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Overview
Motivation: constitutive models are the weakness of simulation

Goal: efficient accurate surrogate models of material processes

Everyone is doing machine
learning, it is easy and

sometimes useful.

- a paraphrase of George Box

Outline

Problems of interest
Architectures

A hybrid CNN-RNN
Tensor basis NN
Graph CNN-RNN
ConvLSTM
Neural ODE

Conclusion

Please ask questions

Which one is the ML prediction?

one is a “deep fake”
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Microstructural problems of interest: problem statement
Premise: the state of each of these systems/processes can be encoded as
an image/field with multiple channels ϕ(X).

bubbles multi-phase polycrystal pores/inclusions
Classes of closure problems:

▶ property estimation: map initial image ϕ(X) to a static
quantity ε, e.g. diffusivity

▶ homogenization: map initial image ϕ(X) and forcing ϵ(t) to
evolving scalar quantity Ψ(t), e.g. energy

▶ field prediction: map initial image ϕ(X) and forcing ϵ(t) to an
evolving field σ(X, t), e.g. stress field

Applications: subgrid models, structure-property exploration
/optimization, & material uncertainty quantification
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Neural networks - basics/background

The simplest neural network (NN) is a multilayer perceptron
(MLP), a directed graph of densely connected nodes organised in
layers. Inputs are weighted, summed and transformed to outputs
by non-linear ramp/switch-like activation functions.

y j = f

 X
i

wijx i + bj

!
| {z }

linear transform

The parameters w , b are trained via

backpropagation and stochastic descent.

NN are compounded trainable affine

transforms with non-linear maps & can

be compact universal approximators.

input

output

layer

layer

layer

• node

A NN is basically a functional form to be fit with chosen inputs, output, &

information flow. Like LEGOSTM, layers with particular characteristics can be

linked to create architectures that follow physical principles & traditional

modeling techniques. 4 / 25



Deep learning: convolutional neural networks
Direct application of a MLP to image data is impractical due to size of
weight matrix. Application to a reduced set of features is problematic,
as all informative features may not be apparent.

Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.

Size of kernel ≪ size of image

For example, filters can:

▶ Smooth/filter noise: convolving an
image with a Gaussian kernel.

▶ Average/coarsen: multiplying with
constant moving patch

▶ Gradients and higher derivatives: filter
corresponding a finite difference stencil.

▶ Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights W and bias b for a (small) kernel
and multiple filters/kernels can detect multiple hidden features.
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Exemplar homogenization problems: images and responses
If we observe initial microstructures and mechanical tests:

(A) polycrystal (B) porosity
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Challenge: training burden and sampling
Reasonably complex NNs need a lot of data to train well. Even
with high-throughput tests we cannot currently generate more than
≈ 102 tests, we need a dataset with ≈ 104 samples for a NN. So,
we resort to high-fidelity simulation data /
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For example, we generate microstructural realizations of
oligocrystals with different textures (crystal orientations) and run
crystal plasticity simulations with a variety of loading modes.

Efficient, sufficient sampling for history dependent response is an
open question.
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A hybrid CNN-RNN network for time evolution
To predict a static property we can apply a CNN to (all channels of) a
microstructure image. To predict the evolution of the average stress we
augment the CNN with an RNN that models the loading/time
dependence [Frankel CompMatSci 2019].

A recurrent NN (RNN) uses a causal
time filter to process history/loading
information (and the hidden image
features). An RNN for time is an
analog to the CNN for spatial data.

The (hidden) features distilled by
the CNN feed into the RNN. The
CNN output (post encoder) is only
correlated with the observable stress
through a RNN.

How many features should the
CNN reduce the image to?

We are also exploring alternatives to

RNN such as NODE based on tradi-

tional time integrators.

CNN

encoder

RNN

history ε(ti) image þ(xI)

convolution

convolution

pooling

convolution

convolution

pooling

flatten

dense

dense

dense

recursive

recursive

...

recursive

mixing

stress σ(ti)
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know
what “hidden” microstructural fea-
tures the observable stress depends
on, e.g. average misorientation
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Predicting the particular response to microstructure
Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.

Correlation of elastic response
(NN, Voigt and Reuss predic-
tions), NN on par with Hill av-
erage.
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solid lines data, dashed: NN predic-
tion. Trajectories drift with accumulated
error. Plastic response is better than
Sachs or Taylor estimates.
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Physical symmetries

Satisfaction of physical constraints and symmetries is expected
in physical models and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

▶ Augment the dataset with many
examples of what should happen,
e.g. rotate the inputs and outputs
(soft and inefficient)

▶ Penalize loss / training objective
function (soft & introduces a
meta parameter and can be hard
to converge)

▶ Embed the symmetry in the NN
architecture so that the response
exactly preserves the symmetry
(can be hard to formulate)

→
y y

→
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Objectivity and representation theory

We prefer to embed symmetries in the NN structure – so that they are
exact/not learned. Let’s go back to classical theory...

Material frame indifference for constitutive function M(A)

GM(A)GT = M(GAGT ) ,

M model must commute with the symmetry op for every member G of
the orthogonal group.

Based on the spectral A =
P3

i=1 λiai ⊗ ai , and Cayley-Hamilton
theorems

A3 − tr(A)A2 +
1

2

(
tr2 A− trA2

�
A− det(A)I = 0

one can obtain a compact general representation/model form:

M(A) = c0(I)I+ c1(I)A+ c2(I)A2 =
X
i

ci (I)Ai

in form of unknown coefficient functions of invariants and a known
tensor basis. Inputs: scalar invariants I & tensor basis B = {A0,A1,A2}.
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A tensor basis neural network
A tensor basis neural network is an NN implementation of this
representation [Ling JCP 2016]: where the coefficients are unknown
scalar functions of the invariants I = {I0, I1, . . .}

M =
X
i

ci (I)Bi

and a final merge/sum layer
associates ci with the tensor
basis B = {A0,A1, . . .}.

Effectively a MLP mapping
invariants to coefficients +
a sum with a known basis.

It is adept at representing the
response with exact invari-
ance / avoiding the need for
data augmentation for sym-
metry.

Basis:

Inputs:

Outputs:

Merge:

A

I B = {B0, B1}

I0 I1 I2

a(y00) a(y01) a(y02) a(y03)

a(y10) a(y11) a(y12) a(y13)

a(y20) a(y21) a(y22) a(y23)

c0 c1

M =
∑

i ciBi

A TBNN looks like a component based NN albeit with a basis constructed

from the input.
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Mesh data & graph-based convolutional neural networks
If we have microstructural images as inputs, CNNs work great for
structured grid/rastered image but the need interpolation for
mesh-based fields and do not inherently satisfy invariance
Gσ(ϵ,ϕ)GT = σ(GϵGT ,GϕGT ) where ϕ is the initial
microstructure.

Reducing the grains to nodes and
shared interfaces to edges has been
shown effective [Vlassis 2020]
However this approach loses infor-
mation (eg the details of the grain
and interface geometry) and hence
requires featurization.

We have applied graph convolutions directly to the mesh topology
[Frankel JMLMC 2021]. This approach does not require
featurization but can benefit from it. It does not increase the
number of parameters since the same kernels are being employed.
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Graph-based convolutional neural networks

Graph based convolution layers/filters [Kipf & Welling 2016]
can be applied directly to the graph based on the mesh topology :
elements are graph nodes and shared faces are graph edges.

w7 w8 w9

w4 w5 w6

w1 w2 w3

CNN filter

w1

w1 w2 w1

w1

GCNN filter

The GCNN filter uses the same weights for all the neighbors
(permutational invariance), hence it produces the same output
when the image is rotated.
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GCNNs vs. CNNs

GCNNs have similar performance to CNN with fewer parameters
and inherent invariance.

loading ε(ti) microstructure φ(xI)

convolution

convolution

...

pooling

dense

...

recurrent

recurrent

...

mixing

stress σ(ti)

GCNN-RNN

Convergence with number of filters
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Feature boosting

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the CNN-RNN pipeline)
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The improvement is marginal but distinct for a NN that is already
fairly accurate.
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Full field predictions: convLSTM
An architecture similar to the CNN-RNN we used to predict system-level
evolution can be used to predict full-field (element/pixel level) evolution.

Inputs: pairs of

▶ ϕ(X): image of initial
microstructure

▶ ϵ(t): system level strain history

The image is fed to a convolutional neural
network to process its latent features but
not reduce them to a list of scalars – each
layer/filter output is also an image so
that spatial relationships are preserved.

This initial condition-like input is combined
with the strain history in a recurrent-
convolutional neural network, a convLSTM
[Shi NIPS 2017].

The output of the convLSTM is processed
by another CNN unit to produce

ConvLSTM

history ‘(ti) image „(xI)

convolution

convolution

convolution

convolution

convolution

...

convolution

convolution

output ‡(xI , ti)

Output: σ(X, t) full field stress evolution
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Full field predictions
A convLSTM combines the RNN (time) and CNN (space) into PDE-like model
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An internal state variable neural ODE model

Premise: it is better to infer state variables, like damage, than
prescribe them. So we augment the observable state with hidden
states that are learned.

microstructure φ(X) loading E(t)

convolution invariants {I(E, Ė} strain E

features ϕ flow ḣ = f̂(h, I(E, Ė))

integration h = h + ∆t f potential Ψ = Ψ̂(h, E)

derivative S = ∂EΨ

output S(t)

Stress

S = NNS(h,E)

Flow

ḣ = NNh(h,E)

RNN are locked into a particular time step. NODE have the same
sense of time scaling as the usual dynamical models and employ
the same time integrators.
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Model variants and accuracy

There are multiple ways of formulat-
ing a general stress response:

▶ potential, as in thermodynamics

S = ∂ENN(E,h)

▶ equivariant tensor basis

S =
X
i

NNi (E,h)Bi (E)

▶ components of a fixed basis

S =
X
i

NN(ij)(E,h)B(ij)

CDF of errors for TB,
potential, component
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Elastoplasticity
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Even without an explicit yield surface, the NODE seems to be
learning the non-smooth flow field.
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Graphs for microstructure + ODEs for evolution
We can combine a NODE & a Graph CNN to reduce the initial
microstructures to latent features

microstructure φ(X)

convolution

convolution

...

pooling

dense

...

features ϕ

that become additional hidden
state variables in the NODE
flow evolution.

Microstructures with pores or hard

inclusions

Predictions vs. truth for min, mean,

max error
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Conclusion
Applications:

▶ subgrid / multiscale surrogate
models

▶ structure-property exploration /
material optimization

▶ material uncertainty quantification

Open issues:

▶ architecture / meta parameter
optimization

▶ interpretability ( latent space / low
dimensional manifold)

▶ training burden / multifidelity
(experimental+simulation) data

rjones@sandia.gov
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