed network-of-datasets.

Given the limitations in public storage capacity, a key component of this framework

involves the use of lossy compression algorithms for enabling access to petascale simulation

data and large experimental measurements. Thus, we evaluate effects of lossy compression460

algorithms on data quality and deep learning performance on a H2-air lifted flame DNS. To
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this end, we train CNN models with labels and features, extracted from lossy DNS data in

two completely different regression and classification problems.

In scientific supervised learning, two broad categories of datasets can be encountered:

(i) a dataset targeted at a specific problem, and (ii) raw simulation data or measurements.465

Thus, in the 5-class classification problem, two corresponding scenarios are investigated: (i)

where lossy features are shared into the repository with clean labels, and (ii) where lossy

labels are generated from raw lossy data obtained from the repository, respectively. In the

clean label scenario, the classification model is robust to lossy errors in the features up to

a point-wise error bound of bp = 20%, which corresponds to a 13-fold compression. In the470

case of lossy labels and features, the CNN is robust up to bp = 10%, corresponding to a

11-fold compression ratio.

For the regression problem where the filtered progress variable source term is modeled,

the two corresponding scenarios are: (i) where lossy features are trained with lossy pre-

processed labels ˜̇ωlc, and (ii) where lossy features are trained with post-processed labels475

˜̇ωc(T l, pl, Y l
k) generated from lossy simulation data. In the pre-processed scenario, the per-

formance of the regression model is unhindered even at bp = 40%. Due to the magnification

of the lossy errors by Arrhenius term calculations, large lossy errors are seen in the post-

processed training labels even at bp = 4%. Nevertheless, the regression model still predicts

˜̇ωc accurately, and the presence of small amounts of noise is even seen to improve the per-480

formance of the deep learning model. However, model predictive accuracy drops sharply at

bp > 4%. In both regression and classification problems, our results demonstrate that deep

learning models applied to combustion can be robust to small amounts of noise.

We now summarize the findings from all sections of this paper towards recommendations

for standards in BLASTNet. Based on the requirements a good training datasets listed in485

Section 1.2, we envision DNS and LES data, covering ∼100 different configurations with a

total of ∼1000 different snapshots for the first iteration of BLASTNet, with later versions

considering experimental data. Since this work demonstrates that deep learning models can

train on labels that are post-processed from lossy data, the flowfield in these datasets should

contain at least [ρ,u, T, p, Yk]
T, with additional files required for evaluating thermodynamic490
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and transport properties provided to BLASTNet as metadata, so users can recreate any

labels required for training in the wide range of supervised learning problems that are of

interest to CombML, For the choice of the public repository for BLASTNet, we recommend

the use of Kaggle [22], due to the platform’s command-line interface that can enable data

access from computing clusters, and ability to provide each data contribution a unique495

digital-object-identifier (DOI),

We recommend the use of a consistent lossy compressor (SZ2 [43]) to allow for a consistent

data format that would expedite the construction of a data pipeline during training. Since

caution should be exercised as the performance of deep learning algorithms are seen here to

degrade rapidly in the presence of excessive noise, lossy compression should only be applied500

when necessary, which is largely relevant for bigger DNS cases that exceed 100 GB per

snapshot. In these cases, we recommend a soft-constraint of bp = 1% with SZ2 so that

a few snapshots from a petascale simulation can be stored onto Kaggle. Since the total

compression ratio observed in this study (7-fold compression) is limited by compression of

the chemical species, we expect that a 5 to 10 compression ratio would also be observed in505

other flame configurations since the volumetric ratio of reacting to non-reacting gases should

be relatively similar across different simulation configurations.

To help facilitate these standards and guidelines, tutorials on Kaggle, SZ2, and read-

ing/writing with the recommended data format are provided in BLASTNet. BLASTNet

also curates information (boundary conditions, initial conditions, fuel composition, chemical510

mechanism, DOI) regarding individual simulation configurations, and provides a centralized

search interface that enables users to download individual cases, along with scripts that

enable batch access to all shared data. In this web-platform, a BLASTNet discussion forum

is also hosted in order to receive community feedback and to provide user support.

We remind the readers that each BLASTNet contributor will be included to the list-515

of-authors in order to cultivate a truly community-involved big training database for com-

bustion. Thus, we call on the combustion community to contribute to this bearable large

accessible scientific training network–of-datasets.
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Supplementary Material

The web-platform for consolidating BLASTNet [46] is found in https://blastnet.520

github.io/, which also provides standards for contributing data and tutorials on read-

ing and accessing shared data. The code and models used for this study can found in

https://github.com/IhmeGroup/lossy_ml.
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Appendix A. Training and Validation

In both classification and regression problems, training is performed with the Adam [68]

optimizer. In the classification problem, we employ raw learning rates of 1E-4, 1E-5, and 1E-

6 for 100, 300, and 300 epochs, respectively, and early-stopping is employed when necessary.

Prior to training, the raw learning rates are multiplied by the square root of the batch size.690

Here, the batch size is 24.

In the regression problem, we employ raw learning rates of 1E-4, 5E-5, and 1E-5, for 300

epochs each, with batch size of 36. Training both regression and classification models on

four Tesla V100 GPUs requires a total of approximately 4 hours of wall-clock-time for each

case.695

Training and validation losses for selected cases are shown in Figure A.14. In Fig-

ures A.14b and A.14d, the converged validation loss can be lower than the training loss,

leading to higher validation accuracy than training accuracy. This is caused by the absence

of lossy errors in the validation set, as described in Section 4. Otherwise, training shows no

sign of overfitting in Figures A.14a and A.14c700
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(a) Classification: Lossy and clean labels, bp = 20%.

0 200 400 600

Epochs [-]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

C
ro

ss
-e

nt
ro

py
L

os
s

[-
]

Train

Validation

Decrease
Learning
Rate

(b) Classification: Lossy features and lossy labels, bp = 10%.
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(c) Regression: Lossy features and lossy pre-processed labels,

bp = 10%.
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(d) Regression: Lossy features and post-processed labels,

bp = 8%

Figure A.14: Loss during training.
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– Highlights – 

BLASTNet: A Call for Community-Involved Big Data in Combustion 
Machine Learning 

Wai Tong Chung, Ki Sung Jung, Jacqueline H. Chen, Matthias Ihme 
 

• Present weakly centralized framework for enabling access to diverse scientific data for 
combustion machine learning  

• BLASTNet: Bearable Large Accessible Scientific Training Network-of-Datasets combines 
community involvement, public data repository, lossy compression, and consolidation 
through community-hosted webpage: https://blastnet.github.io  

• Demonstrate framework and data compression in application of DNS data to two 
diverse CombML-problems: regression and classification 

• Provide recommendation for community-contribution to shared database for deep 
learning algorithms 

Highlight

https://blastnet.github.io/

