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ABSTRACT
Some past and future supercomputer nodes incorporate High-

Bandwidth Memory (HBM). Compared to standard DRAM, HBM

has similar latency, higher bandwidth and lower capacity.

In this paper, we evaluate algorithms for managing High-

Bandwidth Memory automatically. Previous work suggests that,

in the worst case, performance is extremely sensitive to the policy

for managing the channel to DRAM. Prior theory shows that a

priority-based scheme (where there is a static strict priority-order

among 𝑝 threads for channel access) is 𝑂 (1)-competitive, but FIFO

is not, and in the worst case is Ω(𝑝) competitive.

Following this theoretical guidance would be a disruptive change

for vendors, who currently use FIFO variants in their DRAM-

controller hardware. Our goal is to determine theoretically and

empirically whether we can justify recommending investment in

priority-based DRAM controller hardware.

In order to experiment with DRAM channel protocols, we chose

a theoretical model, validated it against real hardware, and imple-

mented a basic simulator. We corroborated the previous theoretical

results for the model, conducted a parameter sweep while running

our simulator on address traces from memory bandwidth-bound

codes (GNU sort and TACO sparse matrix-vector product), and

designed better channel-access algorithms.

In our simulations, we found two consistent results: (1) at low

thread counts, when there is less competition for HBM, FIFO out-

performs Priority by up to 37%. (2) at high thread counts, Priority

outperforms FIFO by up to 3.3×.
We also generated artificial traces not based on bandwidth-bound

code where FIFO’s makespan was 40× larger than Priority, but

thanks to Priority’s provably good bounds, could not manufacture

similarly bad ratios for Priority.
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To mitigate (1), we designed new versions of Priority, called

Dynamic Priority, that periodically shuffle the priorities of the

threads. Choosing an appropriate reshuffling frequency removes

an inherent “unfairness” in the original Priority approach: we can

reduce the standard deviation of the response time for a DRAM

request by an order of magnitude without increasing the makespan.

This makes Dynamic Priority unambiguously better than both FIFO

and Priority in all our simulations.
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1 INTRODUCTION
To improve memory performance, a new hardware technology

has been introduced known as high-bandwidth memory or

HBM [34, 57].
1
HBM has higher bandwidth than DDR4 (today’s

DRAM technology) but similar latency. HBM’s bandwidth is so

high because it is placed directly onto the processor package (un-

like DRAM). HBM thus augments the existing memory hierarchy

by providing a memory that can be accessed with up to 5x higher

bandwidth than DDR4 when feeding a CPU [1], and up to 20x

higher bandwidth when feeding a GPU [59].

1
From [24], “hardware vendors use various brand names such as High-Bandwidth

Memory (HBM), Hybrid Memory Cube (HMC), and MCDRAM for this technology.”
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HBM is not a replacement for DRAM since it is generally about

five times smaller than DRAM.
2
Moreover, HBM does not fit into

the standard cache hierarchy because its latency is no better than

DRAM’s. (With standard “pyramid-shaped” hierarchies, the band-

width and latency get better as the sizes get smaller.)

Central problem of HBMmanagement. Any system that has

HBM must decide what data gets evicted from HBM and in what

order HBM fetches requests via a limited number of channels to

DRAM. Least-recently-used (LRU) [54] and other traditional re-

placement policies [17, 18, 29, 54] have been used in conjunction

with First-In-First-Out (FIFO) DRAM-access policies, such as First-

Come-First-Served (FCFS) for multicores with traditional cache.

This combination works well for regular caches but much worse

for HBM [24]. We empirically observe LRU with FCFS performing

poorly for HBM in this paper.

Machines that use HBM, such as Intel’s Knights Landing [56],

boot in multiple modes specifying how much of the HBM is system

managed and howmuch is usermanaged. In cachemode the system
controls HBM as a last level of cache, in flat mode the programmer

explicitly copies data in and out of HBM, and in hybrid mode the
HBM is split into a “flat” piece and a “cache” piece. Intel Knight’s

Landing has long been depcrecated [58]; However Intel’s upcoming

(2022 planned release) Sapphire Rapids [50] Xeon will also have

HBM. Sapphire Rapids further adds HBM-only mode for systems

without DRAM. Another variation (to which our model does not

apply) exists and is being used in Deep Learning: HBM+NVram

without DRAM [37].

The vision of this paper is that a system could automatically

manage HBM as efficiently as a standard cache. This would free the

programmer from explicitly managing HBM. In high-performance

computing environments such as DOE supercomputers running

scientific codes, system cache mode sometimes yields little if any

advantage, but software is too complex and mature to be rewritten

to manage HBM explicitly. Since HBM was first commercialized it

hasn’t been clear whether this is indeed even possible. The algorith-

mic plus empirical results in this paper provide strong optimistic

evidence in support of provably good automatic HBMmanagement.

Recent theoretical results offer hope for practical automatic HBM

management. Das et al. [24] give a theoretical performancemodel of

HBM,which captures the high (on-package) bandwidth between the

cores and HBM and the lower (off-package) bandwidth to DRAM.

It is unknown how well the theoretical abstraction introduced by

Das et al. [24] predicts empirical performance, especially when

constants are a first-order concern in real systems.

HBM+DRAMmodel. In an HBM, the channel(s) to DRAM (far-
channels) are a sequential bottleneck [24]. The 𝑝 cores can simulta-

neously send a memory request in each time step. Up to 𝑝 requests

can be fulfilled by the HBM in parallel, but only a small number 𝑞 of

requests can use the channel to DRAM at a time. Thus, if multiple

cores simultaneously request memory from DRAM, the channel

accesses need to be scheduled and serialized. We call this problem

far-channel arbitration. Waiting for access to DRAM dominates

the running time over other considerations. For current systems,

2
From [24], this is due to constraints such as heat dissipation, as well as economic

factors.

the number of DRAM channels per processor is typically not more

than 8.

A natural performance objective is makespan which, given

a batch of running processes, is the time when the last process

completes. Minimizing cache misses is not the same as minimizing

makespan, and can be far from it [24, 43]. In fact, a workload could

have few cache misses, but because it does not take advantage of

the parallelism between cache and HBM, it has a poor makespan.

1.1 Two Components of HBMManagement
A system-controlled HBM has two algorithmic policies to set:

• HBM replacement policy. When the system brings a new

block from DRAM to HBM, it first needs to decide which

block to evict from HBM.

• Queuing policy for far-channel arbitration. Multiple

requests (up to 𝑝 disjoint requests: one request per core) for

blocks on DRAM can occur simultaneously, but at most 𝑞

requests (1 ≤ 𝑞 << 𝑝) can be fulfilled per time step. The

system must decide in each time step which of the outstand-

ing block requests to fulfill (and which ones to keep in the

queue).

HBM replacement is not the problem. The traditional way we

think about replacement policies (Least Recently Used [54], or LRU)

turns out also to work with HBM. That is, LRU can also be used in

the context of HBM management to help obtain theoretically good

performance guarantees [24]. In actual implementations of HBM as

a last level of cache, LRU is not the replacement policy, since when

HBM is used in cache mode, it has limited associativity or is even

direct mapped. However, we show that the same good theoretical

guarantees from [24] can be retained, given certain assumptions

on the mapping from DRAM addresses to locations in HBM (see

§2). The bottom line is that LRU and variants work asymptotically

well, not only in regular caches, but also in HBM.

FIFO queue for far-channel arbitration. In contrast, a natu-

ral and intuitive policy for serializing the outstanding requests to

DRAM—simply to queue themup in First-In-First-Out (FIFO) order—

is provably bad. Moreover, in this paper, we show that workloads

that are bad for FIFO queue management are easy to generate and,

based on how we generate them, we expect to see similar work-

loads commonly in practice. We find it unsurprising that traditional

replacement policies (e.g., LRU [54]) continue to work with HBM,

but we find it surprising that FIFO can perform poorly given its

prevalence. Intel has previously used a FIFO variant called “adaptive-

open-page-policy,” and much of the literature [32, 38] focuses on

optimizations to the basic FCFS policy. We believe that our results

justify cycle-accurate simulations that might influence hardware

vendors to consider the disruptive change of modifying far-channel

arbitration policies.

Far-channel arbitration is the problem. How to determine

which pages to transfer in each time step (and which to delay)

is a new algorithmic challenge not faced in traditional caching, but

critical to HBM management.

This algorithmic challenge can be restated as follows: how to

partition the pages of the HBM among all processes and then change

this allocation dynamically in each time step. This is because if in

2



each timestep we have control over which process’s page is brought

into HBM, and which process’s page is ejected, then we are exactly

determining the partitioning of HBM among the processes.

The problem with the FIFO policy for serializing DRAM access

is that it tends to have the effect of spreading out HBM evenly and

thinly among all the processes. The HBM becomes too “stretched,

like butter scraped over too much bread.”

At any time step, a good partitioning of HBM may allocate HBM

space to processes unevenly. Some of the processes may be assigned

a zero fraction of space in HBM,momentarily starving them in order

to give enough capacity of the HBM to other processes so that

they do not thrash. In principle, good parallelism means having

as many processes running and as few starved as possible. But

if the HBM partition gives too tiny a sliver of the HBM to each

process, then no process significantly benefits from HBM, and the

bottleneck becomes the channel to DRAM. But determining how

many processes to run and exactly how to divide the HBM, is

extremely sensitive to the processes’s request streams and a good

solution changes in each time step.

Priority queue for far-channel arbitration. An alternative pol-

icy called Priority was recently proposed by Das et al. [24]. In this

scheme, each thread is assigned a fixed priority. These priorities ef-

fectively determine at each step, which thread gets to use the DRAM

channel. Specifically a page request from a high–priority thread

always takes precedence over a page request from a lower-priority

thread, regardless of which page requests was made first.

What is interesting about this priority-based scheme is how

apparently unfair it is. Low-priority threads can get delayed by

higher-priority threads—but the reverse does not happen. Despite

the pecking order among the threads and this seeming unfairness,

Priority’s makespan is within 𝑂 (1) times the optimal makespan.

This is a major improvement over FIFO’s Ω(𝑝) worst case.
The Priority scheme has a good makespan because the priority

scheme naturally does a good job of partitioning the HBM among

the threads. If there is not enough space in the HBM to satisfy all of

the threads, then the lower-priority threads starve until the higher-

priority threads do not need as much as space. As the priorities are

allowed to change over time, randomly permuting the priorities

can mitigate excess starvation.

In this paper, we show that for large processor counts, Priority is

favorable over FIFO queue management. For small processor counts,

Priority does as well as FIFO or better when periodically randomly

permuting the priorities. This also has the benefit of mitigating

some of the unfairness inherent in a Priority scheme. We show

this on workloads that are based on common memory-bandwidth

bound computation kernels.

1.2 Results
In this paper, we evaluate priority-based methods for managing

High-Bandwidth Memory automatically.

Explanation of Knight’s Landings performance using the
HBM+DRAM Model. We validate the HBM+DRAM model

Knight’s Landing (KNL) [56], an example system with HBM, has a

performance profile explained by HBM+DRAM model. We develop

and run a series of microbenchmarks on KNL in its different modes.

In our measurements HBM has a similar but slower access latency

than DRAM by 24ns (roughly 10 percent outside of shared L2),

HBM has a higher bandwidth by about 4.8×, and accessing HBM

in cache mode can incur an extra latency cost.

We run the benchmarks in Flat mode HBM, Flat mode DDR,

and Cache Mode. We use the srGUPS microbenchmark (see §5) to

measure bandwidth and we chase pointers to measure latency.

In order to access DRAM in Cache Mode, we must first cross

the mesh and miss shared L2, then cross the mesh again and miss

in HBM. Thus, this third mesh crossing adds a 50% overall latency

penalty, but a 100% latency penalty when just considering the time

to access HBM.

The latency penalty on a cache miss is roughly the time it takes

to traverse the mesh on KNL systems. This causes a 1.5× change in

overall latency, but a 2× change in latency when discounting the

initial mesh search across shared L2.

Simulation and Extension to Multiple Channels. We built a

simulator in C++ using the HBM+DRAM model. We instrumented

two memory-bandwidth-bound applications, TACO Sparse Matrix-

Matrix Multiplication [23, 40] and GNU sort [53], to obtain page-

access sequences for use as simulator workloads. In our instru-

mentation we used several techniques, such as overloading C++

operators, to log memory accesses.

In our simulations, we varied the size of HBM, the source of

the access traces (GNU sort, quicksort, Sparse and Dense Matrix

Multiplication), the number of cores, the distribution of work across

the cores, the method by which we permute priorities (none, cy-

cle, cycle-reverse, interleave, Dynamic Priority), how often we

remapped priorities (some parameter times the HBM size), the num-

ber of channels to DRAM (1-10), and whether the DRAM queue is

FIFO or Priority. In this paper, we present an interesting subset of

them in depth and briefly present our results for several others.

Evaluation of FIFO versus Priority.We compare FIFO and Pri-

ority’s makespan when running the TACO Sparse Matrix-Matrix

Multiplication and GNU sort workloads.

In our instrumented traces, at low thread counts where HBM is

plentiful, Priority gives a worse makespan than FIFO by up to 37%.

When the number of threads increases and HBM becomes more

scarce, FIFO gives up to a 3.3× worse makespan than Priority. We

also design a request sequence to be bad for FIFO, hold the amount

of memory per core constant, and get a linearly worse makespan.

We observe up to 40×worse makespan. Because Priority is provably

good, we cannot create a bad request sequence for it.

Demonstration that periodically changing priorities fully
eliminates FIFO’s advantage. We propose Dynamic Priority,

which retains the theoretical guarantees of Priority. Unlike Pri-

ority, Dynamic Priority is either as good as FIFO or outperforms

FIFO in all of our simulations. We also find that Priority suffers

from having highly variable response times, where the response
time of a page request is the duration between sending the page

to the DRAM queue and the page being served. Dynamic Prior-

ity reduces this variance by occasionally permuting the priorities.

Changing priority more often decreases the standard deviation of

response times but may increase the makespan. We characterize

this tradeoff and, for our experiments, identify a broad range of
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parameters where variance is small and the makespan is as good

as or better than both Priority and FIFO.

1.3 Related work
HBM-tuning and cachemode.Our HBMmodel is consistent with

the behavior of the Multi-Channel DRAM (MCDRAM) in Intel’s

Knights Landing (KNL) processor [34]. In KNL, arbitration of HBM

misses is handled by the DRAM controller. Although the actual

protocol is proprietary, it is likely a solution based on [49]. Such

arbitration is commonly called “first-ready first-come-first-served

(FR-FCFS).” As the name implies, this is a variant of FCFS.

The first algorithmic work for MCDRAM, done before KNL ex-

isted, used a simulator to predict speedup for a flat-mode sorting

algorithm. [13, 14]. This was validated on KNL by Butcher, et al. [20].

Several recent papers have documented runtime improvements of 3-

4x using KNL when problem instances fit entirely in the MCDRAM.

For example, Li et al. studied kernels from scientific computing [42]

such as sparse matrix-vector multiplication. Byun, et al. observe

KNL speedup for dense matrix-matrix multiplication [21]. Laghari,

et al. designed flat-mode algorithms for computational kernels such

as STREAM on KNL [41]. Slota and Rajamanickam [55] obtained

2-5x speedups for graph algorithm instances larger than HBM.

The above work gives HBM-aware algorithms for structured

kernels. However, many scientific workflows are too complex to

be completely rewritten using such kernels [20]. Das, et al., offer

theory predicting computational speedups on HBM systems by

changing the DRAM controller design. [24].

Hierarchical memory models. There are several hierarchical

memory models for both sequential and parallel settings [2–4, 8–

11, 15, 16, 22, 25, 35] including models with private caches. In our

HBM model, we do not include private caches. HBM does not fit

well with standard hierarchical memory models [13, 31] because

DRAM and HBM have about the same latency.

Feuerstein and Strejilevich de Loma [28] work on a multi-

threaded paging problem. Their model has only one core, and they

interleave request sequences of multiple threads into a single thread

to minimize the number of cache misses. Loma [26] and Seiden [51]

give randomized algorithms for the same setting as described by

Feuerstein and Strejilevich de Loma.

Paging in multicore systems is investigated throughly [5, 33, 39,

43]. Hassidim [33] introduces a paging model where 𝑝 cores share

a cache. His objective is to minimize the maximum running time

of all the processors. López-Ortiz and Salinger [43] use Hassidim’s

model, but they minimize the total number of cache misses incurred

by all the cores instead of the running time. They present several

dynamic programming algorithms; however, their running times

are exponential in model parameters.

Katti and Ramachandran [39] work on a constrained model

where the interleaving of the processors is given as part of the in-

put. They present competitive online algorithms in their restricted

model. Very recently, Agrawal et al. [5–7] give𝑂 (log 𝑝)-competitive

online algorithm in the general parallel paging model.

Although related, these models are incomparable to the Das et

al. HBM model since latencies differ by level.

HBM hierarchies by application: deep learning and scientific
computing. Recent work in large-scale deep learning leverages

multi-level memory hierarchies involving HBM/NVRAM. [12]. Sto-

chastic gradient descent computations in HBM withing GPU’s can

be adequately fed from NVRAM. of such hierarchies have vastly dif-

ferent latencies, so the model of Das, et al. does not apply. However,

scientific computing requires more interaction between memory

levels. Therefore, HBM/DRAM hierarchies persist, as represented

by Intel Sapphire Rapids. The latter has huge amounts of HBM

bandwidth. Under certain expected configurations, Sapphire Rapids

could have 3.68 TB/s of peak memory bandwidth with 128GB of

HBM [52].

2 HBMMODEL AND MANAGEMENT

1 2 p

B B B

HBM

Main
Memory

B

p cores

. . .

. .
.

q(<< p) channels

Figure 1: The HBMmodel with 𝒑 cores.

In this section, we describe the theoretical model of HBM on

which our simulator is based. This model slightly generalizes the

model from [24]—the primary difference is that we consider mul-

tiple channels from HBM to memory while the prior model only

considered a single channel.

HBMModel. The model consists of 𝑝 cores connected to the HBM

of size 𝑘 blocks by 𝑝 parallel channels. The HBM is connected

by 1 ≤ 𝑞 << 𝑝 channels to DRAM of unbounded size. Data is

transferred in blocks of size 𝐵 both from DRAM to HBM and from

HBM to the cores. Thus, the size of HBM is 𝑘 · 𝐵. We model the

increased bandwidth of HBM as 𝑝 parallel channels between HBM

and the 𝑝 cores. However, due to the bandwidth bottleneck of

DRAM, at most 𝑞 blocks can be transferred in parallel along the

channel to DRAM. The similar block-transfer time from HBM to

the cores and from DRAM to HBM is captured by setting all block-

transfer times to 1.

In reality, instead of a ‘DRAM-HBM’ far-channel as depicted

in Figure 1, there is a mesh connecting the cores to both DRAM

and HBM. When the HBM is used as a cache, a core’s memory

access is first directed to the HBM. On an HBM miss, the memory

access then goes to DRAM. Modeling this behavior as a separate

channel between HBM and DRAM is both algorithmically clean

and predictive (see §5).

Each core 𝑝𝑖 requests a sequence of blocks 𝑅
𝑖 = 𝑟 𝑖

0
, 𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . on

its dedicated channel to HBM. Each core’s requests are disjoint;

that is, satisfying a request on sequence 𝑝𝑖 does not progress any

other sequence. Core 𝑝𝑖 requests blocks in the order of sequence

𝑅𝑖 and does not request the next block until the previous block in

the sequence is served to the core. If core 𝑝𝑖 requests block 𝑟 𝑖
𝑗
at

time step 𝑡 and if 𝑟 𝑖
𝑗
is in the HBM (this is an HBM hit), then at the
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next time step 𝑡 + 1, the requested block is transferred to core 𝑝𝑖 .

If the requested block is not in HBM (this is an HBMmiss), then
the block must be transferred from DRAM to HBM and then from

HBM to core 𝑝𝑖 . This takes at least two time steps but may take

arbitrarily longer if the request from HBM to DRAM must wait to

get access to (one of the 𝑞) DRAM channels.

HBMManagement Policies. The HBM-management algorithm

must consider two resources: (1) 𝑞 far channels between HBM

and DRAM; and (2) the 𝑘 blocks within the HBM (see §1.1).

A far-channel arbitration policy decides which (of the po-

tentially many) waiting requests are served using the 𝑞 channels

between HBM and DRAM. When there are more than 𝑞 outstand-

ing requests for blocks that are not in HBM, all of them cannot be

fetched from DRAM to HBM in parallel due to limited bandwidth

between DRAM and HBM. The block requests are kept in a queue

called the request queue. Blocks are fetched from the DRAM in

the queue order determined by the far-channel arbitration policy

and up to 𝑞 blocks can be served in parallel.

A block-replacement policy decides which blocks stay in HBM

and which blocks are evicted when HBM is full and new blocks

are brought from DRAM to HBM. This is analogous to cache re-

placement. Several block-replacement strategies such as LRU, FIFO,

CLOCK [36] have been proposed in the caching literature. For cache

management, LRU guarantees constant-competitive performance

with the optimal given constant-factor resource augmentation [54].

Makespan as our performancemetric.On a single core with nor-
mal cache, the metrics ofmakespan (maximum completion time)

and number of cache misses are closely aligned. Approximately

minimizing the number of cache misses would approximately min-

imize the makespan. However, this correlation does not extend to

HBM. López-Ortiz and Salinger [43] and Das et al. [24] show that

the number of HBM misses is the wrong objective, since differ-

ent policies that have the same number of misses can have wildly

different makespans. Instead, they argue that we should directly

optimize makespan. Formally, given an HBM of size 𝑘 blocks and 𝑝

disjoint request sequences to the 𝑝 cores, the objective is to find a

far-channel arbitration policy (for the HBM-DRAM channel) and a

block-replacement policy for the HBM to minimize makespan.

Theoretical Results for Automatic HBM management. Das et
al. [24] analyzed HBM-management policies under this model for

the special case where 𝑞 = 1, that is, only one channel from HBM

to DRAM. Their results indicate that HBM management is funda-

mentally different from Ideal-Cache management [30, 31] which

is only concerned with the block-replacement policy. They show

that designing a far-channel arbitration policy is fundamental for

designing good automatic HBM-replacement algorithms: Combin-

ing the natural far-channel arbitration policy of First Come First

Serve with the natural block replacement policy of LRU is terri-

ble theoretically. On the other hand, a priority-based policy (also

combined with LRU) performs well. This policy arbitrarily assigns

a pecking order on the cores and always satisfies requests from

high-priority cores before lower-priority cores. Therefore, for the

same block-replacement policy (LRU), the far-channel arbitration

policy makes all the difference in theoretical performance.

The performance of the two channel-arbitration policies Priority

and FCFS with the same block-replacement policy LRU are:

Theorem 1 ( [24] Performance of Priority for𝑞 = 1). Priority
is 𝑂 (1)-competitive for the makespan-minimization problem (even
without any memory-augmentation).

Theorem 2 ( [24] Performance of FCFS for 𝑞 = 1). There exists
𝑝 block request sequences such that even with𝑑 memory augmentation
and 𝑠 bandwidth augmentation the makespan of FCFS+LRU is Θ( 𝑝

𝑑𝑠
)-

factor away from that of the optimal policy.

Therefore, in the worst case, FCFS+LRU can be factor of Ω(𝑝)
worse than Priority+LRU.

Extension to multiple channels between HBM and DRAM.
We now present a relatively straightforward extension from one

channel to 𝑞 channels between HBM and DRAM and present a

𝑂 (𝑞)-competitive online algorithm for the generalized HBM model.

Theorem 3. If there are 𝑞 channels between DRAM and HBM,
then Priority achieves an 𝑂 (𝑞)-competitive ratio for the makespan-
minimization problem (even without any memory-augmentation).

Generalizing fully-associative HBM results to direct-mapped
implementations. Prior HBM results applied to fully-associative

caches [14, 24]. However, practical implementations of HBM are

usually direct mapped [50, 56]. We now explain how to take a

program designed for a fully-associative HBM with LRU (or op-

timal) replacement and automatically transform it into another

program that runs asymptotically as fast on a direct-mapped cache.

This direct-mapped cache only need be a constant-factor larger.

From this transformation plus resource augmentation, we conclude

that the scheduling asymptotics for HBM are the same on a fully-

associative cache and a direct-mapped cache.

Frigo et al. [30, 31] and Prokop [48] show that a fully-associative

sequential cache of size𝑀 with LRU replacement can be simulated

with a direct-mapped cache of size 𝑂 (𝑀). We give a similar result

for HBMs—the main difference is that in a sequential cache, at most

one page is accessed at a time while multiple pages may be accessed

concurrently in an HBM with 𝑝 channels to the cores.

Lemma 1. There exists an automatic transformation from a pro-
gram running on a size-𝑘 fully-associative HBM with LRU or FIFO
replacement to another program that simulates these policies on direct-
mapped cache of size Θ(𝑘) using a constant factor more bandwidth
from HBM to DRAM. Specifically, assuming that the direct mapped
cache has 𝑂 (1) more HBM and bandwidth, (1) each HBM hit in the
original program causes 𝑂 (1) hits and no misses in the transformed
program (in expectation) and (2) each miss in the original program
causes 𝑂 (1) misses in the transformed program (in expectation).

Proof. We will use two data structures, similar to those used

by Frigo [30, 31, 48]. The first data structure is a hash table (with

chaining to resolve collisions) which allows us to simulate full-

associativity. The other is a doubly-linked list which allows us to

simulate LRU or FIFO. The transformation is essentially identical

to the one described by Frigo; we describe it here for completeness.

The HBM is divided into twoΘ(𝑘) regions — one for maintaining

the meta-data (hash-table and linked list) and another for keeping

the actual pages from the program (program data). All manipulation
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is done by accessing DRAM addresses and changing the data stored

in these addresses.We first reverse themapping from direct-mapped

HBM and designate a single location in DRAM whose data will be

stored in each location in the HBM — that is, we have a bijection

between the direct-mapped HBM and DRAM.

The hash table is a size 𝑘 hash table which maps each block that

the programmight access in DRAM to some location in the program

data region of the HBM —we call it the Cache DRAM address (even

though it might not always be cached). That is, each HashTable key

is a user-supplied DRAM address. Each HashTable value contains a

DRAM address which is part of the above mentioned bijection. By

using a 2-universal family of hash functions [45], one can ensure

that if we have 𝑘 blocks in HBM at a time, then the chain length is

𝑂 (1) in expectation.

We will use this hash-table to simulate full-associativity as fol-

lows: When the program accesses a user-supplied DRAM address,

we search the hash-table in 𝑂 (1) time to see if the page is in HBM.

If not, we copy over data from the user-supplied DRAM address

to the corresponding Cache DRAM address and then bring it into

HBM. When evicting a page, we copy data from the Cache DRAM

address to the user-supplied DRAM address. If the page is found

in the hash table, we can then access this page by accessing the

corresponding Cache DRAM address which is cached within HBM.

To pair the hash-table and linked list, each hash-table node points

to a linked-list node; each linked-list node also has a corresponding

back pointer. The linked list is ordered based on eviction policy. In

FIFO, the front of the linked list is the node corresponding to the

first-in page and the back is the node corresponding to the last-in

page. In LRU, the front of of the linked list is the LRU page and the

back of the linked list is the MRU page.

When we encounter an HBM miss, the page at the front of the

linked list is evicted, or removed from the hash table and from the

linked list. The data is then copied back from the Cache DRAM ad-

dress to the original DRAM address. At this point, the user-supplied

DRAM address is copied to the corresponding Cache DRAM ad-

dress of this page, brought into HBM, and inserted into the hash

table and into the back of the linked list. All this causes at most a

constant number of pages to be brought into HBM. On an HBM hit,

no new pages are brought into HBM. □

Theorem 4. The makespan of the transformed program running
on the direct-mapped cache is at most 𝑂 (log𝑞) factor larger than
the original program running on a fully associative cache with FIFO
and at most 𝑂 (log𝑝) larger than the original program running on a
fully associative cache with LRU, where 𝑞 is the number of channels
from DRAM to HBM and 𝑝 is the number of processors. If 𝑞 is a
constant, as in the original HBM model, then the direct-mapped cache
is asymptotically equivalent to FIFO.

Proof. The above transformation works for both FIFO and LRU.

For simulating FIFO, the linked list is only modified on an HBM

miss—since at most 𝑞 blocks can be transferred from DRAM to

HBM on each time step, we have to add up to 𝑞 blocks to the front

of the linked list on any one step. However, LRU order changes on

HBM hits as well. Therefore, if 𝑝 processors access 𝑝 pages which

are all within HBM, then 𝑝 corresponding blocks must move to the

head of the linked list in one time step.

We must move 𝑥 items concurrently to the front of the linked

list. 𝑥 ≤ 𝑞 for FIFO and 𝑥 ≤ 𝑝 for LRU. There are two components:

remove 𝑥 items concurrently from the linked list and insert the 𝑥

items to the front of the linked list. Removal is easier—we mark the

items removed without physically removing them and periodically

run garbage collection to physically remove the items. As we never

traverse this linked list to find an item, we allow it to get large as

long as it fits in HBM.
3

We keep a 𝑞 (correspondingly 𝑝) element auxiliary array. At a

high-level, we wish to ensure all 𝑥 processors can write their item

into a different location of this array. If we can achieve this, then we

can create a “mini” linked list of these 𝑥 items in 𝑂 (1) time (each

item can link itself to the item before and after itself concurrently).

This mini linked list can be linked to the front of our master linked

list in 𝑂 (1) time.

The remaining problem is to ensure that each item can be writ-

ten at a unique location in this auxiliary array concurrently. This

can be achieved in 𝑂 (log𝑞) (correspondingly 𝑂 (log𝑝)) time using

prefix-sums. In brief, each processor must get a unique number

between 1 and 𝑥 (which is equivalent to updating a shared counter)

in parallel and then write their element in the location they get by

updating this shared counter—prefix-sums is exactly designed to

perform this operation.
4
Therefore, each core will write its item in

a unique location in the auxiliary array in 𝑂 (1) time, link itself to

its neighbors in 𝑂 (1) time, and then the mini list is linked to the

original list in 𝑂 (1) time. □

The following corollary follows since FIFO can be used as a

replacement policy instead of LRU in the original HBM proof

from [24] without changing the competitive ratio asymptotically.

Corollary 1. One can achieve 𝑂 (1)-competitive makespan with a
direct-mapped HBM versus a fully-associative HBM, when 𝑞 = 𝑂 (1).

3 SIMULATING HBM AS CACHE
We built a simulator of the HBM Model from §2 to understand how

Priority and FIFO behave in typical cases and how their constants

compare. Following the model:

Property 1. The sets of pages accessed by each core are mutually
exclusive.

Property 2. We track page references and ignore computation.
Thus, any advantage in minimizing makespan has meaning only
when the code being simulated is memory-bandwidth bound.

Property 3. HBM is fully associative.

These properties are notably different from KNL hardware. We

intend not to understand KNL’s implementation but the constants

and performance predicted by the model.

We argue that these properties are reasonable. Property 1 means

that we do not simulate true parallel programs—we argue that 𝑝

cores sharing a common HBM and processing reference streams

3
In principle, it can get even larger since the unaccessed items will logically move out

of HBM and never be accessed. We need only keep the items representing the pages

currently in HBM—that is, the logically un-removed items—and their neighbours. That

is, at most𝑂 (𝑘) items of the linked list have to be in cache even if the linked list is

longer than𝑂 (𝑘) .
4
Some theoretical models assume an𝑂 (1)-time fetch-and-add (FAA) hardware opera-

tion. With such an operation, this update can be done in constant time.
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from the same serial code is a reasonable surrogate for multi-

threaded execution. Our two test codes, sorting and sparse matrix

multiplication (SpGEMM), are both memory-bandwidth bound, sat-

isfying Property 2. Corollary 1 shows that Property 3 is reasonable.

3.1 Simulating HBM
We simulate FCFS and priority-based[24] management of HBM

under LRU with a simple C++ program that ingests address traces

from serial runs of annotated code. In a preprocessing step, each

array dereference in the annotated code is mapped to its page

reference. The resulting sequence of page references forms the

input to our simulator.

Simulation. All cores share a single HBM of size 𝑘 slots, each of

which can hold a single page. The simulation operates on ticks. We

define 𝑟 𝑖∗ as the currently requested page in 𝑅𝑖 . When processor 𝑖

is served the page it requests, 𝑟 𝑖∗, then on the next tick processor

𝑖 will request the next page in its queue, changing 𝑟 𝑖∗. Let 𝑡 be the
current tick, on which the following occurs:

(1) If 𝑡 is a multiple of the remap period 𝑇 , remap the priorities.

Increase 𝑡 by 1.

(2) For each 𝑟 𝑖∗, if 𝑟
𝑖
∗ is not resident in HBM, add 𝑟 𝑖∗ to the DRAM

request queue.

(3) If there are more requests in queue then empty slots in HBM,

evict up to 𝑞 pages by LRU.

(4) For each 𝑟 𝑖∗, if 𝑟
𝑖
∗ is resident in HBM, serve 𝑟 𝑖∗ to processor 𝑖 .

(5) Retrieve up to the next 𝑞 pages in the DRAM request queue

from DRAM into HBM. Remove these pages from the queue.

3.2 Generating Data
We run 1 independent run of a program per processor to generate

𝑝 independent access traces. These traces form a workload; in our

workloads, we assume that all processors areworking on sufficiently

similar tasks and each trace is generated from the same program

with different randomness. Datasets 1 and 2 are both from memory-

bandwidth bound applications, and they’re therefore amenable to

HBM. Dataset 3 is designed to stress FIFO.

Dataset 1: Sorting. We generate GNU sort [53] memory access

traces by running GNU sort on randomly generated sequences of

500,000 integers. Since GNU sort takes iterators as input, we created

a logging iterator class that logs every dereference to a file, and

passed these logging iterators to GNU sort.

Since sorting is perhaps the most ubiquitous computing kernel

of all, any advantage is of interest.

Dataset 2: Sparse Matrix Matrix Multiplication. Our SpGEMM

code is based on TACO SparseMatrix-Matrix Multiplication [23, 40].

We replaced the arrays used in this code with our own array-like

objects that log all accesses to a file. We generate the access traces

by running this modified version on two sparse matrices of size

600 by 600 where approximately 10% of the elements exist. These

elements are randomly generated.

SpGEMM is the cornerstone of many computations in scientific

computing and data science, and has been shown to benefit from

many-core parallelism of 200 cores and beyond [19, 27].

Dataset 3: Traces designed to be bad for FIFO. FIFO performs

asymptotically poorly when run on a long sequence of unique pages,

repeated many times. We generate the sequence 1, 2, 3 . . . 256 and

repeat it 100 times. FIFO performs poorly on this sequence when

there is insufficient memory to keep everything paged in. See §4.

While this sequence is specifically designed to make FIFO look

bad, it is still a simple sequence that generalizes nicely to everyday

usage. For example, this trace could be generated by a program that

needs more memory than the working set size to perform well. If it

has less memory than the working set size, it starts to thrash.

4 MODEL SIMULATION RESULTS
We simulate FIFO, Priority, and Dynamic Priority and establish:

• Priority is generally better than FIFO in terms of Makespan,

often much better (3.3×), except at small thread counts,

where Priority can be slightly worse(1.37×).
• Dynamic Priority gives the same or better Makespan than

both FIFO and Priority for all tested workloads.

• Priority may end up starving threads for long periods of time

(metric formalized later). Dynamic Priority starves threads

for much shorter periods of time.

• Dynamic Priority, by changing thread priorities more or less

often, can increase or decrease thread starvation at the cost

of additional overhead in Makespan, but a large range of

values lead to essentially the same Makespan.

Simulation and explanation of FIFO’s poor performance. We

now show the results of our simulation of FIFO and Priority on

Dataset 3 (see §3.2), where FIFO performs asymptotically worse

than Priority. We plot the results in Figure 3; FIFO yields a 40×
worse makespan that linearly scales with thread count. To make

FIFO fail so catastrophically, the HBM size 𝑘 is set to have enough

memory to fit only
1

4
of all the unique pages across all the threads.

When running on FIFO, we never have a cache hit—by the time

a thread repeats a page in its sequence, the page has been long

evicted. In contrast, Priority will have a much higher cache hit rate.

The first two threads (as one thread cannot saturate the channel

in the HBM+DRAM model) load all of their pages into HBM. They

complete their work quickly while the next two threads load pages

into HBM. This repeats until all of HBM is filled up, at which point

some least recently used page is evicted. When a higher priority

thread runs into a cache miss due to this eviction, the lowest priority

thread stops making progress instead of continuing to sabotage

other threads. Generalizing this examples makes it clear why FIFO

performs much worse than Priority when HBM is especially sparse.

We show similar but less extreme cases where FIFO performs

badly on Datasets 1 and 2 (see §3.2). Figure 2 shows FIFO vs Priority

on one instance of sparse matrix-matrix multiplication and one

instance of GNU sort. In Figure 2a, we see that FIFO can give a

makespan of up to 3.3× as large as Priority for large thread counts

between 50 and 200. Similarly, for GNU sort in Figure 2b, FIFO gives

a 1.2× larger makespan at high thread counts.

When and why FIFO outperforms Priority for Makespan.
There are cases where Priority yields a worse makespan than FIFO.

In Figure 2a, Priority yields a slightly larger makespan up to 1.33×
as large as FIFO. For GNU sort in Figure 2b, Priority gives a 1.37×
larger makespan at low thread counts.
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(a) SpGEMM, 600 × 600, 90% sparsity. The SpGEMM results are par-
ticularly promising since SpGEMM has been shown in the literature
to scale beyond 100 cores.

(b) GNU sort of 500,000 integers.

Figure 2: Simulation results for priority vs. FIFO, with HBM sizes ranging from 1000 to 5000 slots. The 𝒚-axis shows the ratio
of FIFO’s makespan to priority’s makespan. Values greater than 1.0 show an advantage for priority. In both cases, FIFO can
dominate at low processor counts but priority always dominates at high processor counts.

Figure 3: FIFO vs Priority for 100 repetitions of the sequence
1, 2, 3 . . . 256, but only 1

4 of the memory required to fit every
page in HBM. FIFO misses every page and Priority starves
threads. FIFO yields a higher makespan by as much as 40×.

For these low thread count results, HBM is plentiful—all the

threads can run simultaneously without thrashing. Since all the

workloads are running the same problem of approximately the

same length and characteristics, it is natural for all the threads to be

worked on at approximately the same speed to end at the same time

and minimize Makespan. When running Priority, we instead work

on some threads slowly and some threads quickly, causing some

threads to be left behind. The issue isn’t utilization, but an artifact

of this inconsistency when running balanced workloads. Dynamic

Priority aims to reduce this inconsistency, which we quantify below.

We also discuss Priority’s performance on a different metric (that

does not have such an artifact) at the end of this section.

Quantifying thread starvation. To capture some notion of thread

starvation, we define ’response time’ and ’inconsistency’ as follows.

Let 𝑟 𝑖
0
, 𝑟 𝑖
1
, 𝑟 𝑖
2
, . . . be the page reference sequence running on

thread 𝑝𝑖 . Let the response time 𝑤𝑖
𝑗
of any page reference 𝑟 𝑖

𝑗
be the

number of simulation ticks between when the page is requested

and when the page is serviced. For an HBM cache hit,𝑤𝑖
𝑗
= 1, since

it takes one tick to transfer the page from HBM to the thread. For

an HBM cache miss,𝑤𝑖
𝑗
≥ 2, depending on when it is served by the

DRAM request queue. It takes one tick to transfer the page from

DRAM to HBM, and one more tick to transfer the page from HBM

to the thread (see §2). We define inconsistency to be the standard

deviation of𝑤𝑖
𝑗
over all 𝑖, 𝑗 .

Thread starvation occurs when some threads have disproportion-

ately higher response times than other threads. In FIFO, no threads

are starved, and both response time and inconsistency are 𝑂 (𝑝). In
Priority, low-priority threads are starved. Their initial page requests

are blocked by higher-priority threads, causing some requests to

have large (possibly unbounded) response time and inconsistency.

Thus, the inconsistency for Priority is high.

Changing priorities gives a better makespan and response
time than both FIFO and Priority. By changing priorities, we

gain two main advantages: threads are starved less often and the

mixed results from Figure 2 become unambiguously positive. We

present Dynamic Priority, a scheme which randomly permutes the

priorities of the threads every fixed interval𝑇 . We also consider Cy-

cle Priority, a deterministic scheme which cycles priorities on these

same intervals. These schemes are based on the observation in [24]

that priorities can be periodically re-assigned without violating the

theoretical bounds if the interval is longer than the size of HBM

(𝑇 ≥ 𝑘). Thus, we talk about 𝑇 as a multiple of 𝑘 . We define 𝑃 as

the set of processing thread ids and 𝑘 as the HBM size.

We consider Cycle Priority as it has practical advantages over

Dynamic Priority: ease of implementation and ability to trivially

bound the response time. Coordinating and generating the shared

randomness required to implement Dynamic Priority in hardware

may not be desired, especially if a simpler and easier to implement

scheme suffices. Cycle Priority does not need shared randomness;

it only requires processors to agree when to change priority.

There is also a trivial upper bound on the response time of a page

reference. A thread is guaranteed to become the highest priority

thread within 𝑝 priority permutations. We therefore bound the

longest a page reference can wait in the request queue by 𝑝 ·𝑇 . The
bound on inconsistency follows from this bound on response time.
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(a) SpGEMM, 600 × 600, 90% sparsity. (b) GNU sort of 500,000 integers.

Figure 4: Simulation results for Dynamic Priority versus FIFO, with HBM sizes ranging from 1000 to 5000 slots. Randomized
remapping has mitigated any advantages that FIFO held in Figure 2. The results for deterministic remapping are similar for
balanced workloads.

(a) (b)

Figure 5: Effect of scheme and 𝑻 on inconsistency. Starting at the bottom right of each subfigure, find the Priority point (yellow).
This is our point of maximum performance and maximum inconsistency. Moving to the left, we show the priority permutation
strategies for decreasing permutation interval. Most of the inconsistency can be removed with minimal loss in performance.

Definition 1.
𝜋 : 𝑃 → 𝑃 . A permutation mapping thread ids to priorities.
Priority: 𝜋 is always the identity permutation. 𝜋 (𝑖) = 𝑖 .
Dynamic Priority: replace 𝜋 with random permutation 𝜋 ′.
Cycle Priority: replace 𝜋 with 𝜋 ′. 𝜋 ′(𝑖) = (𝜋 (𝑖) + 1)

mod |𝑃 |.

Figure 4 shows the affect of randomizing priorities every 10 · 𝑘
ticks. At low thread counts, where Priority previously lost to FIFO,

Dynamic Priority either performs as well as FIFO or outperforms

FIFO on Makespan. At high thread counts, Dynamic Priority per-

forms as well as or better than Priority and FIFO. For balanced

workloads (where every thread has a comparable task), Cycle Prior-

ity also performs similarly to Dynamic Priority and may be simpler

to implement in hardware. When the work is asymmetric, Cycle

Priority continuously places the same thread behind the most de-

manding thread, causing small amounts of starvation. This can

likely be mitigated on sufficiently long sequences by instead cy-

cling through all permutations or shuffling, but would be more

complex to implement. Even though Cycle Priority does not violate

the theoretical guarantees of [24], we believe Dynamic Priority to

be a more robust scheme.

Dynamic Priority reduces starvation and maintains
Makespan. We empirically show that periodically permuting

priorities (such as in Dynamic Priority or Cycle Priority) gives

us significantly lower inconsistency than FIFO and as good or

better makespan than Priority. We plot the inconsistency and

makespan for various permutation intervals 𝑇 of FIFO, Priority,

Dynamic Priority, and Cycle Priority in Figure 5. As 𝑇 → ∞,

Dynamic Priority approaches Priority. As𝑇 → 1, Dynamic Priority

approaches purely random selection, which has the same expected

waiting time in the DRAM queue for each thread as FIFO.

For both Figure 5a (sparse matrix-matrix multiplication) and

Figure 5b (GNU sort), FIFO has the highest makespan and Priority

has the highest inconsistency. For 𝑇 in the parameter range 10𝑘 to

100𝑘 for Dynamic Priority and 5𝑘 to 100𝑘 for Cycle Priority, the

makespan is similar to Priority but the inconsistency is much lower.

However, when Dynamic Priority gets too small (less than 10𝑘),

the makespan increase as 𝑇 decreases. Therefore, there is a large
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Table 1: FIFO has lowest inconsistency and highest average response time. Priority has highest inconsistency and lowest average
response time. More frequent permutation decreases Priority’s inconsistency and increases its average response time. This
differs from the results using makespan, where Priority’s makespan is about the same as or worse than Dynamic Priority.

(a) Inconsistency and average response time for sparse matrix
multiplication using permutation intervals 𝒌, 5𝒌, 10𝒌, and 100𝒌.

Queuing Policy Inconsistency Response Time

FIFO 69.303 30.273

Dynamic Priority 𝑇 = 𝑘 683.817 14.744

Dynamic Priority 𝑇 = 5𝑘 1178.274 10.824

Dynamic Priority 𝑇 = 10𝑘 1612.298 10.430

Dynamic Priority 𝑇 = 100𝑘 4744.975 9.745

Cycle Priority 𝑇 = 𝑘 1768.970 10.430

Cycle Priority 𝑇 = 5𝑘 3916.114 10.323

Cycle Priority 𝑇 = 10𝑘 5512.070 10.275

Cycle Priority 𝑇 = 100𝑘 16597.218 9.837

Priority 21804.684 5.464

(b) Inconsistency and average response time for GNU sort using
permutation intervals 𝒌, 5𝒌, 10𝒌, and 100𝒌.

Queuing Policy Inconsistency Response Time

FIFO 45.021 12.712

Dynamic Priority 𝑇 = 𝑘 569.941 10.902

Dynamic Priority 𝑇 = 5𝑘 1163.263 10.513

Dynamic Priority 𝑇 = 10𝑘 1606.777 10.454

Dynamic Priority 𝑇 = 100𝑘 4722.316 10.303

Cycle Priority 𝑇 = 𝑘 1776.058 10.451

Cycle Priority 𝑇 = 5𝑘 3929.010 10.436

Cycle Priority 𝑇 = 10𝑘 5528.542 10.428

Cycle Priority 𝑇 = 100𝑘 16823.080 10.242

Priority 27396.798 5.822

parameter range for 𝑇 where Dynamic Priority’s makespan is as

good as Priority but the inconsistency is much lower.

Our results indicate that 𝑇 should be greater than 10𝑘 to allow

closer behavior to Priority and more page reuse between permu-

tations. We observe large ranges of 𝑇 such that Dynamic Priority

can reduce Priority’s inconsistency while retaining its makespan.

Priority gives a better average response time, even when
makespan is the same. Another metric, average response time,

measures the performance of a scheduler.We chart Figure 5 but with

average response time instead of Makespan in Table 1. We see that,

for the same Makespan, Priority has the lowest average response

time for both GNU sort and Sparse Matrix-Matrix Multiplication.

For both datasets, FIFO has the highest (worst) average response

time and Dynamic Priority and Cycle Priority both give about

the same average response time for reasonable values of 𝑇 . This

provides further evidence that this low-thread count anomaly in

Figure 2 that is eliminated in Figure 4 by Dynamic Priority is due

to an artifact of using Makespan and Priority.

5 MODEL VALIDATION EXPERIMENTS
We validate our algorithmic model from §2 on Xeon Phi Knight’s

Landing processors, which have HBM accessible both directly (in

flat mode) and as a cache for DRAM (in cache mode).

One abstraction themodel makes is, instead of amesh connecting

all of HBM, DRAM, and the cores [56], HBM sits between DRAM

and the cores. This leads to several algorithmic properties:

Property 1. HBM and DRAM have a similar latency when ac-
cessed directly.

Property 2. HBM has higher bandwidth than DRAM (which can
be detected by normal programs).

Property 3. The latency to access DRAM through a cache miss is
approximately double accessing HBM.

Property 4. When too many HBM misses occur in cache mode,
the channel to DRAM becomes the bottleneck.

To show that Knight’s Landing has Properties 1-4 and is consis-

tent with the HBM Model, we measure and compare the latency

and bandwidth of HBM, DRAM, and HBM as a cache for DRAM.

Validating some of these properties, especially the benefits of HBM

(Property 2 and Property 4), has been done before [46, 47]. We

present our findings for due diligence. We perform two microbench-

marks (one latency-bound and one bandwidth-bound, described

below) on a range of allocation sizes, some of which fit within HBM

and some of which exceed HBM.

We perform these experiments on Xeon Phi Knight’s Landing

CPUs with 272 threads (4 hyperthreads per core) and 16GiB of

HBM. Each CPU has 6 DDR Channels and 8 HBM connections,

all connected to the cores via a mesh. We ensure we are access-

ing HBM (or DRAM) when the machine is in flat mode by using

numactl --membind.

5.1 Microbenchmarks

Measuring Latency: Pointer Chasing. To measure the latency

to a level of the KNL’s memory hierarchy, we record the average

time to chase a pointer on an array of a fixed size. We call the

operation 𝑥 := 𝑎[𝑥] pointer chasing on the array 𝑎. In order to

map the latency across the memory hierarchy (L1, L2, shared L2,

HBM, or DRAM), we run our pointer chasing experiment for arrays

whose sizes are the powers of two from 1KiB to 64GiB. We stop

the experiment early for HBM, which can only allocate an array of

size 8GiB. Each element in the array is initialized to the index of a

random element. To avoid loops without causing significant CPU

usage from generating randomnumbers, we add a bit of randomness

every 32 pointer chasing operations. In total, we measure the time

to perform 2
27

pointer chasing operations, then divide by 2
27

to

get the average.

Measuring Bandwidth: GLUPS. To measure the bandwidth of

various levels of the KNL memory hierarchy, we record the average

MiB/s that can be read, xor’d, and written in randomly chosen

blocks of length 1024 bytes. To measure bandwidth, we introduce

GLUPS, or Giga-Large Updates per Second. GLUPS are closely

related to the standard GUPS benchmark (formally referred to as

RandomAccess) [44], but operates on sequential blocks of 1024

bytes (128 doubles) to ensure we fully saturate the HBM channels.
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(a) Pointer chasing latencies for arrays sizes up to 64GiB. (b) Figure 6a zoomed in for array sizes larger than shared L2. See
Table 2a for data.

Figure 6: Pointer chasing on HBM, DRAM, and HBM as a cache for DRAM. Cache tier and size is marked by vertical dotted
lines with annotations above. There is a drastic change in latency after exceeding each level of cache.

Table 2: GLUPS and pointer chasing performance for array sizes within and exceeding HBM.

(a) Pointer chasing latency test for DRAM, HBM, and HBM as
Cache. Units are nanoseconds per update. See plotted version in
Figure 6b.

Array Size DRAM (ns) HBM (ns) Cache (ns)

16MiB 168.9 187.6 190.6

32MiB 171.9 194.1 196.1

64MiB 174.0 196.5 199.8

128MiB 198.8 222.3 228.1

256MiB 235.6 259.8 271.6

512MiB 269.7 293.8 311.9

1GiB 291.4 315.5 337.5

2GiB 304.4 328.6 352.8

4GiB 312.7 337.2 365.7

8GiB 318.3 343.1 378.3

16GiB 324.4 - 396.1

32GiB 338.0 - 430.5

64GiB 364.7 - 489.6

(b) 272 threads GLUPS bandwidth test for DRAM, HBM and HBM
as Cache. Units are 𝑴𝒊𝑩/𝒔. HBM and Cache have a much higher
bandwidth than DRAM, but HBM as Cache drops off sharply once
the working set exceeds HBM.

Array Size DRAM (MiB/s) HBM (MiB/s) Cache (MiB/s)

512MiB 70,627 299,593 308,103

1GiB 67,874 262,208 302,974

2GiB 66,459 315,227 313,730

4GiB 67,025 323,989 319,459

8GiB 67,118 323,318 309,988

16GiB 67,534 - 272,787

32GiB 67,931 - 148,989

64GiB 67,720 - 146,600

We use GLUPS instead of GUPS due to the machine quirks of

KNL. GLUPS ensures we’re using all the channels to HBM and

therefore all the bandwidth by loading in sufficiently large chunks.

It’s a machine specific reason. We expect GLUPS to be bandwidth-

bound when run multi-threaded (272 threads on KNL).

To measure GLUPS, we randomly pick a spot on the array, se-

quentially read, xor with a fixed but arbitrary number, and write

each of the next 128 doubles. For KNL machines, 128 doubles is 16

cache lines each of size 64 bytes. We perform this operation until

the entire array’s worth of data has been updated—that is, for a

2GiB experiment, we update a total of 2GiB of data. We implement

this benchmark in C++ using OpenMP for parallelization.

5.2 Results

Similar access latency to HBM and DRAM. Our model sets the

access latency to DRAM and HBM chips as the same (Property 1).

In the pointer chasing results in Figure 6a, the latencies for Flat

Mode DRAM and Flat Mode HBM differ by approximately 24ns

for array sizes between 16MiB and 8GiB. While not exactly the

same, the latency difference is still sufficiently small to invalidate

standard caching assumptions. For the purposes of modeling, KNL

hardware is consistent with Property 1.

Bandwidth advantage of HBM over DRAM. One key reason to

use HBM over DRAM is the Higher Bandwidth offered (Property

2). This property is well studied [46, 47]—we present our findings

for due diligence. The model in §2 has 𝑝 channels between HBM

and the cores. We validate this in Table 2b by showing a 4.3 − 4.8×
bandwidth improvement over DRAM for array sizes between 512

MiB and 8GiB. While not the full 𝑝× bandwidth improvement the

model predicts, KNL has a sufficiently large bandwidth such that

the bottleneck is not transferring data from HBM to the processor

(or cache to processor) but transferring data from DRAM to HBM.

Thus, we find that KNL hardware is consistent with Property 2.

Latency penalty for HBM misses in cache mode. When in

cache mode, a memory access that misses HBM and goes to DRAM

will incur double the latency of an HBM hit (Property 3). In real

hardware (specifically KNL), there are several different caches to

miss (L1, L2, shared L2) before HBM is accessed. In order to better

understand the penalty of missing various caches, we perform

pointer chasing on array sizes from 2
10

to 2
32

bytes in Figure 6a.

We zoom in on the same data in Figure 6b and tabulate it in Table 2a

to better show the latency to access HBM when the problem size is

larger than the previous levels of cache.
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When accessing a random element of an array that is twice the

size of HBM in cache mode, there is a 50% chance of getting a cache

miss. Therefore, we expect to see the additional latency to DRAM

only half the time. However, as the array sizes grow far beyond each

boundary in the memory hierarchy, the latencies plateau. Using

the differences in heights of these plateaus, we can get an estimate

of the latencies to each level of the memory hierarchy.

Specifically, in the cache mode latencies, a miss out the CPU’s

local L2, which requires traversing the mesh to another tile’s L2,

incurs about 200ns. This is a baseline latency that we subtract off

for measuring latency to HBM and DRAM. Memory accesses that

miss shared L2 cache and go into HBM take about 160ns. While we

can’t see the final plateau for missing HBM and going into DRAM,

the final data point suggests that misses to DRAM take 300ns or

more. This shows the double latency penalty we expected—KNL

hardware is consistent with Property 3.

Bandwidth reduction for HBMmisses in cache mode. HBM
bandwidth suffers when toomanyHBMmisses occur in cachemode

because of the bandwidth bottleneck between DRAM and HBM

when using HBM as cache (Property 4). We perform the GLUPS

experiment and plot the results in Table 2b. We see that bandwidth

halves when the array is 32GiB (2x larger than HBM), but still has

a higher bandwidth than DRAM. Thus, KNL hardware exhibits

enough of this bottleneck to be consistent with Property 4.

6 CONCLUSION
In this paper, we make a case for the benefits of cycling priorities as

a better method of managing HBM. We analyze how cycling affects

both fairness and makespan and determine that cycling priority

schemes are likely preferable to both FIFO-like and static-priority

management schemes. We investigate how to cycle by focusing on

two schemes, Dynamic Priority and Cycle Priority. These schemes

both have constant-competitive makespan when compared to opti-

mal; our experiments further show that they have sufficiently low

constants to outperform FIFO and Priority on common workloads.

We find compelling evidence that Dynamic Priority and Cycle Pri-

ority may out-perform current FIFO-like HBM management and

should be studied further. As Cycle Priority performs well and is

likely easier to implement in hardware than Dynamic Priority, we

find that Cycle Priority is especially promising.

6.1 Future Work
Our theoretical model is intentionally simple and does not admit all

of the complexity of real architectures. One important simplifying

assumption is that access sequences are disjoint. Theory on non-

disjoint access sequences is a promising avenue for future work.

We test our schemes on similar workloads across all cores. Future

work may test different workloads; it will be especially interesting

to see how Cycle Priority behaves on different distributions of work.

While we focused on KNL as a motivating example, we did not

attempt to simulate KNL hardware. Cycle-accurate simulations will

be essential to making informed decisions for specific architectures.
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