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Nanoconfined chemical environments are important in the fate and transport of
; | elements and in technological applications.
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(1) atmospheric dust with nanopores and nm-scale thin water films; (2) nanopores in soil particles and sedimentary rocks; (3) nano-scale cracks in rocks; (4) nanochannels in clay minerals; (5)
nanocages in natural zeolites, which are also used in industrial applications of catalysis, ion exchange, and in hierarchical membranes with nanoporous active layers (from Caro Chem. Soc. Rev.,
2016. 45: 3468); (6) nanopore sensing and chemical analysis (adapted from Albrecht Annu. Rev. Anal. Chem. 2019. 12:371-87); (7) Synthetic metal organic frameworks UiO-66; (8) nanoporous
TiO2 electrode in water splitting applications (from Baxter et al., Annu. Rev. Phys. Chem. 2014. 65:423-47); (9) nanofluidic «lab-on-a-chip» (from Zhou et al., Annu. Rev. Anal. Chem. 2011.

4:321-41). *Mineral structures were from American Mineralogist Crystal structure database and visualized with the Vesta 3.3.9 program.



Emergent chemical behaviors in nanopores:

* Decreased dielectric constant!-2, surface tension3, and
density of water.3

* Decreased solvation energies of metal cations.*
* Increased inner-sphere coordination of metal cations.*

* Enhanced metal adsorption>®, modified diffusion
properties.’”®

Adsorption in SiO, nanopores: ligen et al. Environ. Sci.
Nano 8, 2021 DOI:
Flat surface

Proposed Ln3* adsorption mechanisms which can result in an
endothermic (+0H) or an exothermic (-0H) signal. (a) Ln3* adsorption
as an outer-sphere complex on unconfined SiO, surface; (b) Ln3*
adsorption as an inner-sphere complex on confined SiO, surface; (c)
Ln3* adsorption as an inner-sphere dimer complex on confined SiO,
surface; (d) Decrease in AG, 4 under nanoconfinement.

lon solvation thermodynamics and structures are dictated by
thermodynamics and structure of H,0 in nanopores

'Marti et al., J. Phys. Chem. B (2006) 4Kalluri et al., J. Phys. Chem. C (2011) ’Samsom and Biggin, Nature (2001)
2Senapati et al., J. Phys. Chem. B (2001) 5Wang et al., Geology (2003) 8Ma et al., JACS (2019)
3Takei et al., Colliod Polym. Sci. (2000) 6Zimmerman et al., Environ. Sci. Techol. (2004)



H,O structures in nanopores: hydrogen bonding

Possible HB structures in dilute D,O in H,O .
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Slower H,0 re-orientation dynamics;

HB networks in H,O confined within SiO,
nanopores: near surface-H,Os characterized by
HB with Si-OH and Si-O-Si sites12;

H,O populations are distinguishable in
experimental Raman spectra: HB and not-HB
components;
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Senanayake et al. J. Chem. Phys. 154, 2021 DOI: 10.1063/5.0040739

IHarting et al., (2000)
2Senanayake et al. J. Chem. Phys. 154, (2021)



Methods

Raman spectroscopy measurements
V4, V3 OH

95 vol% H,0 /
=5 vol.% D,0

vy, V3 OD

XploRA Plus Raman microscope (HORIBA Scientific);

Cooled CCD detector (Jobin Yvon’s Synapse camera);

Unpolarized 532 nm laser, 100 mW power at 10-25% power;

10x magnification, NA 0.25; laser spot diameter 2.6 microns;

20 sec exposure, 30 scans average, range 2000 to 4000 cm .
Spectrometer calibration every 24 hours on Si(0) wafer;

Dilute D,O in H,O to exclude resonant vibrational coupling ~3200 cm.

Molecular Dynamics simulations

Classical MD simulations — LAMMPS software;

The SPC/E model - to describe the water interactions;

The silica slab (Si & O) - kept frozen throughout the simulation
silanol and geminal interactions - Gulmen—-Thompson force field;

Intermolecular interactions evaluated with a cutoff of 10.5 A;
Long-range electrostatic interactions - three-dimensional
periodic boundary conditions and the particle—particle particle
mesh (PPPM) solver with a tolerance of 10-4;

Each slit-pore trajectory was run for 1 ns with a 1 fs time step;
Data collected every 2 fs.
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2440 cm™: 4-coordinated, ice-like scatterers, higher contribution in 4 nm pores compared to bulk. Blue shift: HBs get weaker with

increasing T, non-HB contribution increases with T; HBs are weaker in SiO, pores due to nanoconfinement and HBs with SiO, surfaces.



Results: OH stretching in H,0 / D,O with increasing temperature

Raman spectroscopy measurements
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3200 cmintensity: interoscillator coupling,! the intensity is lower in 4 nm pores, may indicate distorted directional character of
HB interactions (in-phase vibrational coupling); this effect is not seen in 7 nm pores;
Blue shift: HBs are weaker with increasing T.

1Hare and Sorenson, J/ Chem Phys. (1991)



Results: H,0 / D,0 + salt solutions at RT

Raman spectroscopy measurements
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Solv (Br) =-315 kJ/mol :- 4 nm cylindrical pore
Ggo (1) =-275 kd/mol — — = bulk solution
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* 2440 cm™: 4-coordinated, ice-like scatterers, slightly higher contribution in 4 nm pores.
* 3200 cmintensity: interoscillator coupling,® the intensity is slightly lower in 4 nm pores for Cl-, Br, but not I
* Blue shift: with decrease in anion’s solvation energy.
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Summary

Nanoconfinement effects on HB structures are
more pronounced for pure D,0/H,0 compared
to 5M salt solutions because the electrical
double layer estimated as Debye length is
vastly different:

e ~1000 nm in water, and

* <0.01 nm in 5M NaX solutions

Nanoconfinement and SiO,-H,0 interactions
may produce two populations of H,O in
nanopores (2440 cm™ contribution in 4 nm
pores indicate 4-coordinated, ice-like
scatterers, and the increased intensity in ~ 2650
cm region indicative of H,O population with
broken or weak HBs)
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. I Broader impacts
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Cu?* adsorbed in silica pores
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Knight et al., 2020

Understanding how Ln3* adsorption structure and Ons
energetics change under confinement, enables improved
separation strategies for critical rare earth elements. Understanding how ion adsorption structure and
energetics change under confinement, enables improved
fate and transport models for contaminants.

Patent:
ligen, Non-provisional patent application “Systems and Methods for Separating Rare Earth

Elements Using Mesoporous Materials”. Filed on 3/11/2020.
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Simulations of the IR and Raman spectra of water
confined in amorphous silica slit pores
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