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Motivation

There’s been much work recently to characterize SiGe/Si/SiGe wells, e.g.
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[Dyck, et al. Adv. Mat. Interfaces 4, 1700622
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Q: Given a realistic atomistic-level model for well structure,
what are the consequences for guantum dot properties?




STM measurements of interface topography

Scanning tunneling microscopy (STM) provides Cartoon of measurement
a means to characterize surface properties

Capability developed by Ezra Bussmann and collaborators
(Sandia) under previous ARO/LPS-funded project

Procedure:

* Grow SiGe substrate

* Image surface of SiGe substrate w/ STM (lower interface)
* Continue growing Si well (molecular beam epitaxy)

* Image surface of Si well w/ STM (upper interface)




STM measurements of interface topography

Scanning tunneling microscopy (STM) provides Cartoon of measurement
a means to characterize surface properties

Capability developed by Ezra Bussmann and collaborators
(Sandia) under previous ARO/LPS-funded project

Procedure:

* Grow SiGe substrate

* Image surface of SiGe substrate w/ STM (lower interface)
* Continue growing Si well (molecular beam epitaxy)

* Image surface of Si well w/ STM (upper interface)

Result:

* Topography of both upper and lower interfaces of the Si
well in the same device

 Use to generate an alloy disorder realization over a 1um x

| 1um x 15 nm volume, assuming some interdiffusion length
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STM measurements of interface topography Data courtesy Fabian Pefia and Ezra Bussmann (SNL)
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STM measurements of interface topography Data courtesy Fabian Pefia and Ezra Bussmann (SNL)
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Atomistic disorder model

* Use STM data or idealized model (“flat interface”) to define the
interface locations in (x,y) plane

* For each interface, define a sigmoidal Ge concentration along z-
axis, referenced to local interface location Zupper (Z, ¥), Zlower (Z, Y)

* Generate an alloy realization on diamond lattice for all atoms
(~10° atoms) and down-select based on simulation volume

* Including both “step” structure and interdiffusion

* |n the following, assuming 47=1 nm based on TEM measurements
of 25 nm thin lamellae [Bussmann]
* Consistent also with other APT and HAADF-STEM
measurements:
[Dyck, et al. Adv. Mat. Interfaces 4, 1700622 (2017)]
[Wuetz, et al. arXiv:2112.09606]

f N
Sigmoidal interdiffusion

distribution [Dyck, et al. (2017)]:
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Example Ge fraction histogram

| ||l".- | ||‘
-4

_'|||' = i i i = = =
-100 =75 =50 =25 0 25 50 75 100
® (nm)




Model ~ ~\

* Mesh-based discretization

* Legendre polynomials on a hexahedral
mesh (stack of bricks)

* Taking up to 3" order here (64-dim modal Mesh highly refined along z-axis to
basis/mesh element) 9 resolve wavefunction tails near interfaces D

* Discontinuous Galerkin formulation in
Laconic code developed at Sandia L

* High-throughput simulations feasible: <1
hr/eigensolve on single core




Model r ~

* Mesh-based discretization
* Legendre polynomials on a hexahedral
mesh (stack of bricks)
* Taking up to 3" order here (64-dim modal Mesh highly refined along z-axis to
basis/mesh element) 9 resolve wavefunction tails near interfaces D
* Discontinuous Galerkin formulation in
Laconic code developed at Sandia L
* High-throughput simulations feasible: <1 g2
hr/eigensolve on single core
| * Valley-orbit coupling: | |
e Shindo-Nara equations [Shindo & Nara e B e B oW
(1976)] for multi-valley EMT
* Plane wave representation of Bloch
functions from DFT
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Vaei(r) = aged® (r — 1) age = 12 meV nm®

* Atom-by-atom model for valley-orbit (r|u,) Z Co +.€
coupling: Each Ge atom contributes a
localized repulsive potential scaled to \, (u:i:z|5 (1' —1i)|us,) =1

agree with concentration-dependent Si =2 (3) 9
@ SiGe CB offset (Ug2 |0V (r — 1) |ug,) ~ 1




Single quantum dot rastered across the surface: Valley splitting
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Single quantum dot rastered across the surface: Valley splitting

No topography

Valley splitting (ueV), flat mterfaces 4r 1 nm
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Decent fit to Rice distribution for
valley splitting [Wuetz, et al. (2021)]
Interdiffusion length 41 has a strong

effect on valley splitting

Atomic steps/topography appear to
be less important than interdiffusion

STM-inferred topography
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Single quantum dot rastered across the surface: Valley splitting

STM-informed topography
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Single quantum dot rastered across the surface: Inter-valley dipole

No topography
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Single quantum dot rastered across the surface: Inter-valley dipole

No topography

Dipole (E;|r|Eo) (nm), flat 4T =
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Double quantum dot

* Assuming “benchmark” double well potential of [Anderson, et al. arXiv:2203.00082]
* 5nm well

* Interface topographies: flat or STM-inferred

* Interdiffusion length, 47: 0or 1 nm
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Double quantum dot: Flat interfaces
g esl—
* Compute position dipole and > 400 Sliding DQD
infer four-level Hamiltonian “*| through well
* Fits nicely to the 4-level double "0 260 430 660 800
dot model of [Borjans, et al. PRX
+  Quantum 2, 020309 (2021)]
y 0 te t!
0 5+ FEvsL t, te
H = t* i £ —< 0
| t’c* t 0 —35 + EVS,R
* Extract:
* Valley splittings Eys 1., Eysr
* |ntra-/inter-valley tunnel couplings t,, t..
* Detuning offset €5 due to alloy disorder
]
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Double quantum dot: Flat interfaces
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For STM-informed interfaces, alloy disorder-induced

A I~ \

detuning variation is much more dramatic (approximately
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Summary

 We've developed machinery for simulating large-scale atomistic alloy disorder within
multi-valley effective mass theory based on information about interface topography
* Able to use data from e.g. APT, STM characterization of atomic-scale disorder

* For significant interdiffusion between Si and SiGe layers, valley splitting and inter-
valley dipole statistics primarily governed by diffusion rather than interface

topography

* We've characterized inter- and intra-valley tunnel coupling variation for a double

Z (nm)
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