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Strength in materials, tri-lab effort m

Strength is a measure of a material’s ability to sustainan Compressive plastic flow stress in textured
applied load without failure or irreversible deformation.  Polycrystalline metal (ignoring anisotropy)
Strength response is “universal”
but mechanisms are unique to each system.
In the hydro code world,
EOS — controls volume compression
strength - controls deformability
Why tantalum?
In the real world, ] Tantalum, as a high-Z body-center-cubic
Dislocation motion History and path dependence (bcc) metal with no experimentally
Dislocation generation Microstructure observed high-pressure phase transitions
Grain boundary motion Grain size up to 350 GPa, has potential use a standard
Twinning and stacking faults Grain orientation for high-pressure studies. But, its properties I
Phase transition Grain boundary orientation depend on poorly understood elastic/plastic
and dislocation dynamics. High melt
temperature of 3290 K. I

M. B. Prime, et al., “A broad study of tantalum strength from ambient to extreme conditions,” Acta Materialia, 231, 117875 I
(ONDD)\
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Motivation: Multiphase multiplies the unknowns m

Multi-phase problems have so many more unknowns, we’d like to have a tool to constrain some
open questions related to microstructure and twin & dislocation behavior.

We want an atomistic scale perspective on aspects of strength.
DFT high accuracy, but expensive
Classical MD allows scaling to address larger length and time scale behavior
Continuum 1s broadly applicable to macroscopic experimental test scales

Some multi-scale questions accessible to atomistic study:
What lattice-specific behavior influences dislocation production/mobility and/or twinning?
Do the phase transformations wipe-out, modify or preserve grain size and orientation?
Does plastic strain reset at phase transition? If so under what conditions?

J. McNaney, J04.00001, “Overview and highlights of a tri-lab effort on
Tin 1s the material chosen for the effort multi-phase material strength,” July 12t

®= Non-hazardous M. Prime, L05.0001, “Multiphase Strength Coupled with Phase Change
Kinetics in RMI Experiments on Tin Across the B-y Boundary,” July 12t

. . . . .
Multlple accesmble solid phases at relatlvely low W. Schill, ©003.0001, “Simultaneous Bayesian calibration of strength,
pressures kinetics, and phase boundaries,” July 13"

C. Battaile, 005.0004, “Measuring the Strength of Metals by Extending the
Richtmyer-Meshkov Instability to Shockless Loading,” July 13"



| Tin phase diagrams from experiments and dft

Lazicki, et. al., PRL 115 (2015) 075502
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| DFT cold curves and uncertainty between functionals m
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Low Pressure phases of tin m

Diffusion-less phase transition
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Empirical potentials

EAM and MEAM potentials have been successful

1998 Ravelo/Baskes MEAM alpha, beta and liquid

2017 Vella & Chen MEAM liquid Delta

2018 Etesami MEAM alpha, beta, liquid

2018 Ko 2NN MEAM alpha, beta —

2006 Foiles EAM with Tersoff liquid and gamma I@ @

2014 Sapzhnikov EAM gamma, delta and liquid i
Tin is a challenge because it exhibits open structures and close-packed structures.
As recently as 2020 and 2021, Ravelo MEAM potential has been the basis of numerous shock
studies, which emphasize coarse Hugoniot response rather than structure details. I

SNAP and ANI potentials could be quickly trained from DFT (See Talk II)

= Different DFT functionals give wide variety of transition pressures and even transition ordering
= The approach and any issues with fitting a multi-phase material like tin would generalize to other materials



9 | LAVA tool to evaluate behaviors in LAMMPS & VASP
https://github.com/lanl/LAVA

The Lava Wrapper is
a general-purpose
calculator from LANL
that provides a
python interface to
enable one-click
calculation of the
many common
properties with
lammps and vasp.

It provides a set of
classes and functions
to generate configs,
run lammps/vasp
calculation, retrieve
the output,
postprocess and plot
the results.

o

Example
GSFE
structure

beta-Sn
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I MEAM potentials at low pressures: 2D Bain Paths
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MEAM potentials

at high pressures
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| Finite temperature results promising but ultimately fail
BCC stable

Ravelo MEAM

B-tin unstable - BCC

® & @ & @2 & @ ° &
e & @& & @ & @ @* @& 9
e & @ & & & @ = & @
*® & o & @ * @ @* =
e & @ & 9 @& @ @ & @
e & & @& = @& = @ @&
* & @ & 9 & ° @ & @
¢ & & & @& & @+ @* @»
e & @ & @ & = 9 2 @
e @& & @& @° o = @° @ 0
s & @ 9 @ & ° @ ° @
e & &+ @& @* & = @ @&
T & @ 9 @ @& °* 9 9 @
e & & @& @ o = & @& 0
e & @ & & & = & 2 @
*® & 2 = & & =+ 9 »
e & @ & & & °* o 0 @
e @& & & & & =+ & =
* & & 2 5 & = 9 0 B

@ BCC/BCT

L]
L ]
L ]

L
L
&
L)
r
® & @ @& @2 9 9 9 9o 9
L
L
L
L

] L ]
® & @& @ @& @& @° @ @ »
L ]

]
[ ] L ] L L [ ] L ] L J ] L L
L]
L] L]
® @& & @& @& @& @ @ @ @
L]

L L] L] L L L] L] L] L .
* @ L] ] * @ L] ] ]
* @ L L] L L] L L L L ]
* » - ] * ° L] [ ] [ ]
L ] L] L L L ] L] L] L] L] L
L ] L J L] L] L ] L] L] L] L ]
L ] L ] L] L L ] L ] L] L] L] L ]
L ] L J L] L] L ] L] L] L] [ ]
L ] [ ] L] L ] L ] [ ] =] L] L] L ]
* @ L L L L L L]
LI ] L] L L L] L] L] L L]
* @ L] ] * @ ] ] ]
L ] L] L] ] L] L] L] ® L] L ]
* @ L L * @ L] L L]
L ] L] L] L L ] L] L] L] L L ]
L ] L L] L] L ] L ] L] L] [ ]
*e @ ] L e @ ® L] L [ ]
* @ L L L L L L]
- - L] L L - L] L] L L]

- L] L ] L] L] L] L] L ] - L ]

L ] L] L ] L] L] L ] L] L] L ] »
L] L] L ] L] L] L] - L] - L]

L ] L] L] L] L ] L ] L] L] L ] L
- ] L ] - - - - L ] L] L]

L ] - L] - - L] - - L ] L
- L] L ] L ] L] L] L ] L ] L ] L]

L ] - L] L] L] L ] L] L] L ] L
L L ] L ] L L ] L ] L L ] L ] L ]

L ] L ] L] L] L ] L ] L ] L] L ] L ]
- L ] L ] L] L ] - L] L ] L ] -

L ] L L ] L ] L L ] L ] L ] L ] L
L ] L] L ] L] L] L] L] L ] L] L]

L ] L] L ] L] - L ] L] L] L ] L
L ] L ] L L L ] L ] L L ] L ] L

L ] L] L] L] L] L] L] L] L] L
L ] L ] L ] L] L ] L] - L ] - L]

L ] L L] L ] L L ] L ] L L ] L
L] L] L] L] L] L] L L] L] L]

B-tin unstable - FCC

..........
llllllllll
.........
llllllllll
..........
llllllllll
.........
..........
llllllllll
..........
''''''''''
llllllllll
..........
..........
..........
llllllllll
..........
llllllllll
..........

D e

FCC stable

BCC stable

L L L L] L] L] L] L L ] L
L] L L] L] a L ] L] L L
L ] L] L] L] L] L] L L] L
> L L] L] L] L] L] L] L]
L] > L] L L ] L ] L ] L] L ] L
e & & @& & & 2 2 »
L] L L L L L L L] L L

Ko MEAM



Conclusions: The good, the bad and the ugly

 The MEAM based Ravelo and the newer 2NN Ko interatomic potentials

are very good for the covalent (open) structures of the alpha, beta phases
and liquid.

= Zero temperature calculations imply they may be capable of
stabilizing the gamma and delta phases as well. They also do
reasonably well with density pressure Hugoniot response

= Unfortunately, they do not do well with predicted high pressure
structure stability.

o Ravelo offers a qualitative phenomenological tool for study of
ramp into the delta (bcc) phase, only.

o Ko predicts unphysical stability for the fcc phase




Challenges for empirical models, ML potential

10000 -

Two paths forward for atomistic modeling of high pressure
tin:

T (K)

* There may be hope for a potential which focuses
exclusively on melt and the higher pressure phases. A
This approach has been attempted at Sandia by Steven P (ePe)

Foiles and Jean-Paul Davis c. 2006. |

* Clearly a machine learning based potential will be much
less constrained by functional forms which limit the
classical empirical potentials like EAM, MEAM and |
Tersoff.

Mary Alice Cusentino will explore this second approach next.



