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ABSTRACT

Deep learning is consistently becoming more integrated into scien-
tific computing workflows. These high-performance methods allow
for data-driven discoveries enabling, among other tasks, classifica-
tion, feature extraction, and regression. In this paper, we present a
unique approach to solving an inverse problem—determining the
initial parameters of a system from observed data—using not only
deep learning-powered Al but also simulation data generated using
neuromorphic, brain-inspired hardware. We find this approach to
be both scalable and energy efficient, capable of leveraging future
advancements both in Al algorithms and neuromorphic hardware.
Many high performing deep learning approaches require large
amounts of training data. And, while great progress is being made
in new techniques, current methods suggest that data-heavy ap-
proaches are still best-suited for maintaining critical generalization
required for an inverse problem. However, that data comes at a cost,
often in the form of expensive high-fidelity numerical simulations.
Instead, we make use of recent advances in spiking neural networks
and neural-inspired computing wherein we can use Intel’s Loihi
to compute hundreds of thousands of random walk trajectories.
Statistics from these random walkers effectively simulate certain
classes of physical processes. Moreover, the use of neuromorphic
architectures allows these trajectories to be generated quickly and
at drastically lower energy cost. This generated data can then be fed
into a deep learning regression network, modified to incorporate
certain known physical properties. We find the resulting networks
can then determine the initial parameters and their uncertainties,
and we explore various factors that impact their performance.
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1 INTRODUCTION

Given a collection of observed data, what parameters produced
the data? This is the fundamental question of the inverse problem.
Some inverse problems seek initial conditions or model forms over
parameters, but the core idea of seeking a cause given an observed
quantity remains. Inverse problems are notoriously ill-posed. A
distribution of an observed quantity (or quantities) is often dwarfed
by the number of parameters sought, models often admit uniden-
tifiable pairs, and parameters can sometimes become multimodal
where more than one value could equivalently produce observed
data.

Methods for approaching inverse problems are wide and varied,
changing with the field of study and the ultimate information de-
sired. Turning away from these bespoke methods, machine learning
may provide a way to solve particular families of inverse problems.
Recently, deep learning has had success in solving electromagnetic
scattering problems with numerous direct and physics-assisted
learning approaches [1]. Similarly, neural networks have had suc-
cess solving inverse problems in topological photonics, adhering to
physical constraints by coupling with a learned network represent-
ing the forward problem [2].

Machine learning has often been used for image classification,
however it has also seen success for inverse problems in imaging.
For imaging, the inverse problem is the reconstruction of an image
given some set of perturbed or noisy measurements. Such inverse
imaging problems, with high-profile applications in compression
and medical imaging, are well-served by convolutional neural net-
work (CNN) approaches [3].

As a separate domain, the human brain has inspired computa-
tional approaches for decades [4, 5]. The concept of using thousands
or millions of tightly connected, simple processing units is not new.
However, more recently we’ve seen the introduction of highly per-
formant large-scale neuromorphic systems. These neuromorphic
systems now range from specific instantiations of traditional pro-
cessors [6] to highly exotic devices, such as optical/superconducting
approaches [7]. Of particular interest is a class of spiking (or event-
driven) large-scale, low-power neuromorphic processors designed
around bespoke application-specific integrated circuits (ASICs).
This class of hardware platforms includes IBM TrueNorth [8] and
Intel Loihi [9].

Spiking neuromorphic computer hardware is beginning to de-
liver on the promise of effective and low-power brain-inspired
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2 2 INTRODUCTION

computing. Much of their use so far has been relegated to machine
learning or artificial intelligence tasks [10-14]. However, there’s
now also growing interest in their use for other general tasks and, in
fact, there have been a number of numerical or scientific workloads
that seemingly map well to these esoteric platforms [15-20]. Such
generality has motivated investigations into their use alongside
traditional processors and accelerators in future high-performance
computing platforms [21].

In this work, we look to bridge recent advances in these two
separate domains—We examine whether or not a machine learning
technique can be used to solve an inverse problem when trained on
data generated on a neuromorphic platform. In doing so, we seek
to address several aspects:

(1) Deep neural networks and convolutional neural networks
are heavily reliant on large amounts of training data. In many
domains, synthetic or simulated data is becoming a common
proxy for real, collected data. However, the generation of this
data can be computationally expensive and energy intensive.
By moving data generation to high-efficiency neuromorphic
processing, we can hope to decrease the overall burden of
synthetic/simulated data generation.

(2) Asneuromorphic systems are becoming more closely eval-
uated for numerical and scientific workloads, there is an
obvious need to evaluate the quality of the results produced.
Solving an inverse problem helps characterize the ability for
the neuromorphic simulation to capture the parameteriza-
tion of the underlying system.

(3) This work also serves as a first-step, proof-of-concept to-
wards a fully neuromorphic implementation wherein both
the simulation and the learning component are instantiated
on-hardware. Such a system is beyond the scope of this re-
port, but would be an interesting extension with implications
on the feasibility of model-based neuromorphic learning sys-
tems.

In this work, we focus on a particular inverse problem: the param-
eterization of the Ornstein-Uhlenbeck (OU) stochastic differential
equation (SDE) given data trajectories. The overall workflow is
shown in Figure 1. This equation, sometimes called an autoregres-
sive process, describes a diffusive process that is drawn toward
a mean position by a linear-elastic force. This particular SDE is
ubiquitous in many fields and has been used, to only name a few,
to model neuronal activity [22], pinned molecular motor cargo
motion [23], components of epidemics [24], and also in some fi-
nancial models [25]. Given the success of CNNs in inverse imaging
problems and the structure of the input data, we elected to mod-
ify and evaluate three common CNN architectures: VGG16 [26],
ResNet50 [27], DenseNet121 [28].

While this work focuses on a single inverse problem, parameter-
izing the OU SDE from data, it does represent a significant first step
on the path to a larger goal. Namely, many inverse problems can
be solved through particle methods and random walk methods [29-
33]. Setting aside machine learning components, such approaches
allow us to remove ourselves from the differential equations and
allow us to solve for quantities of interest using samples. Sample-
focused methods enable inverse problem solving even for highly

non-linear problems or those where there are no tractable mathe-
matical and analytic methods. Samples, however, can be expensive
to take. By moving the sampling to a neuromorphic framework, we
gain efficiency and scaling benefits. In a grander scheme, this single
equation, while simple, represents the hardest type of equation to
sample on Loihi. Since Loihi is still new and resource-constrained,
the number of random outcomes in each time step is limited. The
OU SDE by contrast is Gaussian and has an unlimited number of
outcomes in a time interval. Hence, although this work is limited
in scope, it does provide valuable insight for neuromorphic inverse
problem solutions through particle methods.

The remainder of the paper is structured as follows. In Section 2,
we discuss the inverse OU problem, and in Section 3 we highlight
our method of data generation. We detail our chosen neural net-
works and results in Section 4, with conventional data being used
as a test set in Section 4.3. Lastly we provide some discussion and
closing remarks in Section 5.

2 THE INVERSE ORNSTEIN-UHLENBECK
PROBLEM

Neuromorphic computer hardware can efficiently implement diffu-
sion through random walks [34] and those neuromorphic random
walks are sufficient for solving a family of steady-state PDEs [35, 36].
Further, in this case these samples and random walks generated
appear to adhere statistically to their expected distribution [37].
The random walks simulated on Loihi through this method yield
density information. A set number M of random walks are started
at the same location, and they evolve over time. At any given time
step, the spike count per neuron is interpreted as the number of
walkers on a particular position.

As previously mentioned, the samples returned can be thought
of as as approximations to some real process. Much like in real
experimentation, we want to collect our data and parameterize the
underlying process. This is the fundamental concept of the inverse
problem. There are several approximations made in mapping an
SDE or stochastic process to a discrete time Markov chain (DTMC)
on Loihi. Apart from discretizing space and time, assumptions have
to be made to construct a transition matrix and hardware limitations
constrain random number precision (see [36, 37]). Like in many real-
world experiments, data generated reflects that of a true process or
event, but is masked by several factors. While we will stop short
of describing hidden and observable processes and discussing the
worthiness of Kalman filters, we do claim an opportunity to not only
test whether using machine learning can parameterize stochastic
processes, but also whether or not the data generated by the Loihi
approximation is good enough to be trusted. If we can successfully
parameterize the stochastic equation from the Loihi data, then we
can place more trust in the samples generated.

Due to the previously mentioned multi-field relevance of the
problem, we confine our study to the Ornstein-Uhlenbeck (OU)
equation. Apart from relevance to many disciplines, this equation is
also useful for study since it has a known solution and known short-
and long-term statistics, making parameterization by hand possible
if necessary. The OU equation is a stochastic process written as an
SDE and describes the position of a particle over time, X(¢). It has
three main parameters: k, the spring constant; D, the diffusivity of
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Figure 1: Overview of the OU Inverse problem setup. The CNN model is trained using random walks in simulated data under
a variety of conditions (see Sec. 3); at inference, that model would be used on experimental data instead. For our application,
we restrict ourselves to the walker counts and do not require the paths themselves.

the particle; and z, the mean position of the process. Letting W (t)
represent a standard white noise process, the one-dimensional OU
equation is

dX(t) = =k (X(¢) - z) dt + V2DAW (). (1)

This notation for SDEs is shorthand for the implicit integral equa-
tion

X@=X@—k%%ﬂm-@®+wﬁw@.

This equation can be solved for X(t), yielding
¢
X(1) = X(0)e Kt + (1 - e*kf) +v2D / e~ k=0 gy (),
0

where the final term is a stochastic integral.

By hand, the average initial slope of the sampled paths allows
us to infer k, while the mean and variance of the asymptote of the
sampled paths allow us to determine both z and D/k. Our version of
the inverse problem takes density sampled Loihi data from (1) and
employs convolutional neural networks to recover the parameters k,
D, and z. We will use our generated data as training and validation
data for our three CNNs; we additionally test against data generated
conventionally in MATLAB, see 4.3. In the following section, we
will briefly discuss the generation of data from (1) on Loihi.

3 DATA GENERATION

The most straightforward way to generate data trajectories from (1)
is to employ some standard SDE discretization scheme, where one

discretizes time and samples the position value along a time series.
Some examples of these schemes are Euler-Maruyama and Stochas-
tic Runge-Kutta. Loihi, however, cannot currently sample a position
value from an arbitrary distribution. Instead, we must approximate
our process with a discrete time Markov chain (DTMC).

A DTMC can be created from (1) by discretizing the domain of
X(t), the real line, into discrete buckets of a fixed size, As. Then,
as hardware restrictions force us to have a finite space, we must
truncate the line by use of a maximum and minimum value, Ly,
and Lmax. We treat our state space as the midpoint of all the discrete
buckets we have made. From here, we consider the Euler-Maruyama
discretization of (1) with time step size At:

X (t + At) = X(t) — k (X(t) — z) At + V2D, (2)

where { is a normal random variable with mean zero and variance
At. This discretization is a probability distribution for X(t + At)
given X(t), and this distribution is independent of ¢t. We can in-
tegrate the associated probability density function to obtain the
probability of starting at any given state space location and land-
ing anywhere in another bucket in our discretization in the time
interval At. We use these obtained values as our transition matrix
for the DTMC. For more information, see [37].

Note, however, that there are many approximations to the origi-
nal process in obtaining this transition matrix. Not only are we dis-
cretizing the original SDE, but we are also implying that transitions
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Figure 2: Process for generating DTMC on Loihi.

Randomly select the core
parameters z, k, and D.

(1) z is selected as a uniform random
number in [-7,7].

(2) k is a uniform random number in [1,5].

(3) D is a uniform random number in
[0.001,0.2].

Generate a Markov chain and implement
on Loihi, recording data output for 40, 000
neural time steps according to the following
randomly selected ‘viewing’ conditions.

(1) Randomly select Ly, to be between 2
and 5 whole units below z and Lyax to
be between 2 and 5 whole units above z.

(2) Randomly select the number of walkers
M to be an integer between 30 and 200.

(3) Randomly select an integer between 1
and 100, then set At to be equal to this
integer divided by 1000.

(4) Randomly select an integer between 5
and 20, then set As to be equal to this
integer divided by 100.

(5) Randomly select a starting location to be
any x; on the mesh defined by Ly,
Lmax, and As as constructed above.

Repeat 4 Times

occur from midpoint to midpoint, even though the probabilities are
calculated based on midpoint to intervals.

Once the transition probabilities and the state space of the Markov
chain have been determined, we need only initialize a set of M walk-
ers on some starting location X(0) and record their evolution over
time. On Loihi, we implement the DTMC as in [36] using the density
algorithm originally from [34]. Essentially, a collection of neurons
takes a random walker in the form of a spike, and routes it to any
one of a number of output neurons by way of a mutually exclusive
probability draw.

Our data have parameters generated partially through a grid
search and partially through a random search. The grid search was
used initially but deemed too inefficient. This portion of the dataset
is unbalanced in k, D, and z and is only used for training (i.e. not
validation nor testing). We determine our random parameteriza-
tions using the process shown in Fig. 2; the process can be repeated
as long as desired.

We selected arbitrary ranges for our parameters with the only
goal of having reasonable fluctuations. The parameter z is com-
pletely arbitrary as it only centers the process. Fluctuations can be

controlled on the long-term scale by reducing the ratio of D/k or
from a time step-to-time step scale by choosing a small At or large
As.

Even within our pre-defined ranges, certain combinations of pa-
rameters and viewing conditions are non-viable. The determination
of which combinations are non-viable is complex, and a separate
report has included some investigation into this phenomenon [37].
For the results presented in this paper, we have generated 41, 251
valid data points on Loihi, where a data point is the evolving density
of one (k, z, D) triple under a single viewing condition.

We have previously determined that data generated in this man-
ner can have strong deviations from the expected distribution, but
on the whole generate samples that are statistically expected [37].
While this means that samples are not too bad on average, it is
not clear whether samples are useful for all cases. If we have suc-
cess at the inverse problem through our machine learning task,
we can increase our trust in Loihi synthetic energy efficient data
generation.

4 NEURAL NETWORK SOLUTIONS

Deep learning approaches have been studied extensively for solving
inverse physics problems (see [1-3], for example). While there
are many interesting challenges and trade-offs in this area, our
main objective was to apply popular image classification CNN
architectures to stochastic process data in order to evaluate their
capability. Our data is structurally similar to images, and we believe
that an evaluation of largely unmodified off-the-shelf methods will
provide a strong baseline of performance.

4.1 Network Design and Results

We evaluated three common convolutional neural network architec-
tures: VGG16 [26], ResNet50 [27], DenseNet121 [28]. These three
networks represent popular algorithmic features likely to appear in
a successful approach. However, none of these methods were origi-
nally designed for this task, and so we recognize that there are some
shortcomings with these choices, see Sec. 5. To help explore the
training data requirements, we studied two data conditions, a base
configuration with 25,874 samples and an expanded configuration
with 37,554 samples. Both conditions used the same 3697 sample
validation set. Viewing condition repetitions were (see Fig. 2) not
split across training and validation sets.

Convolutional neural networks exhibit sensitivity to a large num-
ber of hyperparameters. To help mitigate this, we used a multi-node
GPU cluster to perform automated hyperparameter optimization.
Hyperparameter selection was based on a tree-structured parzen
estimator (TPE) method implemented by the optuna package [38].
Our search seeks to optimize many of the standard hyperparam-
eters such as learning rate, optimizer choice, number of training
epochs, etc. An unused search parameter was removed from the
search space of the Extended condition. We used mean squared
error for the loss function and scheduled 50 evaluations for each
network type, limiting to a maximum of 5 concurrent runs each.!

Best validation absolute errors are listed in Table 1 and shown
in Figure 3. Overall, we see that DenseNet121 performs the best,

For unknown reasons, possibly due to scheduling issues, a small number of runs
failed to complete.



Parameter DenseNet121 ResNet50 VGG16

D 0.032 0.035 0.035

Base k 0.981 1.040 1.083

z 0.397 0.527 0.518

D 0.022 0.022 0.024

Expanded k 0.383 0.496 0.491
z 0.179 0.185 0.171

Table 1: Minimum mean absolute validation errors for the
three network models with base and expanded training sets.

with minimum validation error being 0.022, 0.383, and 0.179 for D,
k and z respectively. We note, however, that the difference between
network models is smaller with the expanded dataset. As expected,
all networks perform considerably better with the additional train-
ing data. Interestingly, we notice that z contributes considerably to
the total error, despite the fact that a domain expert could estimate
z directly using the final time step of a sufficiently long run.

Best Mean Absolute Error

k
15 H:

08 -

Mean Absolute Error

Base Extended Base Extended Base Extended
DenseNet121 ResNet50 VGG16
Model / Condition

Figure 3: Best validation mean average error for D, k and z af-
ter 50 trials for three common neural network architectures.
Note that the best error for each parameter may come from
more than one network.

4.2 Network Training

Here we examine the ‘best’ trials for each model/condition pair,
where ‘best’ is measured by total validation loss. The losses during
training are shown in Figure 4. In all cases, we see that the training
loss is considerably lower than the validation loss, likely due to
overfitting and training set imbalance. In particular, we notice that
the total training loss for the VGG network is considerably lower
than the other networks, despite similar validation losses. Moreover,
there appears to be more variation in the validation loss compared
to the training loss and this is worsened for the DenseNet and
ResNet topologies. This may be a byproduct of the longer training
time for the VGG network or this may reflect our omission to
adjust momentum hyperparameters. As expected, the difference
between training and validation loss is less with the expanded
training dataset. This suggests that there may yet be improvements
available with even larger datasets.

Parameter DenseNet121 ResNet50 VGG16

D 0.08 0.05 0.03

Base k 1.09 1.08 1.15

z 0.50 0.66 0.49

D 0.03 0.03 0.03

Expanded k 0.54 1.12 0.72
Z 0.20 0.16 0.14

Table 2: Error on the MATLAB-generated data for the low-
est validation error models in Base/Expanded conditions for
DenseNet121, ResNet50, and VGG16. Within each condition,
each column corresponds to the same single model.

4.3 Network Testing against Conventional Data

Convergence results of the DTMC approximation to the stochastic
process are known [39]. Nonetheless, it is of interest to consider how
our network would perform when tested against data simulated
conventionally through a standard technique like Euler-Maruyama.

We simulated conventional data by using the Euler-Maruyama
discretization process (2) as follows. First, we follow the process
outlined in Sec. 3, fixing M = 100, and generating 4163 samples
of the evolving histogram count for (k, z, D) tuples that can be
accomplished on Loihi. Crucially, for these Loihi-possible pairs,
we generate the trajectories using Eq. 2 exclusively and do not
integrate creating a DTMC. Using the same (k, z, D), As, At, Liin,
and Lmax for each sample we generate trajectories in MATLAB.

Through this process, we generated data using MATLAB match-
ing the 4163 tuples and viewing conditions samples and tested
this MATLAB data using the best models measured by total valida-
tion loss. The (k, D, z) error for models trained on base/expanded
datasets are listed in Table 2.

5 DISCUSSION

The results presented show that it is indeed possible to recover the
OU process using off-the-shelf deep learning methods. However,
we also recognize that the off-the-shelf methods used are likely
limited due to their original design decisions. All three methods
were designed for image processing which is an application that is
only structurally similar to our application here. In practice, our ap-
plication faces a challenge that is data-poor and high-dimensional;
determination of the underlying process is best determined using
the entire process. In contrast, image classification or object local-
ization can often be achieved despite aggressive downsampling.
We hypothesize that low-data methods, such as Bayesian neural
networks, combined with very large receptive fields could produce
higher-performing algorithms. This may be accomplished through
techniques such as atrous convolutions. We further recognize that
such an approach may benefit generalization as well.

The overall poorer performance of the network when tested on
conventional data could be due to overfitting as we hypothesized
in Sec. 4, and we expect the performance to drop off significantly
as the data moves further away from the training domain. Another
possibility is that the DTMC data generated on neuromorphic hard-
ware introduces additional error from low precision calculations.
The study of whether or not neuromorphic generated DTMC data
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Figure 4: Training and Validation loss for the best trials, measured by total loss across parameters. Dots represent loss for
specific epochs; matching lines represent a 25-epoch moving average.

is good enough for scientific computing is an ongoing endeavor, in-
volving statistical and probabilistic comparison. Though certainly,
a future effort in comparison could include training a network
on both traditional DTMC approximate data and neuromorphic
DTMC approximate and comparing performance when tested on
Euler-Maruyama sampled data.

This report, however, has demonstrated that parameter recov-
ery of stochastic processes from approximate data generated on
neuromorphic hardware can be accomplished. Moreover, using
off-the-shelf deep learning methods is effective for this particu-
lar application, and bespoke machine learning methods are not
required. This helps provide confidence in the use of neuromorphic
algorithms for numerical and scientific computing, and addition-
ally yields a potential pathway for decreased energy consumption
of synthetic/simulated training data. And while our results here

used conventional GPUs for training, they do serve as a proof-of-
concept and motivate the investigation of a fully-neuromorphic
implementation.
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