The Center for Cyber Defenders
Expanding computer security knowledge

Shared Object Injection for Memory Usage Tracking

4

iiiiii

Project Managers: Dan

David Seo, Harvard University

SAND2022-9736D

llllllllllllllllllllllllllllllll
iiiiiii
L1 & B8 @
& & & @

Chivers, Org 5638

iiiiiiiiiiiiiiiiiiiiiii

Rachel Glockenmeier, Org 5634

Abstract

Our project aims to create a fast, automated utility
to track memory allocations in an already-running
process on ESXi. We wrote code that attaches to
the process via ptrace and forces the process to
link to a shared object that defines hooks for
malloc and free. We found that our linking method
is effective for 64 bit single-threaded processes,
and it seems extensible to 32 bit processes as well.
PLT (Procedure Linkage Table) hooking, which we
explain later, is still in development. More testing
is required to see if our design is compatible with
multithreaded processes.

Introduction

ESXi is a closed source hypervisor developed by
VMware that is often used for cloud computing
applications. We seek to examine how processes
behave on ESXi, including their memory usage. To
that end, we would like to build a utility that can
track calls to malloc and free in real time and
report information about these calls, including
allocation size and address.

Although ESXi emulates Linux in terms of its
general filesystem layout and organization of
processes by PIDs (Process IDs), it differs from
Linux in several key aspects that make our task
non-trivial. For example, ESXi does not support the
proc filesystem, which makes process memory
introspection much more difficult. Through this
project, we wish to determine whether shared
objection injection, a well-known method for
redefining functions in already-running processes
on Unix-like systems, is extensible to ESXi. We
also wish to determine whether shared objection
injection can successfully enable fine-grained, real-
time memory usage tracking.

Methods

Our design has two high-level parts: injecting our
shared object into the process and then retrieving
the information that our installed hooks report.

The first part can be further split up into two parts:
using ptrace to force the process to link the shared
object, then modifying the process’ PLT to force
calls to malloc and free to redirect to our hooks in
the shared object. To go into more detail, we can
use ptrace with the PTRACE_ATTACH flag to attach
to the currently-running process, then use ptrace
with the PTRACE_SETREGSET and
PTRACE_POKEDATA flags to set up the registers
and code to call the function that we desire:
dlopen.

We then parse the ELF (Executable and Linkable
Format) header of the process’ respective
executable to locate the PLT.

At a high level, the PLT allows a program to jump
to functions defined in external libraries, for which
a hardcoded offset into the program’s own text or
data segment will not suffice. The PLT stores the
dynamically resolved addresses of these functions
in an entry that also includes the symbol
corresponding to the function. We walk the PLT
until we find the entries corresponding to malloc
and free, and insert the addresses of our hook
functions at the respective entries in the PLT. After
this patch, calls to malloc and free will
automatically be redirected to our hook functions
via the PLT.

program (Dx400000)

libfoo.so (Ox600000)

program code: :
ctofe 0X603400: € foofy ofnns
: foo_func() {

program code:
Bl 00400 :
func2() {

program code:
BxdB0300:;
func1() |

program code:
=0xB00300:
bar funci)} {
foo func()

foo funci) foo func()

program code:

Bx6RA500

PLT Entries PLT Entries

some func() {
address

name address P : name

foo func();

}

Figure: Flowchart of a function call and PLT read!

For now, we log information from the malloc and
free hooks by printing to stderr, but in the future
we hope to send UDP (User Datagram Protocol)
datagrams containing the data to a local port and
use a sniffer process to collect the information so
that multiple processes can be tracked
simultaneously.

Results

We were able to successfully attach to 64 bit
processes in ESXi and inject the shellcode that
links our shared object into the process. We would
like to test our techniques on other kinds of
processes, including multithreaded 64 bit
processes as well as 32 bit processes, both of
which will likely require some refactoring of our
existing code.

The implementation of our PLT hooking technique
is still in progress.

Discussion

From our results, our methods seem promising
and applicable to ESXi. In the future we hope to
successfully implement PLT hooking and test our
tool on a variety of processes to identify edge
cases where our methods do not work.

References
[1] https://github.com/kubo/plthook

AT
PN U.S. DEPARTMENT OF TN ¥ . b Q"‘i
.0/ENERGY /I VA"~
f“xl‘n-'.'.r:;ié‘ o
National Nuclear Security Ad ion

inistrat

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525. SAND2017-XXXXC.

Sandia
National
Laboratories




