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Motivation

Q: Given a realistic atomistic-level model for well structure, 
what are the consequences for quantum dot properties?

There’s been much work recently to characterize SiGe/Si/SiGe wells, e.g.

[Wuetz, et al. arXiv:2112.09606][Dyck, et al. Adv. Mat. Interfaces 4, 1700622 
(2017)]



3

STM tip

Si or Ge surface

Cartoon of measurement

Observable: Surface position

STM measurements of interface topography

Capability developed by Ezra Bussmann and collaborators 
(Sandia) under previous ARO/LPS-funded project

Procedure:
• Grow SiGe substrate
• Image surface of SiGe substrate w/ STM (lower interface)
• Continue growing Si well (molecular beam epitaxy)
• Image surface of Si well w/ STM (upper interface)

Scanning tunneling microscopy (STM) provides 
a means to characterize surface properties
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STM tip

Si or Ge surface

Cartoon of measurement

Observable: Surface position

STM measurements of interface topography

Capability developed by Ezra Bussmann and collaborators 
(Sandia) under previous ARO/LPS-funded project

Procedure:
• Grow SiGe substrate
• Image surface of SiGe substrate w/ STM (lower interface)
• Continue growing Si well (molecular beam epitaxy)
• Image surface of Si well w/ STM (upper interface)

Result:
• Topography of both upper and lower interfaces of the Si 

well in the same device
• Use to generate an alloy disorder realization over a 1µm x 

1µm x 15 nm volume, assuming some interdiffusion length

Scanning tunneling microscopy (STM) provides 
a means to characterize surface properties
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STM measurements of interface topography Data courtesy Fabián Peña and Ezra Bussmann (SNL)
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STM measurements of interface topography Data courtesy Fabián Peña and Ezra Bussmann (SNL)

Note: Probably an extreme 
example of lower interface 
roughness due to unintended 
richer Ge level during growth



7

Atomistic disorder model

z (nm)

Example Ge fraction histogram

Sigmoidal interdiffusion 
distribution [Dyck, et al. (2017)]:
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Model
• Mesh-based discretization

• Legendre polynomials on a hexahedral 
mesh (stack of bricks)

• Taking up to 3rd order here (64-dim modal 
basis/mesh element)

• Discontinuous Galerkin formulation in 
Laconic code developed at Sandia

• High-throughput simulations feasible: <1 
hr/eigensolve on single core

Mesh highly refined along z-axis to 
resolve wavefunction tails near interfaces
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Model
• Mesh-based discretization

• Legendre polynomials on a hexahedral 
mesh (stack of bricks)

• Taking up to 3rd order here (64-dim modal 
basis/mesh element)

• Discontinuous Galerkin formulation in 
Laconic code developed at Sandia

• High-throughput simulations feasible: <1 
hr/eigensolve on single core

• Valley-orbit coupling:
• Shindo-Nara equations [Shindo & Nara 

(1976)] for multi-valley EMT
• Plane wave representation of Bloch 

functions from DFT
• Atom-by-atom model for valley-orbit 

coupling: Each Ge atom contributes a 
localized repulsive potential scaled to 
agree with concentration-dependent Si  
SiGe CB offset

Mesh highly refined along z-axis to 
resolve wavefunction tails near interfaces

,
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Single quantum dot rastered across the surface: Valley splitting

= dot size

No topography STM-inferred topography STM-inferred topography

• 1.5 meV symmetric harmonic x-y 
confinement
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Single quantum dot rastered across the surface: Valley splitting

= dot size

No topography STM-inferred topography STM-inferred topography

• 1.5 meV symmetric harmonic x-y 
confinement

• Decent fit to Rice distribution for 
valley splitting [Wuetz, et al. (2021)]

• Interdiffusion length 4ᵰ�  has a strong 
effect on valley splitting

• Atomic steps/topography appear to 
be less important than interdiffusion
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Single quantum dot rastered across the surface: Valley splitting

• Valley splitting uncorrelated 
between different interdiffusion 
lengths 4ᵰ�  for same interface 
topography

• Interdiffusion appears to be the 
dominant driver of valley splitting

Each point: Same x-y confinement coordinate



13

Single quantum dot rastered across the surface: Inter-valley dipole

No topography STM-inferred topography STM-inferred topography

= dot size
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Single quantum dot rastered across the surface: Inter-valley dipole

• Inter-valley dipole should relate to spin-orbit 
coupling properties, e.g. spin-valley coupling 
[Yang, et al. Nat. Comm. 4, 2069 (2013)]

• Generally larger dipole in presence of crisp 
interface topography

No topography STM-inferred topography STM-inferred topography

= dot size
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Double quantum dot

Orange dots: Ge atoms within ±5 nm of x-z cut plane

PL B PR
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Double quantum dot

• Compute position dipole and 
infer four-level Hamiltonian

• Fits nicely to the 4-level double 
dot model of [Borjans, et al. PRX 
Quantum 2, 020309 (2021)]

Intra-/inter-
valley tunnel 
couplings are 
anticorrelated, 
as expected

Sliding DQD 
through well

Double quantum dot: Flat interfaces

L dot R dot
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Double quantum dot: Flat interfaces

For STM-informed interfaces, alloy disorder-induced 
detuning variation is much more dramatic (approximately 
10x)

Sliding DQD 
through well
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Summary

• We’ve developed machinery for simulating large-scale atomistic alloy disorder within 
multi-valley effective mass theory based on information about interface topography
• Able to use data from e.g. APT, STM characterization of atomic-scale disorder

• For significant interdiffusion between Si and SiGe layers, valley splitting and inter-
valley dipole statistics primarily governed by diffusion rather than interface 
topography

• We’ve characterized inter- and intra-valley tunnel coupling variation for a double 
quantum dot moving within a SiGe/Si/SiGe well
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