

Paper No: 22PESGM1430

# Requirements for Interdependent Reserve Types Providing Primary Frequency Control

Manuel Garcia

Sandia National Laboratories

[mgarc19@sandia.gov](mailto:mgarc19@sandia.gov)

## Reference

Garcia, Manuel, and Ross Baldick.  
"Requirements for interdependent reserve types providing primary frequency control." IEEE Transactions on Power Systems 37.1 (2021): 51-64.

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Sandia National Laboratories

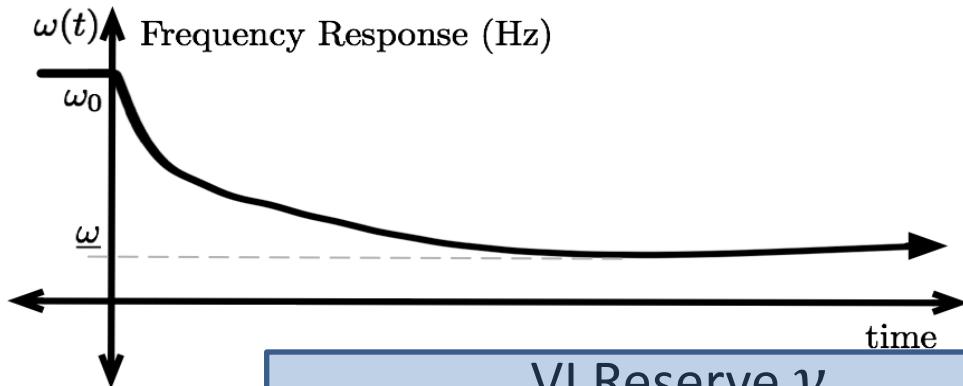


# Inverter-Based Resources & Primary Frequency Response

- Inverter-Based Resources (IBRs) have been detrimental to primary frequency control.
  - Do not provide inertia.
  - Traditionally do not provide frequency control.
- Difficulties in performing primary frequency control.
  - Low system-wide inertia levels makes it more difficult to arrest system-wide frequency decline.
  - Accommodating a large generator trip is difficult.
- Some regions have proposed new ancillary services for primary frequency control.
  - ERCOT [1], NEM [2], and National Grid [3] proposed new ancillary services for primary frequency control.
  - Western and Eastern interconnect have not proposed such ancillary services.

*Table 1: Yearly minimum inertia levels and largest contingencies in various regions.*

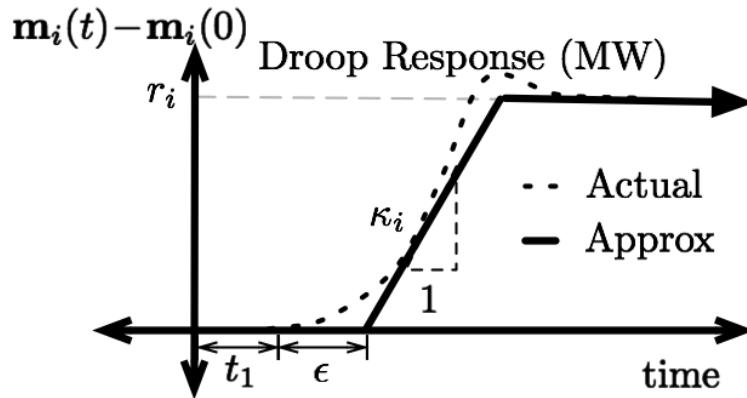
| ISO/Region                    | US West [4] | US East [4] | (Texas) ERCOT [4] | (Australia) NEM [5] | (UK) National Grid [6], [7] |
|-------------------------------|-------------|-------------|-------------------|---------------------|-----------------------------|
| Yearly Minimum Inertia (GWs)  | 472         | 1281        | 134               | 4.4                 | 129                         |
| Largest Contingency (MW)      | 2626        | 4500        | 2750              | 100                 | 1260                        |
| Inertia/Contingency Ratio (s) | 179         | 284         | 48                | 44                  | 102                         |


# Ancillary Services for Primary Frequency Control

## Inertia and the Swing Equation

Simple Swing Equation neglects damping.

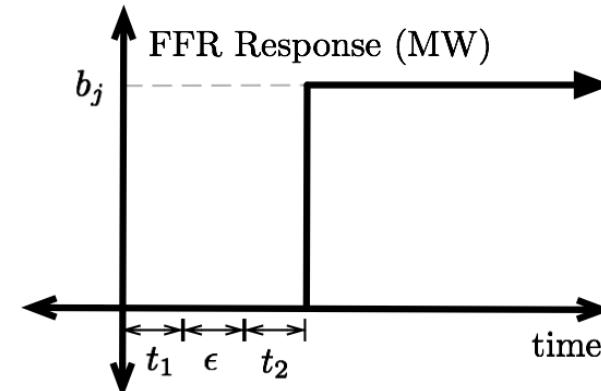
System frequency is  $\omega(t)$ , nominal frequency is  $\omega_0$ , inertia from generator  $i$  is  $M_i$ , net-demand is  $e(t)$ .


$$\frac{d\omega(t)}{dt} = \frac{\omega_0}{2(1^T M)} (1^T m(t) + 1^T p(t) + 1^T d(t) - e(t))$$



## PFR Reserve $b$

(Droop Control)


$m_i(t)$ : Ramp in mechanical power  
 $r_i$  : PFR reserve for generator  $i$



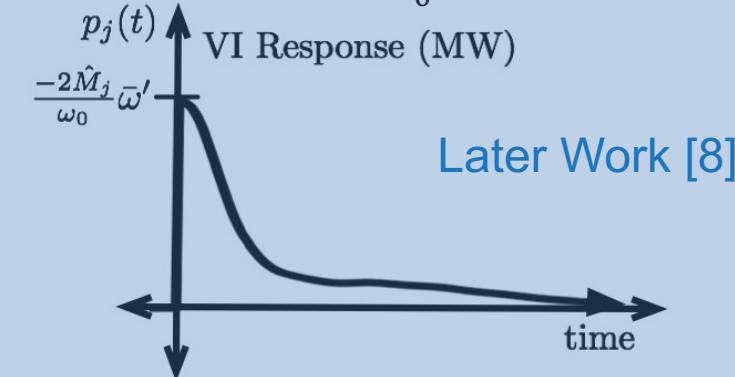
## FFR Reserve $b$

(Step Response)

$d_j(t)$ : Instantaneous jump in electric power  
 $b_j$ : FFR reserve for IBR  $j$



## VI Reserve $\nu$


(Virtual Inertia)

$p_j(t)$ : Electric power proportional to  $\frac{d\omega(t)}{dt}$

$$\nu_j(t) = \frac{2 \hat{M}_j}{\omega_0} \bar{\omega}'$$

$\bar{\omega}'$ : VI reserve for IBR  $j$

$$p_j(t) = \frac{2 \hat{M}_j}{\omega_0} \frac{d\omega(t)}{dt}$$



Later Work [8]

# ERCOT's Equivalency Ratio Requirement

## Equivalency Ratio Requirement

Constraint from [9].

$$1^T R + \alpha(M) 1^T b \geq \nu(M)$$

## Summary

Determined through simulation.

Claims to ensure frequency remains above critical threshold.

## Intuition

Places lower bound  $\nu(M)$  on total freq. resp. reserve.

FFR reserve is more effective than PFR reserve by a factor of  $\alpha(M)$ .

*Table 2: Parameters appearing in the equivalency ratio reserve requirement from [9]. The equivalency ratio  $\alpha(M)$  and the frequency response reserve requirement  $\nu(M)$  are provided for different inertia levels.*

| Inertia<br>$M$ (GWs) | Equiv. Ratio<br>$\alpha(M)$ | Req. Amount<br>$\nu(M)$ (MW) |
|----------------------|-----------------------------|------------------------------|
| 120                  | 2.2                         | 5200                         |
| 136                  | 2.0                         | 4700                         |
| 152                  | 1.5                         | 3750                         |
| 177                  | 1.4                         | 3370                         |
| 202                  | 1.3                         | 3100                         |
| 230                  | 1.25                        | 3040                         |

| Notation                                             |
|------------------------------------------------------|
| • $R$ : Vector of nominal PFR reserve for generators |
| • $b$ : Vector of FFR reserve for resources          |
| • $M$ : Total post-outage system inertia             |
| • $\alpha(M)$ : Equivalency Ratio                    |
| • $\nu(M)$ : Requirement Quantity                    |

## Important Observation

Often assigns more PFR reserve to generators than they can provide due to ramping limitations.

Makes up for this by over procuring total reserve.

| Inertia<br>$M$ (GWs) | Equiv. Ratio<br>$\alpha(M)$ | Req. Amount<br>$\nu(M)$ (MW) |
|----------------------|-----------------------------|------------------------------|
| 256                  | 1.13                        | 2640                         |
| 278                  | 1.08                        | 2640                         |
| 297                  | 1                           | 2240                         |
| 316                  | 1                           | 2280                         |
| 332                  | 1                           | 2140                         |
| 350                  | 1                           | 2140                         |

# Proposed Requirement Framework

## General Requirement

Sufficient reserve to cover an outage of arbitrary size  $L$ .  
Intuitive because the requirement quantity is the outage size considered.

$$L \leq 1^T r + 1^T b \quad (1)$$

Assuming all reserve can be delivered before  $\omega_{min}$  is reached, the frequency will be arrested before  $\omega_{min}$  is reached.

## Nominal PFR Reserve R

Head-room required to provide PFR.

$$G + R \leq \bar{G} \quad (2)$$

## PFR Reserve Limits

Not all nominal PFR reserve  $R$  may be available before  $\omega_{min}$  is reached.  
Limits on available PFR reserve  $r$  represent physical ramping limitations,

$$r_i \leq \ell_i(\cdot) \quad \text{for each generator } i \quad (4)$$

where  $\ell_i(\cdot)$  is a limit function that may depend on many system-wide values.

## Notation

- $r$ : Vector of available PFR reserve for generators
- $R$ : Vector of nominal PFR reserve for generators
- $b$ : Vector of FFR reserve for resources
- $M$ : Total post-outage system inertia
- $G$ : Vector of power output for generators
- $\bar{G}$ : Vector of generator capacities
- $\omega_{min}$ : Minimum frequency threshold

## Available PFR Reserve r

Available before  $\omega_{min}$  is reached.

$$r \leq R \quad (3)$$

# Proposed PFR Reserve Limits

## Empirically Derived PFR Reserve Limits

### Equivalency Ratio Requirements

Approximately the same as equivalency ratio requirement from [9]

$$r_i \leq \frac{1}{\alpha(M)} R_i \quad (5)$$

### Empirical PFR reserve limits

Similar method as used to determine equivalency ratios. (In progress)

$$r_i \leq \ell_i(M, 1^T b) \quad (6)$$

## Empirically Derived PFR Reserve Limits

### Rate-Based PFR Reserve Limits

Assumes fixed ramp rate  $\kappa_i$ .

Derives  $h(\cdot, \cdot)$  from first principles.

$$r_i \leq \kappa_i h(M, 1^T b) \quad (7)$$

### Proportional PFR Reserve Limits

Ramp rate  $\kappa_i$  is proportional to  $R_i$ .

Derives  $\alpha(M)$  from first principles.

$$r_i \leq \tau_i R_i h(M, 1^T b) \quad (8)$$

# Numerical Results: Texas 2000 Bus Test Case

## Texas 2000 Bus Test Case

- PFR generators: 50 largest natural gas
- FFR Reserve Capacity is  $\bar{b} = 600\text{MW}$ .

## Figure 2: Total PFR Reserve Allocation

- Rate-based PFR reserve limit assigns exactly enough PFR reserve to cover the contingency  $L-b=1900\text{ MW}$ .
- Equiv. ratio req. assigns more PFR reserve than necessary.
- Both requirements simultaneously allocates the same total PFR reserve as the equiv. ratio req.

## Figure 3: Largest PFR Reserve Allocation

- Equiv. Ratio Req. assigns too much nominal PFR reserve to a single generator.
  - Not all is available before frequency threshold is reached.
- Rate-based PFR reserve limit ensures all PFR reserve is available.
  - Limit increases with inertia
- Enforcing both req. allocates some extra headroom to generators.
  - Disperses PFR reserve among more generators.

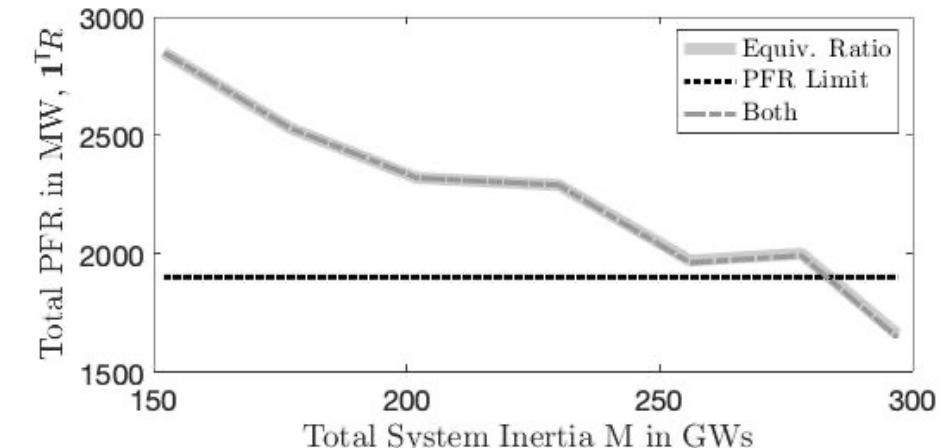



Figure 2: Total PFR reserve in the system as total system inertia varies. [3]

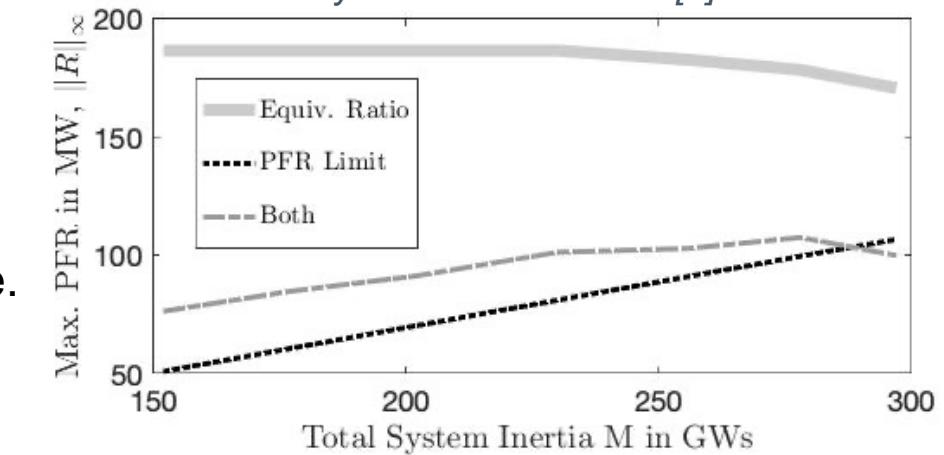



Figure 3: The infinity norm of the PFR reserve vector as total system inertia varies. [3]

# Conclusions/Recommendations

- Proposed introduction of new primary frequency response reserve products into wholesale electricity markets.
- Presented ERCOT's equivalency ratio requirement.
  - Derived equivalency ratios from first principles.
- Proposed more general reserve requirement framework in the form of *PFR reserve limits* to ensure sufficient frequency response.
  - Proposed four different PFR reserve limits.
  - Proposed one PFR Reserve limit that is approximately the same as the equivalency ratio requirement.
- Illustrated the differences between reserve requirements.
  - Rate-based PFR reserve limit spreads out PFR reserve allocation among more generators.
  - Equivalency ratio requirement allocates too much PFR reserve to a single generator and procures more total PFR reserve than is strictly necessary to cover the largest contingency.
  - Both limits can be enforced at the same time, making the requirement more conservative.

# References

- [0] Garcia, Manuel, and Ross Baldick. "Requirements for interdependent reserve types providing primary frequency control." *IEEE Transactions on Power Systems* 37.1 (2021): 51-64.
- [1] Du, Pengwei, et al. "New ancillary service market for ERCOT." *IEEE Access* 8 (2020): 178391-178401.
- [2] Australian Energy Market Operator. "Fast frequency response in the NEM." Tech. rep. 2017.
- [3] Meng, Lexuan, et al. "Fast frequency response from energy storage systems—a review of grid standards, projects and technical issues." *IEEE transactions on smart grid* 11.2 (2019): 1566-1581.
- [4] North American Electric Reliability Corporation. "Forward Looking Frequency Trends Technical Brief: ERS Framework Measures 1, 2, and 4: Forward Looking Frequency Analysis." Tech. rep. 2018.
- [5] Australian Energy Market Operator. "Notice of South Australia Inertia Requirements and Shortfall." Tech. rep. 2020, p.24.
- [6] National Grid. "Future Requirements for Balancing Services." Tech. rep. National Grid, 2016, p. 29.  
<https://www.nationalgrid.com>
- [7] National Grid ESO Data Portal. "System Inertia Data." Tech. rep. 2020-2021, p. 29.  
<https://data.nationalgrideso.com/system/system-inertia>
- [8] Garcia, Manuel, Ross Baldick, and Felipe Wilches-Bernal. "Primary Frequency Response Reserve Products for Inverter-Based Resources." (2022).
- [9] Cong Liu and Pengwei Du. "Participation of load resources in day-ahead market to provide primary-frequency response reserve." *IEEE Transactions on Power Systems* 33, no. 5 (2018): 5041-5051.
- [10] Garcia, Manuel, and Ross Baldick. "Real-time co-optimization: Interdependent reserve types for primary frequency response." *Proceedings of the Tenth ACM International Conference on Future Energy Systems*. 2019.