This paper describes obijective technical results and analysis. Any subjective views or opinions that might be expressed in SAND2022-9631C
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Characterizing the Performance of Task
Reductions in OpenMP 5.X Implementations *

Jan Ciesk0[0000—0003—3148—4477] and Stephen L. OliVieI‘[OOOO_OOOl_6247_8980]

Center for Computing Research, Sandia National Laboratories
Albuquerque NM 87123, USA
{jciesko, slolivi}@sandia.gov

Abstract. OpenMP 5.0 added support for reductions over explicit tasks.
This expands the previous reduction support that was limited primarily
to worksharing and parallel constructs. While the scope of a reduction
operation in a worksharing construct is the scope of the construct itself,
the scope of a task reduction can vary. This difference requires syntactical
means to define the scope of reductions, e.g., the task reduction clause,
and to associate participating tasks, e.g., the in_reduction clause. Fur-
thermore, the disassociation of the number of threads and the number
of tasks creates space for different implementations in the OpenMP run-
time. In this work, we provide insights into the behavior and performance
of task reduction implementations in GCC/g++ and LLVM/Clang. Our
results indicate that task reductions are well supported by both compil-
ers, but their performance differs in some cases and is often determined
by the efficiency of the underlying task management.

Keywords: OpenMP - reduction - worksharing - tasking.

1 Introduction

Since the first OpenMP specifications for Fortran and C/C++, the API has
always included support for a defined set of reduction operations in workshar-
ing and parallel constructs. This support covers C/C++ for and Fortran do

* This article has been authored by an employee of National Technology & Engineering
Solutions of Sandia, LLC under Contract No. DE-NA0003525 with the U.S. Depart-
ment of Energy (DOE). The employee owns all right, title and interest in and to
the article and is solely responsible for its contents. The United States Government
retains and the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this article or allow others
to do so, for United States Government purposes. The DOE will provide public access
to these results of federally sponsored research in accordance with the DOE Pub-
lic Access Plan (https://www.energy.gov/downloads/doe-public-access-plan). San-
dia National Laboratories is a multimission laboratory managed and operated by
National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

2 J. Ciesko and S. L. Olivier

loops with a defined iteration space, suitable for many iterative algorithms.
OpenMP 3.0 introduced support for explicit task parallelism in OpenMP, en-
abling more irregular computations such as recursive algorithms and pointer
chasing. That class of capabilities was further developed in subsequent versions
of the specification to include the support of task dependencies in OpenMP 4.0
and the taskloop construct in OpenMP 4.5.

OpenMP 4.0 also added support for user-defined reductions over non-trivial
data types and arbitrary operations. OpenMP 5.0 [8] finally brought support
for explicit tasks to contribute to reductions, adding the means to define both
the scope of such reductions and the tasks participating in them. As with many
OpenMP features, implementors required time to incorporate support of task
reductions, but both LLVM/Clang and GCC/g++ now include this feature.

This paper examines the current state of task reduction support in GCC/g+-+
and LLVM/Clang, including support of the language constructs as well as the
performance of their implementations. For this purpose, we have selected three
synthetic benchmarks that stress-test implementations and expose the cost of
reduction support as well as tasking overheads for each compiler.

The rest of the paper is structured as follows. Section 2 provides background
on reductions and currently supported syntax in OpenMP. Section 3 describes
the benchmarks used in the evaluation, and Section 4 provides details of the
experimental setup. Section 5 discusses performance results from the evaluation.
Section 6 provides insight into reduction support in GCC/g++ and LLVM/-
Clang and matches observed benchmark behavior with implementation choices.
Section 7 surveys related work. Lastly, Section 8 summarizes this work and gives
an outlook on further research directions.

2 Background

In this section we provide some context for our work. First, we consider general
implementation strategies for reduction operations. Second, we give an overview
of OpenMP task reductions.

2.1 Reductions and Their Common Implementation Strategies

In mathematical terms, a reduction algorithm is a numerical fold over a sequence
of numbers. As the name suggests, it implies an iterative update (accumulation)
of a result variable. For parallel formulations on parallel hardware in which the
sequence of numbers is traversed concurrently and where the result variable is
thus updated concurrently, data races can occur.

Two common strategies exist to avoid data races. One strategy makes memory
updates atomic. The other creates thread-private data copies for the duration
of the traversal of the sequence by each thread. In this strategy, a second step
is required, during which the privatized copies are combined.

Atomic updates depend on software or hardware support of atomic memory
updates and have implications for cache coherency traffic as a result of contention

Characterizing the Performance of Task Reductions 3

among threads to access the location of the reduction variable. Privatization
avoids concurrent accesses to a memory location at the cost of private memory
allocation, initialization, and the need for the final combination step. Which
particular implementation is preferable on a given architecture depends on the
size of the reduction variable and the access frequency.

OpenMP supports atomic memory accesses through the atomic construct
which can be used directly by the developer to implement reductions. Program-
ing model runtimes commonly rely on privatization for their internal implemen-
tation, which together with the possibility of using atomics, offers flexibility of
choice to the programmer depending on the use case. Alternatively, the devel-
oper can implement privatization using the threadprivate directive. In this
case, the developer is responsible for combining per-thread results as well.

From an OpenMP implementation perspective, privatization can be achieved
by privatizing per thread or by privatizing per task. Privatization per task can
incur significant overheads if the number of tasks is disproportionally larger than
the number of threads. Since large numbers of tasks are common, implementa-
tions rely on per thread privatization where each task acquires the thread-private
copy of the reduction variable at execution time.

Finally, the developer can avoid privatization or the need for atomic accesses
in recursive task parallel programs by passing the reduction variable to each
task as a function argument by value and returning the intermediate results as
a return value. Unfortunately, the use of stack for the purpose of privatization
is equivalent to per-task privatization and incurs the highest memory use and
overheads due to repetitive initialization of stack variables. We call this approach
stack in the evaluation section.

2.2 OpenMP Task Reduction Syntax and Semantics

The OpenMP specification admits the formulation of task reductions through
reduction scoping clauses and a reduction participating clauses. The former “de-
fines the region in which a reduction is computed”, while the latter “specifies
a task (or SIMD lane) as a participant in a reduction defined by a reduction
scoping clause” [§].

The clauses are as follows, taking an operation op and reduction variable var.

— reduction(task, op: var): Scopes a task reduction for a parallel or work-
sharing region

reduction(op: var): Scopes a task reduction for a taskloop region and makes
the tasks created to execute the loop participants in the task reduction
task_reduction(op: var): Scopes a task reduction for a taskgroup region
in_reduction(op: war): Denotes participation of a task, target task, or
taskloop in a task reduction

In Listing 1.1, a task reduction is scoped using the task_reduction clause
on the taskgroup construct. Explicit tasks participating in the reduction use
the in_reduction clause on the task construct. In Listing 1.2, the task reduc-
tion is scoped using the reduction clause of the parallel construct with the

4 J. Ciesko and S. L. Olivier

task modifier. As before, tasks bearing the in_reduction clause participate in
the reduction. Finally, Listing 1.3 shows the use of the reduction clause on the
taskloop construct, which acts as both a reduction scoping and reduction par-
ticipating clause. References to the variable in the explicit tasks created by the
OpenMP implementation to execute the iteration of the loop will all contribute
to the reduction. Though not demonstrated here, the taskloop construct can
also take an in_reduction clause to participate in a reduction already scoped in
an enclosing region. The in_reduction clause can also be applied to a target
construct, allowing a potentially offloaded target task to contribute to a task
reduction.

1 #pragma omp parallel
2 #pragma omp single
3 #pragma omp taskgroup task_reduction(+: sum)
1
#pragma omp task in_reduction (+: sum)
6 sum += 1;
7 #pragma omp task in_reduction(+: sum)
8 sum += 2;
9

}
Listing 1.1: Simple Example of OpenMP Task Reduction

3 Benchmark Programs

To benchmark the implementations of OpenMP reductions, we consider a set
of programs with distinct properties. They demonstrate the use of all OpenMP
task reductions clauses and critically depend on an efficient implementation due
to their high access frequency to the reduction variable.

In real-word applications, this frequency relative to other computation is sig-
nificantly lower. This is the case where tasks are larger and spend more time in
unrelated code. Instead, these benchmark applications stress-test implementa-
tions and show the hypothetical limitations, similar to roofline analysis.

For completeness, we contrast the OpenMP reduction support against other
approaches to implement reductions such as atomics, user-managed thread-
private copies, and returning partial values through the call tree. Prior to the
availability of task reductions, these approaches would have been the only op-
tions for users attempting to combine results from OpenMP tasks.

3.1 Fibonacci

Fibonacci is a recursive program to calculate the nth number in the Fibonacci
series. It represents a typical use case for task parallel programs where recursive
formulations result in compact code or where an unknown iteration space at a
given nesting level disallows the use of work sharing constructs.

int n, sum;

void fib (int n, int &sum)
{

1
>
3
1
5

if (n < 2)

Characterizing the Performance of Task Reductions 5

6 sum += n;

7 else

8 {

9 #pragma omp task in_reduction(+: sum)
10 fib(n-1, sum);

11 #pragma omp task in_reduction(+: sum)
12 fib(n-2, sum);

13 }

14 3}

16 int main (int argc, char xargvl[])
17 {

18 n = atoi(argv[1]);

20 #pragma omp parallel reduction (task, +: sum)
1 #pragma omp single
2 #pragma omp task in_reduction (+: sum)
23 fib(n, sum);
4
>

std::cout << "fib(" << n << ") = " << sum << std::endl;
26 return 0;

Listing 1.2: Fibonacci calculation using OpenMP task reduction

Listing 1.2 shows an implementation using OpenMP task reductions. Here
the program scopes the reduction using the reduction clause on the parallel
construct with the task modifier, and tasks participating in that reduction scope
use the in_reduction clause. Note that the reduction variable is passed by
reference to the recursive function, because the reduction variable in the recursive
function is not in the lexical scope of the parallel region. Further, using taskwait
for synchronization is not required. The barrier at the end of the parallel region
ensures that all tasks complete.

The program can be further augmented to provide “cut-off” values below
which tasks would not be generated, thus coarsening parallelism. The effect is to
reduce the number of tasks which in return lowers overheads of task creation and
management. For example, if a cut-off of 10 were specified, then the calculation
of fib(9) would be handled by a direct sequential function call rather than an
OpenMP task. Cut-offs could be either be implemented manually (if-then-else
block) or using the final and mergeable clauses. Though not shown in the
simplified code listing, for our evaluation we implemented manual cut-offs.

An alternative to task reductions would be the use of the atomic construct to
update the reduction variable. In practice, this method is expected to introduce
contention and limit effective parallelism as all threads compete to update the
reduction variable.

Another alternative is to create thread-private copies of the reduction vari-
able, accumulate partial sums in thread-local copies and combine the partial
sums into the final sum at the end of the program. The threadprivate di-
rective can be used to manage the copies. However, the addition of the final
combining step makes this option somewhat cumbersome.

A third alternative with minimal requirements on compiler support is to
transmit per-task partial sums as return values through the call stack. A draw-
back of this option is that a taskwait construct is needed at each nesting level
in order to wait for the contributions of the child tasks.

6 J. Ciesko and S. L. Olivier

3.2 Dot Product

Dot product implements the vector dot product of two arrays of numbers. Unlike
Fibonacci, this benchmark is iterative rather than recursive. Listing 1.3 uses the
taskloop construct to decompose the iteration space of the loop into tasks. In
addition to task reduction, atomic, and thread-privatization versions, we also
compare to a version using a worksharing construct with no explicit tasks.

For Fibonacci, the number of recursive function calls determines the number
of tasks created and thus requires the use of cut-offs to limit the number of tasks.
For Dot, the number of tasks is orthogonal to the algorithm itself and can be
specified through the num_tasks clause on the taskloop construct.

1 #pragma omp parallel shared(x, y) num_threads(nthreads)

2 #pragma omp single

3 #pragma omp taskloop num_tasks(ntasks) reduction(+ : sum)
4 for (unsigned long i = 0; i < n; ++i) {

5 double tmp = x[il]l * y[il;

6 sum += tmp;

7 }

Listing 1.3: Task reduction for vector dot product using the taskloop construct

3.3 Powerset

The Powerset benchmark computes the number of permutations of n elements
by expanding a binary tree with a height of log(n). While similar in algorithmic
structure to Fibonacci, the Powerset produces a balanced tree which makes it less
sensitive to task-stealing features in task schedulers. In addition to a variation of
this algorithm using reduction variables of integer type, the Powerset benchmark
also exercises implementations with user-defined reductions over a configurable
type that is variable in size. We refer to it as Powerset-UDR. This configuration
enables us to quantify and further differentiate the overheads originating from
task management versus privatization. As with Fibonacci, we have implemented
manual cut-offs (not shown in the simplified code listing).

1 int thr_priv_sum, cut_off;

2 #pragma omp threadprivate(thr_priv_sum)

1

void powerset(int n, int index) {

for (int i = index; i < n; ++i){
6 #pragma omp task
7 {
8 powerset(n, i + 1);
9 thr_priv_sum++;
10 }
11 }

12 ¥

14 int main(int argc, char *argv[]) {
15 int n = atoi(argvl[1]);

16 int nthreads = atoi(argv([2]);

17 cut_off = atoi(argvl[3]);

18 int sum = 0;

20 #pragma omp parallel num_threads(nthreads)

Characterizing the Performance of Task Reductions 7

22 thr_priv_sum = 0;
23 #pragma omp single

24 #pragma omp task

25 powerset(n, 0);

26 }

28 //Reduce thread-private copies

o #pragma omp parallel num_threads(nthreads)

31 #pragma omp single

32 nthreads = omp_get_num_threads();
33 #pragma omp for reduction(+ : sum)
34 for (int i = 0; i < nthreads; i++)

35 sum += thr_priv_sum;

36 }

38 std::cout << "powerset(" << n << ") = " << sum << std::endl;

39 return O0;

10 }

Listing 1.4: Powerset using thread-private reduction variables obtained with
manual thread privatization

The Powerset benchmark includes the variations described in the previous
section for Fibonacci. Listing 1.4 shows the implementation of Powerset using
the threadprivate directive and the subsequent manual reduction of private
copies into the final reduction variable.

4 Experimental Setup

The test machine comprises Intel® Xeon® “Skylake" Platinum 8160 Processors
in a dual socket configuration with 24 cores per socket (48 cores total) and 2
hardware threads per core running at 2.1 GHz. The memory is 192 GB DDRA.
The operating system is Red Hat® Enterprise Linux® 7.9. The compiler and
runtime versions are LLVM /Clang 14.0 (release) and GCC 13 (not yet released,
code version dated 20220518).

For both compilers we have used the following sequence of options -fopenmp,
-Wall, -Wextra, -pedantic, - Werror and -08. Further, we have set the environ-
ment variables OMP_PROC _BIND and OMP_PLACES to close and cores
respectively during execution. On the test machines, this results in a thread
mapping of one thread per core.

5 Evaluation

We have evaluated the set of presented benchmarks for the various implemen-
tations, using a variable number of threads ranging from one to 128 and for a
variable number of tasks. Further, we have compiled all implementations of all
benchmarks with both the LLVM/Clang and the GCC/g-++ compilers using the
same compiler options. Lastly, the evaluation of a version of Powerset using user-
defined reductions includes results for variable reduction type sizes. This section
summarizes key finding and provides representative figures for configurations

8 J. Ciesko and S. L. Olivier

with 48 threads only. Executions with smaller thread counts exhibit similar be-
havior, while executions with more than 48 threads result in non-representative
data due to over-subscription of the system and the resulting effects. All bench-
mark results show the average total execution time of 5 repetitions for a respec-
tive constant problem size and given range of tasks.

Figures 1 and 2 show performance results for the Fibonacci and Powerset
computations. Key insights for these two benchmarks are as follows.

— Performance of implementations using the OpenMP language features for
reductions is the same order of magnitude as prior available implementations
using stack-local variables (stack) or manual privatization (threadprivate).

— The use of parallel with the task modifier (parallel-task-red) yields similar
results to the use of the task_reduction clause on the taskgroup construct
(taskgroup-red).

— Atomic accesses (atomic) incur high overhead regardless of the number of
tasks due to threads contending for the same memory location.

— Implementations relying on stack-local variables and the taskwait construct
depend on the efficiency of the underlying tasking implementation. GC-
C/g++ performs well only for low task counts, while LLVM/Clang out-
performs for large task counts.

— Implementations using the threadprivate clause to manually privatize vari-
ables (threadpriv) underperform compared to other techniques for small task
counts. Recall that they incur the cost of the additional step of manually
combining the thread-private copies.

— When using GCC/g++, the performance of taskloop reductions (taskloop-
red) degrades with large numbers of tasks.

— No significant differences were observed when using the untied task modifier
(parallel-task-red-untied) compared to the tied default (parallel-task-red).

Figure 3 shows results for the dot-product with two to 131k tasks for LLVM /-
Clang and an input problem size of 224 values per array. This input size cor-
responds to array allocations of 128MB each. The results indicate a similar
behavior for the atomic implementation as described for Fibonacci and Power-
set. The implementation using the parallel for construct uses no tasks and
is provided for reference. As it is invariant to the number of tasks, its perfor-
mance represents a horizontal line (parallel-for-red). Lastly, all other techniques
perform similarly: Performance degrades when the number of tasks is too low to
provide enough parallelism and when the number of tasks is too large with the
resulting granularity being too fine. However, the amount of work per task is sig-
nificantly higher compared to Powerset or Fibonacci, potentially underexposing
some technique-specific performance variations. We have observed comparable
performance for GCC/g++ on this benchmark.

The graph in Figure 4 shows results for the Powerset benchmark using user-
defined reductions with a constant number of 262k tasks for LLVM/Clang and
GCC/g++. Results indicate that all techniques except stack are invariant to the
size of the reduction variable, and thus the cost of memory allocation is equal.
For LLVM /Clang, the implementation using stack degrades in performance with

Characterizing the Performance of Task Reductions 9

increasing type sizes due to increasingly distant memory accesses for stack oper-
ations. Results for GNU/g++ resemble performance results shown in Figure 2b
corresponding to 262k tasks: In both those results and the results for UDRs of
all sizes, tasking overheads dominate.

To summarize, the performance of task reductions is determined by the task
granularity and task count, by properties of a reduction technique and by its
implementation in the runtime system.

Techniques available prior to the support of task reductions in OpenMP vary
significantly in performance. For higher degrees of concurrency and frequent ac-
cesses to the reduction variable, atomics achieve the lowest performance. The use
of stack-local variables requires task synchronization and relies on efficient task
management in the runtime. Finally, manual privatization using threadprivate
variables requires a final reduction of all private copies once the reduction com-
pletes. If the final reduction incurs additional overhead, performance degrades.

Task reduction support in OpenMP using the parallel and taskgroup con-
structs exhibits performance asymptotic to the threadprivate version, suggesting
that both LLVM /Clang and GCC/g++ internally use per-thread privatization
with tasks acquiring and reusing such thread-private allocations. In this case,
internal optimizations can raise the performance beyond that of manual priva-
tization coded at user level. In particular, the implementation does not need to
expose OpenMP semantics for its internal mechanism used to combine results
and may employ a more sophisticated reduction of thread-private copies such as
an in-line parallel tree based reduction.

The next section examines implementations of task reduction in both LLVM /-
Clang and GCC/g++, as well as relevant differences in their general task man-
agement approaches.

6 Implementations in GCC and LLVM /Clang

The understanding of performance characteristics described in the previous sec-
tion requires inspection of tasking and task reduction support in the front-end
compiler as well as the runtime. Of particular interest is the implementation of
memory privatization and whether it occurs on thread or task level.

Figure 1.5 shows example code for a task participating in a task reduction.
Figure 1.6 shows the corresponding intermediate code representation produced
by the GCC/g++ (compiler -fdump-tree-optimized). Accesses to the original
memory location are redirected to a new memory location obtained by call-
ing builtin_. GOMP_tas_reduction_remap. This function obtains the asso-
ciated thread-private memory location corresponding to the reduction variale

registered by the reduction clause.
1 void func(int &sum) {
2 #pragma omp task in_reduction(+ : sum)
3 sum++;
4 }
Listing 1.5: Sample code for a task participating in a reduction

10 J. Ciesko and S. L. Olivier

] — stack

atomic

10'4 —— threadpriv
parallel-task-red

1 —— parallel-task-red-untied

1004 taskgroup-red
8
2
1074
1074
10° 10 10° 10° 10’
Number of Tasks
(a) LLVM/Clang
10° 3
i —— stack
atomic
104 T threadpriv
] parallel-task-red
1 —— parallel-task-red-untied
101 taskgroup-red
8
@

10 10 10° 10 10

Number of Tasks
(b) GCC/g++
Fig. 1: Fibonacci computation with a constant problem size of N=33, 48 threads

and a variable task cutoff resulting in a range of 1.2k-11405k tasks, showing
differences between compilers and techniques

Characterizing the Performance of Task Reductions 11

10°4 —— stack

] atomic

1 —— threadpriv
” parallel-task-red
i —— taskgroup-red
taskloop-red

)
@
L 1074
\\v;:/_
107
10_4 T
10’ 10° 10° 10 10°
Number of Tasks
(a) LLVM/Clang
10°4 —— stack
atomic
1 —— threadpriv
o parallel-task-red L
] — taskgroup-red
taskloop-red
3
L 1073
107 4
1074 LR R T T T LB RL R | T T T T T
10’ 10° 10° 10° 10°
Number of Tasks

(b) GCC/g++

Fig. 2: Powerset computation with a constant problem size of N=18, 48 threads
and a variable cutoff with a range of 2-262k tasks, compiled with both compilers

12 J. Ciesko and S. L. Olivier

—— atomic

- threadpriv

§ E —— parallel-for-red

= taskloop-red
taskloop-red-untied

10’ 10° 10° 10 10°
Number of Tasks

Fig. 3: Dot-product compiled with LLVM /Clang with a constant problem size of
N=224, 48 threads and a variable cutoff resulting in a range of 2-131k tasks

1 void func (int & sum) {
2 struct .omp_data_s.0 .omp_data_o.1;

4 .omp_data_o.1l.sum = sum_2(D);

5 __builtin_GOMP_task (_Z4funcRi._omp_fn.0, &.omp_data_o.l, OB, 8, 8, 1,
0, 0B, 0, OB);

6 return;

7 }
9 void _Z4funcRi._omp_fn.0 (struct .omp_data_s.0 & restrict .omp_data_i) {

11 void * D.2516[1];
12 _3 = .omp_data_i_2(D)->sum;
13 D.2516[0] = _3;

14 __builtin_GOMP_task_reduction_remap (1, O, &D.2516);

15 sum_6 = D.2516[0];

16 _10 = *sum_6;

17 _11 = _10 + 1;

18 *sum_6 = _11;

19 return;

20 }

Listing 1.6: Intermediate code fragments generated by the GCC/g++ front-end

compiler for the example code in Figure 1.5

LLVM/Clang supports task reductions through per-thread privatization as
well. Similar to the approach in GCC, the intermediate code calls the function
__kmpc_task_reduction_get th data to access the thread-private copy.

The overhead costs of task management are critical to performance both
with and without task reductions. The use of per-thread task queues in the
LLVM runtime contributes to lower task management costs compared to the

Characterizing the Performance of Task Reductions 13

powerset-UDR-clang.res

{1 —— stack

atomic

] —— threadpriv
parallel-task-red
1 —— taskgroup-red
taskloop-red

o
[0]
L 10
/
10 2 | o - —
10’ 10° 10° 10 10°
Size of Reduction Variable (bytes)
(a) LLVM/Clang
powerset-UDR-g++.res
10° 4
o
(6]
L 107
] — stack
i atomic
1 —— threadpriv
parallel-task-red
w2d T taskgroup-red
E taskloop-red
T T LR | T LR | T T T T T T
10" 10° 10° 10° 10°

Size of Reduction Variable (bytes)
(b) GCC/g++

Fig.4: Powerset with a constant problem size of N=18, 48 threads, 262k tasks
and variable reduction type with type size range of 4B-131KB

14 J. Ciesko and S. L. Olivier

GCC runtime with its centralized queue that is shared among all threads in the
team. High overhead costs particularly impact our stack benchmark versions
that pass partial results through the call stack, because they require taskwait
synchronizations that induce additional accesses to task queues in the runtime.

7 Related Work

Prior to the addition of task reductions in OpenMP 5.0, evaluation studies [4,
2] of the proposed feature had been demonstrated using the Nanos runtime
system! and Mercurium compiler? [1]. In addition to OpenMP tasking, they
implement the OmpSs programming model® [5], a tasking-centric programming
model with close ties to OpenMP and support for task reductions. Previous work
also explored array reductions over OmpSs tasks [3]. User-defined reductions for
OpenMP were proposed by Duran et. al [6]. Reductions in other task paral-
lel languages and language extensions include X10/Habanero-Java phaser accu-
mulators [11] and finish accumulators [10], as well as Cilk++ hyperobjects [7].
Blaze-Tasks is a C++17-based framework for task scheduling and reductions [9].

8 Conclusions and Future Work

Our study provides evidence that the task reduction features in OpenMP are
well supported by GCC and LLVM /Clang today. Performance insights indicate
that the use of the language features is meaningful and provides performance
comensurate to efficient manually implemented reductions for reasonable task
sizes. For reproducibility, we intend to make available the benchmarks, the scripts
to build and run them, and the complete set of graphs, upon approval.

Key topics that warrant further investigation are performance differences
among compilers and the efficiency of their support for taskwait synchroniza-
tions (stressed by our manually-coded stack-based reductions) and reductions
on taskloop constructs. Further inspection of their implementations along with
a deeper experimental evaluation is a subject for future work. Based on the re-
sults in this paper, our recommendation to users is that they can confidently
employ the convenience and performance of task reductions for their OpenMP
applications on multicore CPUs.

References

1. Balart, J., Duran, A., Gonzalez, M., Martorell, X., Ayguadé, E., Labarta, J.: Nanos
Mercurium: a research compiler for OpenMP. In: European Workshop on OpenMP
(EWOMPO04). pp. 103-109 (2004)

! https://pm.bsc.es/nanox
2 https://pm.bsc.es/mexx
3 https://pm.bsc.es/ompss

10.

11.

Characterizing the Performance of Task Reductions 15

. Ciesko, J., Mateo, S., Teruel, X., Beltran, V., Martorell, X., Badia, R.M., Ayguadé,

E., Labarta, J.: Task-parallel reductions in OpenMP and OmpSs. In: DeRose,
L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Miiller, M.S. (eds.) 10th
International Workshop on OpenMP (IWOMP 2014). Lecture Notes in Computer
Science, vol. 8766, pp. 1-15. Springer (Sep 2014)

Ciesko, J., Mateo, S., Teruel, X., Martorell, X., Ayguadé, E., Labarta, J.: Support-
ing adaptive privatization techniques for irregular array reductions in task-parallel
programming models. In: Maruyama, N., de Supinski, B.R., Wahib, M. (eds.) 12th
International Workshop on OpenMP (IWOMP 2016). Lecture Notes in Computer
Science, vol. 9903, pp. 336-349. Springer International Publishing, Cham (2016)
Ciesko, J., Mateo, S., Teruel, X., Martorell, X., Ayguadé, E., Labarta, J., Duran,
A., de Supinski, B.R., Olivier, S., Li, K., Eichenberger, A.E.: Towards task-parallel
reductions in OpenMP. In: Terboven, C., de Supinski, B.R., Reble, P., Chapman,
B.M., Miiller, M.S. (eds.) 11th International Workshop on OpenMP (IWOMP
2015). Lecture Notes in Computer Science, vol. 9342, pp. 189-201. Springer In-
ternational Publishing (2015)

Duran, A., Ayguadé, E., Badia, R., Labarta, J., Martinell, L., Martorell, X., Planas,
J.: OmpSs: a proposal for programming heterogeneous multi-core architectures.
Parallel Processing Letters 21(02), 173-193 (2011)

Duran, A., Ferrer, R., Klemm, M., de Supinski, B.R., Ayguadé, E.: A proposal
for user-defined reductions in OpenMP. In: Sato, M., Hanawa, T., Miiller, M.S.,
Chapman, B.M., de Supinski, B.R. (eds.) 6th International Workshop on OpenMP
(IWOMP 2010). Lecture Notes in Computer Science, vol. 6132, pp. 43-55. Springer,
Berlin, Heidelberg (2010)

Frigo, M., Halpern, P., Leiserson, C.E., Lewin-Berlin, S.: Reducers and other
Cilk+-+ hyperobjects. In: Proceedings of the Twenty-first Annual Symposium on
Parallelism in Algorithms and Architectures (SPAA’09). pp. 79-90. ACM, NY,
NY, USA (2009)

OpenMP Architecture Review Board: OpenMP Application Programming In-
terface Version 5.0. https://www.openmp.org/wp-content/uploads/OpenMP-API-
Specification-5.0.pdf (Nov 2018)

Pirkelbauer, P., Wilson, A., Peterson, C., Dechev, D.: Blaze-Tasks: A framework
for computing parallel reductions over tasks. ACM Trans. Archit. Code Optim.
15(4) (Jan 2019)

Shirako, J., Cavé, V., Zhao, J., Sarkar, V.: Finish accumulators: An efficient reduc-
tion construct for dynamic task parallelism. In: Kasahara, H., Kimura, K. (eds.)
25th International Workshop on Languages and Compilers for Parallel Computing
(LCPC 2012). Lecture Notes in Computer Science, vol. 7760, pp. 264-265. Springer
(2012)

Shirako, J., Peixotto, D.M., Sarkar, V., Scherer, W.N.: Phaser accumulators: A new
reduction construct for dynamic parallelism. In: IEEE International Symposium
on Parallel and Distributed Processing (IPDPS 2009). pp. 1-12. IEEE, Rome, Italy

