
The Center for Cyber Defenders
Expanding computer security knowledge

Shared Object Injection for Memory Usage Tracking

Abstract
Our project aims to create a fast, automated utility 
to track memory allocations in an already-running 
process on ESXi. We wrote code that attaches to 
the process via ptrace and forces the process to 
link to a shared object that defines hooks for 
malloc and free. We found that our linking method 
is effective for 64 bit single-threaded processes, 
and it seems extensible to 32 bit processes as well. 
PLT (Procedure Linkage Table) hooking, which we 
explain later, is still in development. More testing 
is required to see if our design is compatible with 
multithreaded processes.

Introduction
ESXi is a closed source hypervisor developed by 
VMware that is often used for cloud computing 
applications. We seek to examine how processes 
behave on ESXi, including their memory usage. To 
that end, we would like to build a utility that can 
track calls to malloc and free in real time and 
report information about these calls, including 
allocation size and address.

Although ESXi emulates Linux in terms of its 
general filesystem layout and organization of 
processes by PIDs (Process IDs), it differs from 
Linux in several key aspects that make our task 
non-trivial. For example, ESXi does not support the 
proc filesystem, which makes process memory 
introspection much more difficult. Through this 
project, we wish to determine whether shared 
objection injection, a well-known method for 
redefining functions in already-running processes 
on Unix-like systems, is extensible to ESXi. We 
also wish to determine whether shared objection 
injection can successfully enable fine-grained, real-
time memory usage tracking. 

Methods
Our design has two high-level parts: injecting our 
shared object into the process and then retrieving 
the information that our installed hooks report.

The first part can be further split up into two parts: 
using ptrace to force the process to link the shared 
object, then modifying the process’ PLT to force 
calls to malloc and free to redirect to our hooks in 
the shared object. To go into more detail, we can 
use ptrace with the PTRACE_ATTACH flag to attach 
to the currently-running process, then use ptrace 
with the PTRACE_SETREGSET and 
PTRACE_POKEDATA flags to set up the registers 
and code to call the function that we desire: 
dlopen. 

We then parse the ELF (Executable and Linkable 
Format) header of the process’ respective 
executable to locate the PLT.

At a high level, the PLT allows a program to jump 
to functions defined in external libraries, for which 
a hardcoded offset into the program’s own text or 
data segment will not suffice. The PLT stores the 
dynamically resolved addresses of these functions 
in an entry that also includes the symbol 
corresponding to the function. We walk the PLT 
until we find the entries corresponding to malloc 
and free, and insert the addresses of our hook 
functions at the respective entries in the PLT. After 
this patch, calls to malloc and free will 
automatically be redirected to our hook functions 
via the PLT.

Figure: Flowchart of a function call and PLT read1

For now, we log information from the malloc and 
free hooks by printing to stderr, but in the future 
we hope to send UDP (User Datagram Protocol) 
datagrams containing the data to a local port and 
use a sniffer process to collect the information so 
that multiple processes can be tracked 
simultaneously.

Results
We were able to successfully attach to 64 bit 
processes in ESXi and inject the shellcode that 
links our shared object into the process. We would 
like to test our techniques on other kinds of 
processes, including multithreaded 64 bit 
processes as well as 32 bit processes, both of 
which will likely require some refactoring of our 
existing code.

The implementation of our PLT hooking technique 
is still in progress.

Discussion
From our results, our methods seem promising 
and applicable to ESXi. In the future we hope to 
successfully implement PLT hooking and test our 
tool on a variety of processes to identify edge 
cases where our methods do not work.

References
[1] https://github.com/kubo/plthook 

David Seo, Harvard University

Project Managers: Dan Chivers, Org 5638
Rachel Glockenmeier, Org 5634

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s 

National Nuclear Security Administration under contract DE-NA0003525. SAND2017-XXXXC.

SAND2022-9736D

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.


