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Nanoconfined chemical environments are important in the fate and transport of 
elements and in technological applications. 

(1) atmospheric dust with nanopores and nm-scale thin water films; (2) nanopores in soil particles and sedimentary rocks; (3) nano-scale cracks in rocks; (4) nanochannels in clay minerals; (5) 
nanocages in natural zeolites, which are also used in industrial applications of catalysis, ion exchange, and in hierarchical membranes with nanoporous active layers (from Caro Chem. Soc. Rev., 
2016. 45: 3468); (6) nanopore sensing and chemical analysis (adapted from Albrecht Annu. Rev. Anal. Chem. 2019. 12:371–87); (7) Synthetic metal organic frameworks UiO-66; (8) nanoporous 
TiO2 electrode in water splitting applications (from Baxter et al., Annu. Rev. Phys. Chem. 2014. 65:423–47); (9) nanofluidic «lab-on-a-chip» (from Zhou et al., Annu. Rev. Anal. Chem. 2011. 
4:321–41).  *Mineral structures were from American Mineralogist Crystal structure database and visualized with the Vesta 3.3.9 program. 
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Adsorption in SiO2 nanopores:

Emergent chemical behaviors in nanopores:
• Decreased dielectric constant1-2, surface tension3, and 

density of water.3

• Decreased solvation energies of metal cations.4

• Increased inner-sphere coordination of metal cations.4

• Enhanced metal adsorption5-6, modified diffusion 
properties.7,8 

1Marti et al., J. Phys. Chem. B (2006)
2Senapati et al., J. Phys. Chem. B (2001)
3Takei et al., Colliod Polym. Sci. (2000)

4Kalluri et al., J. Phys. Chem. C (2011)
5Wang et al., Geology (2003)
6Zimmerman et al., Environ. Sci. Techol.  (2004)

7Samsom and Biggin, Nature (2001)
8Ma et al., JACS (2019)

F

Proposed Ln3+ adsorption mechanisms which can result in an 
endothermic (+δH) or an exothermic  (-δH) signal. (a) Ln3+ adsorption 
as an outer-sphere complex on unconfined SiO2 surface; (b) Ln3+ 
adsorption as an inner-sphere complex on confined SiO2 surface; (c) 
Ln3+ adsorption as an inner-sphere dimer complex on confined SiO2 
surface; (d) Decrease in ΔGhydr under nanoconfinement. 

Ilgen et al. Environ. Sci. 
Nano 8, 2021 DOI: 
10.1039/d0en00971g 

Ion solvation thermodynamics and structures are dictated by 
thermodynamics and structure of H 2O in nanopores
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H2O structures in nanopores: hydrogen bonding

• Slower H2O re-orientation dynamics;
• HB networks in H2O confined within SiO2 

nanopores: near surface-H2Os characterized by 
HB with Si-OH and Si-O-Si sites1,2;

• H2O populations are distinguishable in 
experimental Raman spectra: HB and not-HB 
components;

Possible HB structures in dilute D2O in H2O

1Harting et al., (2000)
2Senanayake et al. J. Chem. Phys. 154, (2021)

Senanayake et al. J. Chem. Phys. 154, 2021 DOI: 10.1063/5.0040739
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Methods

Molecular Dynamics simulationsRaman spectroscopy measurements

• XploRA Plus Raman microscope (HORIBA Scientific);
• Cooled CCD detector (Jobin Yvon’s Synapse camera);
• Unpolarized 532 nm laser, ~100 mW power at 10-25% power; 
• 10x magnification, NA 0.25; laser spot diameter 2.6 microns;
• 20 sec exposure, 30 scans average, range 2000 to 4000 cm  -1. 
• Spectrometer calibration every 24 hours on Si(0) wafer;
• Dilute D2O in H2O to exclude resonant vibrational coupling ~3200 cm-1.

ν1, ν3 OH

ν1, ν3 OD

95 vol% H2O /
5 vol.% D2O

• Classical MD simulations – LAMMPS software; 
• The SPC/E model - to describe the water interactions; 
• The silica slab (Si & O) - kept frozen throughout the simulation 
silanol and geminal interactions - Gulmen–Thompson force field;
• Intermolecular interactions evaluated with a cutoff of 10.5 Å; 
• Long-range electrostatic interactions - three-dimensional 

periodic boundary conditions and the particle–particle particle 
mesh (PPPM) solver with a tolerance of 10−4;

• Each slit-pore trajectory was run for 1 ns with a 1 fs time step; 
• Data collected every 2 fs.
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• 2440 cm-1: 4-coordinated, ice-like scatterers, higher contribution in 4 nm pores compared to bulk. Blue shift: HBs get weaker with 
increasing T, non-HB contribution increases with T; HBs are weaker in SiO2 pores due to nanoconfinement and HBs with SiO2 surfaces.

Results: OD stretching in H2O / D2O with increasing temperature

Raman spectroscopy measurement
4 nm cylindrical pore
bulk H2O/D2O

2440
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Results: OH stretching in H2O / D2O with increasing temperature

• 3200 cm-1 intensity: interoscillator coupling,1 the intensity is lower in 4 nm pores, may indicate distorted directional character of 
HB interactions (in-phase vibrational coupling); this effect is not seen in 7 nm pores; 

• Blue shift: HBs are weaker with increasing T.

1Hare and Sorenson, J/ Chem Phys. (1991)

Raman spectroscopy measurements

7 nm pore
bulk H2O/D2O

4 nm pore
bulk H2O/D2O

3200



9
Results: H2O / D2O + salt solutions at RT

Raman spectroscopy measurements

OD stretching 

• 2440 cm-1: 4-coordinated, ice-like scatterers, slightly higher contribution in 4 nm pores.
• 3200 cm-1 intensity: interoscillator coupling,1 the intensity is slightly lower in 4 nm pores for Cl-, Br-, but not I-

• Blue shift: with decrease in anion’s solvation energy.

OH stretching 
4 nm cylindrical pore
bulk solution

2440

ΔGsolv (Cl-) =-340 kJ/mol
ΔGsolv (Br-) =-315 kJ/mol
ΔGsolv (I-) =-275 kJ/mol
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Summary

• Nanoconfinement effects on HB structures are 
more pronounced for pure D2O/H2O compared 
to 5M salt solutions because the electrical 
double layer estimated as Debye length is 
vastly different: 

• ~1000 nm in water, and  
• <0.01 nm in 5M NaX solutions

• Nanoconfinement and SiO2-H2O interactions 
may produce two populations of H2O in 
nanopores (2440 cm-1 contribution in 4 nm 
pores  indicate 4-coordinated, ice-like 
scatterers, and the increased intensity in ~ 2650 
cm-1 region indicative of H2O population with 
broken or weak HBs)

Raman spectroscopy measurements



1111 Broader impacts

| Anastasia Ilgen, Ph. D. | Geochemistry Department | Sandia National Laboratories | (505) 284 1393 | agilgen@sandia.gov |

Separation Science Environmental Fate and Transport

Patent:
Ilgen, Non-provisional patent application “Systems and Methods for Separating Rare Earth 

Elements Using Mesoporous Materials”. Filed on 3/11/2020.

Understanding how Ln3+ adsorption structure and 
energetics change under confinement, enables improved 
separation strategies for critical rare earth elements.

Cu2+ adsorbed in silica pores

Knight et al., 2020
 

Understanding how ion adsorption structure and 
energetics change under confinement, enables improved 
fate and transport models for contaminants.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National 
Nuclear Security Administration under contract DE-NA0003525.

mailto:agilgen@sandia.gov
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Thank you.

Knight et al., 
Environmental 
Science Nano, 2020
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