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Overview

| Motivation: constitutive models are the weakness of simulation |
| Goal: efficient accurate surrogate models of material processes |

Which one is the ML prediction?

Everyone is doing machine
learning, it is easy and
sometimes useful.

- a paraphrase of George Box
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Please ask questions

one is‘a “deep fake”
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Microstructural problems of interest: problem statement

Premise: the state of each of these systems/processes can be encoded as
an image/field with multiple channels ¢(X).

bubbles multi-phase polycrystal pores/inclusions
Classes of closure problems:

> property estimation: map initial image ¢(X) to a static
quantity ¢, e.g. diffusivity

» homogenization: map initial image ¢(X) and forcing €(t) to
evolving scalar quantity W(t), e.g. energy

» field prediction: map initial image ¢(X) and forcing €(t) to an
evolving field o (X, t), e.g. stress field

Applications: subgrid models, structure-property exploration
/optimization, & material uncertainty quantification
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Neural networks - basics/background

The simplest neural network (NN) is a multilayer perceptron
(MLP), a directed graph of densely connected nodes organised in
layers. Inputs are weighted, summed and transformed to

by non-linear ramp/switch-like activation functions.

= f Z Wij X =+ b_,' @ /@ layer

\ input

linear transform
layer
The parameters w, b are trained via . node

backpropagation and stochastic descent. output
NN are compounded trainable affine Cj
transforms with non-linear maps & can

be compact universal approximators.

A NN is basically a functional form to be fit with chosen inputs, output, &

information flow. Like LEGOS™ layers with particular characteristics can be
linked to create architectures that follow physical principles & traditional

modeling techniques. 4/25



Deep learning: convolutional neural networks
Direct application of a MLP to image data is impractical due to size of
weight matrix. Application to a reduced set of features is problematic,
as all informative features may not be apparent.
Convolution with a kernel is a standard technique in (time) signal and
(spatial) image processing that has been adapted to ML.
Size of kernel < size of image

For example, filters can:

» Smooth/filter noise: convolving an
image with a Gaussian kernel. F

» Average/coarsen: multiplying with
constant moving patch

» Gradients and higher derivatives: filter
corresponding a finite difference stencil.

» Features: edge detection, clustering,
segmentation, ...

A convolutional NN trains the weights W and bias b for a (small) kernel

and multiple filters/kernels can detect multiple hidden features.
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Exemplar homogenization problems: images and responses
If we observe initial microstructures and mechanical tests:
(A) polycrystal (B) porosity

G s 0
Engineering Strain (%)

can we predict particular: (a) stress-strain averages or, (b) full
field stress evolution
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Challenge: training burden and sampling
Reasonably complex NNs need a lot of data to train well. Even
with high-throughput tests we cannot currently generate more than
~ 102 tests, we need a dataset with ~ 10* samples for a NN. So,

we resort to high-fidelity simulation data ®
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For example, we generate microstructural realizations of
oligocrystals with different textures (crystal orientations) and run
crystal plasticity simulations with a variety of loading modes.

Efficient, sufficient sampling for history dependent response is an

open question.
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A hybrid CNN-RNN network for time evolution

To predict a static property we can apply a CNN to (all channels of) a
microstructure image. To predict the evolution of the average stress we
augment the CNN with an RNN that models the loading/time
dependence [FRANKEL CompMatSci 2019].

A recurrent NN (RNN) uses a causal [M‘y E(m] ‘ b
time filter to process history/loading [
information (and the hidden image
features). An RNN for time is an

analog to the for spatial data. exn
The (hidden) features distilled by
the feed into the RNN. The

output (post encoder) is only
correlated with the observable stress
through a RNN. encoder

How many features should the

CNN reduce the image to? S
—T

We are also exploring alternatives to o}
RNN such as NODE based on tradi-
tional time integrators.
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Predicting the response due to “hidden” features
Does the deep NN discover the hidden features?

A test problem where we know
what “hidden” microstructural fea-
tures the observable stress depends
on, e.g. average misorientation
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Observing the microstructure enables prediction of microstructure variations
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Predicting the particular response to microstructure

Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.

corr = 0.973

® NN
® \Voigt
® Reuss

260000

240000

220000

200000

180000

160000

preaictea tensile summness

140000

1200001 °
7 .
1
.

100000

120000 140000 160000 180000 200000 220000 240000
observed tensile stiffness

Correlation of elastic response
(NN, Voigt and Reuss predic-
tions), NN on par with Hill av-
erage.

STRESS DEVIATION [GPa] CORRELATION

0 0.001 0.002 0.003 0.004 0.005
STRAIN

Trajectories of discrepancy from mean:
solid lines data, dashed: NN predic-
tion. Trajectories drift with accumulated
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Physical symmetries

Satisfaction of physical constraints and symmetries is expected
in physical models and is necessary for conservation, stability, etc

How do we learn/impose physical constraints?

» Augment the dataset with many
examples of what should happen,

e.g. rotate the inputs and outputs
(soft and inefficient)
» Penalize loss / training objective

—

function (soft & introduces a
N
meta parameter and can be hard -
to converge) H -
&
> .

Embed the symmetry in the NN ! —

architecture so that the response
exactly preserves the symmetry
(can be hard to formulate)
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Objectivity and representation theory

We prefer to embed symmetries in the NN structure — so that they are
exact/not learned. Let's go back to classical theory...

Material frame indifference for constitutive function M(A)

GM(A)G™ = M(GAG') ,

M model must commute with the symmetry op for every member G of
the orthogonal group.

Based on the spectral A = Z?Zl Aia; ® a; , and Cayley-Hamilton
theorems 1
A —tr(A)A” + 2 (tr? A — tr A?) A — det(A)l = 0

one can obtain a compact general representation/model form:

M(A) = oo(Z)l + ci(T)A + (T)A> = > c(T)A’

i

in form of unknown coefficient functions of invariants and a known
tensor basis. Inputs: scalar invariants Z & tensor basis B = {A° Al A%}
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A tensor basis neural network

A tensor basis neural network is an NN implementation of this
representation [LING JCP 2016]: where the coefficients are unknown
scalar functions of the invariants Z = {ly, I, ...}

M=> c(7)B,

i
and a final merge/sum layer
associates ¢; with the tensor
basis B = {A° Al ...}

Effectively a MLP mapping
invariants to coefficients +
a sum with a known basis.

It is adept at representing the
response with exact invari-
ance / avoiding the need for
data augmentation for sym-
metry. Merge: Ml: >ieB;

A TBNN looks like a component based NN albeit with a basis constructed

from the input. 13/25



Mesh data & graph-based convolutional neural networks

If we have microstructural images as inputs, CNNs work great for
structured grid/rastered image but the need interpolation for
mesh-based fields and do not inherently satisfy invariance
Go(e,»)G™ = 0(GeG™,GpGT) where ¢ is the initial
microstructure.

Reducing the grains to nodes and
shared interfaces to edges has been
shown effective [VLASSIS 2020]
However this approach loses infor-
mation (eg the details of the grain
and interface geometry) and hence
requires featurization.

We have applied graph convolutions directly to the mesh topology
[FRANKEL JMLMC 2021]. This approach does not require
featurization but can benefit from it. It does not increase the
number of parameters since the same kernels are being employed.
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Graph-based convolutional neural networks

Graph based convolution layers/filters [KiPF & WELLING 2016]
can be applied directly to the graph based on the mesh topology :
elements are graph nodes and shared faces are graph edges.

wry ws W9 wq
Wy Ws We w1 wWo w1
(0 Wo w3 w1y

CNN filter GCNN filter

The GCNN filter uses the same weights for all the neighbors
(permutational invariance), hence it produces the same output
when the image is rotated.
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GCNNs vs. CNNs

GCNNs have similar performance to CNN with fewer parameters
and inherent invariance. Convergence with number of filters
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Feature boosting

GCNNs (and CNNs) can be boosted by embedding obvious
features into the image (or further down the CNN-RNN pipeline)
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The improvement is marginal but distinct for a NN that is already
fairly accurate.
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Full field predictions: convLSTM

An architecture similar to the CNN-RNN we used to predict system-level
evolution can be used to predict full-field (element/pixel level) evolution.

|nputs: pairs of history e(t;) image ¢(xr)
» $(X): image of initial
microstructure

> ¢(t): system level strain history

convolution

The image is fed to a
to process its latent features but

convolution
not reduce them to a list of scalars — each ‘,:I:'
Co

. . . onvolution
layer/filter output is also an image so ,‘:|:'|

that spatial relationships are preserved.

This initial condition-like input is combined _comvolution |

with the strain history in a recurrent- ConvLSTM ool
convolutional neural network, a convLSTM

[SHI NIPS 2017].

The output of the convLSTM is processed

by another CNN unit to produce output & (xy, t;)

Output: o (X, t) full field stress evolution
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Full field predictions
A convLSTM combines the RNN (time) and CNN (space) into PDE-like model
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[FRANKEL MLSciTech 2020]
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An internal state variable neural ODE model

Premise: it is better to infer state variables, like damage, than
prescribe them. So we augment the observable state with hidden
states that are learned.

microstructure ¢(X) loading E(t)

¥ ~ Stress

invariants {Z(E, B} strain E

features ¢ > flow h = f(h,Z(E, E)) S == NNS (h, E)

iQOmh:h+mf%hmmmw:@mEﬂ Flow
'
mean] |
h = NNh(h E)
M

Y

RNN are locked into a particular time step. NODE have the same
sense of time scaling as the usual dynamical models and employ
the same time integrators.
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Model variants and accuracy

CDF of errors for TB,

There are multiple ways of formulat-
potential, component

ing a general stress response:

P> potential, as in thermodynamics

— component

CDF

— tensor-bas
— potential

S = 9eNN(E, h)
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Elastoplasticity
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learning the non-smooth flow field.
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Graphs for microstructure + ODEs for evolution
We can combine a NODE & a Graph CNN to reduce the initial

microstructures to latent features ] ]
Microstructures with pores or hard

inclusions

microstructure ¢(X)

pooling

dense
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Conclusion
Applications:

» subgrid / multiscale surrogate
models

» structure-property exploration /
material optimization

» material uncertainty quantification

Open issues:

» architecture / meta parameter
optimization

> interpretability ( latent space / low
dimensional manifold)

» training burden / multifidelity
(experimental+simulation) data

rjones@sandia.gov
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