
P R E S E N T E D B Y

Sandia National Laboratories is a

multimission laboratory managed and

operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly

owned subsidiary of Honeywell International

Inc. for the U.S. Department of Energy’s

National Nuclear Security Administration

under contract DE-NA0003525.

A performance portable implementation of SIMD

vector intrinsics on high-order, entropy-stable spectral

collocation schemes for compressible turbulent flows

Je r r y Wa tk ins , V i c to r Br un in i , and Trav i s F i she r

Cont r i bu to r s : Jung yeou l (Brad) Maeng
Nor th Amer i c an H igh Orde r Methods Confe rence
San Dieg o, Ca l i for n i a

July 19, 2022

SAND

SAND2022-9567CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline2

• Introduction
• Motivation – High-fidelity simulations

• Motivation – Exascale computing

• High-order methods and performance portability
• High-order, entropy-stable methods

• High-order communication and operators

• High-order methods on modern hardware

• Performance portable C++ frameworks

• Performance portable SIMD vector intrinsics
• SIMD vector intrinsics

• SIMD performance portability

• SIMD example for high-order

• Numerical Results
• Case/Study setup

• SIMD Performance

Motivation

Why are we interested in performance and
por tability?

High-fidelity simulations4

High-fidelity simulations on exascale systems for analysis/design in hypersonics

Direct Numerical Simulation (DNS)

• Purpose: Model Development and Uncertainty Quantification

• Methods: High-order structured or unstructured methods

Wall-modeled LES and hybrid RANS/LES

• Purpose: Higher-fidelity engineering analysis

• Methods: High-order or low-dissipation finite volume

RANS

• Purpose: Engineering calculations

• Methods: Second-order finite volume

Reduced-order and semi-empirical models

• Purpose: Engineering

• Methods: Various

Multi-fidelity design tools Target systems

LANL Trinity

Intel (KNL)

Sierra

NVIDIA (V100)

El Capitan

AMD

Crossroads

Intel

Exascale computing5

Challenges:

• Diverse set of HPC vendors and architectures
• Intel, AMD, NVIDIA, IBM, ARM-based
• CPUs with vector processing; GPUs

• Software life cycle is much longer than hardware

Different architectures, trend remains the same

• Need algorithms with high arithmetic intensity (total ops/byte)

• Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code.

Approaches:

• Libraries – High-level abstractions with specified input/output (e.g. BLAS)

• Task-based – Data-centric abstractions for mapping tasks to resources (e.g. Legion)

• MPI+X – Algorithmic-level abstractions for distributed (MPI) and shared (X) memory
parallelism (e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)

High-order methods and
performance portability

What strategies are we using for high-order
methods and performance por tability?

Entropy
Stable

Methods

Shock
Capturing

Evaluate
Turbulent

Dissipation

High-order, entropy-stable methods7

Entropy Stable Summation-by-Parts
Methods:

• Unstructured spectral collocation elements
(SCE)

Shock capturing:

• Artificial viscosity

• Hybridized with Larsson shock sensor

Evaluate Turbulent Dissipation:

• Need accurate and robust methods

Where do discontinous Galerkin (DG) methods fit?

• SCE schemes are nodal DG schemes where
nonlinear operators are used in place of linear
operators to achieve entropy stability

• Entropy stability is used to help ensure
robustness in the presence of shocks

High-order communication and operators8

Communication:

• Ghost cell communication (LG)

• Ghost face communication (LGL)

Three major operators: Volume, Interface and Boundary

• Gradient operators

• Matrix-vector operations in each cell
(matrix-matrix including cells)

• 𝑤 vector is reused for local assembly

• Flux divergence operators

• Batch vector inner product in each cell
(Batch vector-matrix including cells)

• ℱ matrix is not reused

Linear Operators Nonlinear Operator (Entropy Stability)

Two strategies used to avoid race conditions: graph coloring and atomics

Higher arithmetic intensity to efficiently utilize modern hardware

Example: No extrapolation operator in finite volume

Nodal DG (LG)Finite Volume

High-order methods on modern hardware9

Increasing polynomial order

• More operations per degree of freedom
• Increases computational throughput

• Majority of operations are element-local
• Allows for efficient use of shared memory

• Improves strong scaling; reduces error

• Challenges:
• Diminishing returns

• Better performance given a fixed error metric

Performance portable C++ frameworks10

MPI+X: C++ frameworks within Trilinos for performance portability

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

Abstract data layouts and hardware features on current and future architectures

• Allocation: U = Kokkos::DualView<double***[5]>(Ncells,Nspts,Nv)

• Memory transfer: U.modify_host(); U.sync_device();

• Memory layout: Kokkos::LayoutLeft (col-major)

• Data parallelism: Kokkos::parallel_for(policy, functor)
• policy defines iteration range: Kokkos::RangePolicy(N)

• functor defines function to be parallelized

Allows researchers to focus more on algorithm development instead of architecture
specific programming

https://github.com/trilinos/Trilinos/

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/
https://github.com/kokkos/kokkos/

Performance portable SIMD
vector intrinsics

What does a perfor mance por table implementation
of SIMD vector intrinsics look l ike?

SIMD vector intrinsics12

SISD: Single Instruction Single Data

• Compilers may auto-vectorize
simple loops but not always

• Explicit vectorization with
intrinsics improves performance

SIMD: Single Instruction Multiple Data

Data

Type

Func

Remainder

SIMD performance portability13

Architectures:

• Intel CPUs: AVX2, AVX-512

• ARM64: ARM Neon

• CUDA: SIMT model
• maintain performance with same source code

Libraries:

• Trilinos/STK – utilizes Kokkos simd-math library for SIMD data types support
• Portable across AVX2/AVX-512/Neon

• Plan to transition to Kokkos SIMD
• Portable across current and future SIMD architectures

• Kokkos core will provide SIMD data types (Work-in-progress)

• Dan Ibanez providing initial implementation: https://github.com/kokkos/kokkos/pull/5016

Strategy:

• SIMD_Double: Data type for explicit vector

• Operators for SIMD_Double

• Functions for SIMD_Double
• (e.g. loads/stores, math functions, if_then_else())

https://github.com/kokkos/kokkos/pull/5016

SIMD example for high-order14

Example: Inviscid volume term

• Template parameter for SIMD
index types (masked/unmasked)

• Array class operators for SIMD
types

• Arithmetic operators for SIMD
types

• Use of auto type for portability

• Function overloads in some cases

Numerical Results

How well does performance por table SIMD
perform?

Case setup16

Gradient Test (GradTest):

• Initialize solution with exact polynomial on unit cube

• Compute gradient, check exactness and performance

Taylor-Green Vortex (TGV):

• Initialize solution on 3D Cartesian mesh

• Wall-clock time over 100 RK44 iterations

Mach 3.5 Flat Plate Boundary Layer ILES (FP):

• Synthetic turbulent inflow

• Shock capturing: Shock sensor limiting artificial viscosity

• BDF2 implicit time integration

• Low-order preconditioned Jacobian-free Newton-Krylov

Study setup17

Methods:

• Structured cell-centered finite volume (SCCFV)

• Unstructured spectral collocation element (SCE)
• P = 1-7; LGL

Node Architectures

• Intel Haswell (HSW) – 32 cores, 64 threads, AVX2 (4 doubles)

• Intel Knights Landing (KNL) – 64 cores, 256 threads, AVX512 (8 doubles)

• Intel Cascade Lake (CLX) – 48 cores, 96 threads, AVX512 (8 doubles)

• ARM64 Cavium ThunderX2 (TX2) – 56 cores, 112 threads, Neon (2 doubles)

• NVIDIA Volta (V100) – 4 GPUs, Cuda (no simd)

𝑟 MPI + 𝑗X , X ∈ {OMP, OMPV, GPU}

𝑟 = # MPI ranks
𝑗 = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

MPI+X Notation

SIMD performance on LayoutLeft18

Setup:

• Compare with and without explicit
vectorization given cell contiguous data
• i.e. LayoutLeft on Array(cell,spt,var)

• GradTest and TGV

Results:

• Speedup with explicit vectorization
• GradTest: up to 3.2x (HSW), 5.6x (KNL)

• TGV Residual: up to 3.9x (HSW), 8.1x (KNL)

• TGV Step: up to 3.3x (HSW), 6.4x (KNL)

• Larger speedups at higher orders
• GradTest: 1.5->3.2x (HSW), 1.6->5.6x (KNL)

• TGV Residual: 2.5->3.9x (HSW), 5.9->8.1x (KNL)

• TGV Step: 2.3->3.3x (HSW), 4.4->6.4x (KNL)

0

2

4

6

4x4x4 8x8x8 16x16x16 32x32x32

GradTest: KNL speedup with explicit
vectorization

SCE1 SCE2 SCE3 SCE4 SCE5 SCE6 SCE7

0

5

10

Constitutive Residual TimeStep

TGV: KNL speedup with explicit
vectorization

SCE1 SCE2 SCE3 SCE5 SCE7

Larger

(Better)

SIMD performance on TGV19

Setup: 128^3 Degrees of Freedom (Dof)

• Compare best MPI+OpenMP cases
• OMP: LayoutRight on Array(cell,spt,var)
• No explicit vectorization

• OMPV: LayoutLeft on Array(cell,spt,var)
• Explicit vectorization

Results:

• Higher throughput with explicit vectorization
• LayoutRight performs better in rare cases
• Better caching?

• Larger throughput at higher orders
• SCE7 has smaller throughput

• Large benefit in SCCFV
• High-order improvements are relatively modest

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

HSW KNL CLX TX2

SCE3: Dof/s/TimeStep across different
architectures (1 Node)

OMP OMPV

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2(MPI+32OMP) 2(MPI+32OMPV)

HSW: Dof/s/TimeStep without/with
explicit vectorization

SCCFV SCE1 SCE3 SCE7

Larger

(Better)

SIMD performance on flat plate20

Setup:

• Jacobian-free Newton-Krylov
• Frechet approximation

• Low-order, Block Jacobi preconditioner

• All results are using 8 nodes

• Speedup relative to Haswell (HSW) node

Results:

• Largest speedup from GPU node (18.7x)

• Largest CPU speedup from CLX (2.6x)

1

10

100

1000

10000

100000

HSW KNL CLX TX2 V100

SCE3: Wall-clock Time (s)

TotalTime Constitutive Residual

0.25

1

4

16

KNL CLX TX2 V100

SCE3: Speedup relative to Haswell Node

TotalTime Constitutive Residual Baseline

Discussion

Discussion22

• HPC architectures are changing rapidly which poses a significant challenge

• Trilinos/Kokkos offers an efficient way to meet this challenge for large scale,
high-fidelity simulations

• SIMD performance portable libraries offer a means to perform explicit
vectorization on a variety of different architectures

• Performance results are promising but more R&D is needed to improve
robustness and performance for high-order methods and hypersonics

Future Work

• Additional data layout testing (strided or AoSoA)

• Full integration of Kokkos SIMD

• Improve end-to-end performance of implicit solver

Backup slides

High-order methods – Introduction24

Increasing polynomial order allows for more efficient simulations

Drag coefficient error for Joukowski airfoil
(Ma=0.5, Re=1000) using ZEFR (2017)

More DOFs Less DOFs
(Better)

Strong Scalability for cubed-sphere, shallow
water equations using Aeras (2018)

Higher P
(Better)

TGV Results25

First attempt to quantify performance of high-order

𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑀𝑒𝑟𝑖𝑡 =
𝑇𝑆𝐶𝐶𝐹𝑉 ∙ 𝑒𝑟𝑟𝑆𝐶𝐶𝐹𝑉

𝜀

𝑇 ∙ 𝑒𝑟𝑟𝜀

• 𝑇 - Wall-clock time for 30s simulation time (s)

• 𝑒𝑟𝑟𝜀 = ׬ |𝜀 𝑡 − 𝜀𝑟𝑒𝑓(𝑡)|
2𝑑𝑡 - Enstrophy error

• Reference: Spectral element solution, 5123

• Note: results are architecture independent

Analysis:

• Current optimal is near SCE5

• High-order performing better on GPUs

• Bottlenecks
• CPU – Residual (computation)
• GPU – ConsRelations (gradient, communication)
• Remainder also needs more profiling/improvement

Matrix-free methods – Introduction26

Time Stepping Schemes:

Semi-discrete equation

Determinant geometric
Jacobian matrix

Solution Divergence
of the flux

Residual

Runge-Kutta methods

Explicit methods (Ex: RK44)

• Pros:
• No matrix and linear system solve required

• Performance limited by residual

• Cons:
• Time step often limited by numerical stability

• Difficult to determine reliable time step

• High-order time step restriction h/P2

Implicit methods (Ex: BDF1)

• Pros:
• Time step tuned to accuracy

• More computation per sequential time step

• Cons:
• Matrix and linear system solve required

• Nonlinear stability is not guaranteed

• High-order matrix size P3

BDF1 for steady-state

Residual Jacobian matrix
(Large sparse matrix)

Stages can be solved sequentially
(No linear system)

Matrix-free methods – Introduction27

Jacobian-free Newton-Krylov:

• Using GMRES to solve the linear system only requires matrix-vector products
• Less memory (no need to store a large matrix) which allows an increase in utilization

• Less data movement (no need to assemble a large matrix) which allows efficient bandwidth use

• More computation (evaluate matrix-vector product at each linear iteration)

• May need matrix if preconditioning is required

Matrix-free approximate

Use Frechet derivative

• Pros:
• Performance limited by residual

• Cons:
• Residual evaluation at each linear iteration

• Approximation may limit stability

Matrix-free exact

Use automatic differentiation (AD)

• Pros:
• Quadratic convergence at best

• Cons:
• AD evaluation at each linear iteration

• Nonlinear stability is not guaranteed

• More difficult to solve for stiff equations

Matrix-free methods – Results28

Example: Turbulent flat plate boundary layer
(M=0.2)

Steady-state: pseudo-transient continuation

• Inexact Jacobian
• Second-order finite volume discretization

• First-order inviscid Jacobian, neglect viscous
cross-terms

• Used for inexact Newton and preconditioned
JFNK

• Linear solve
• Block tridiagonal solver or GMRES/ILU

Results:

• Exact matrix-free led to 7x speedup over
inexact Newton for SA turbulence model

• Robustness issues when applying matrix-
free methods to SST turbulence model

Convergence history for flat plate, Spalart-Allmaras (SA)
turbulence model

Matrix-free methods – Results29

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Mutrino (HSW) Stria (TX2) Vortex (V100)

Total solve time (s)

Inexact Newton

Matrix Free Approximate

Matrix Free Exact

Focusing on performance with Jacobi:

All results are using 8 nodes on each platform
◦ Intel Haswell (HSW) CPU (32 cores/node)

◦ ARM64 Cavium ThunderX2 (TX2) CPU (56
cores/node)

◦ NVIDIA Volta (V100) GPU (4 GPUs/node)

Inexact Newton performed better on CPU
platforms

Matrix-free approximate performed better on
GPU platforms

Matrix-free exact performed better on
platforms with more threads

Fastest wall-clock time was on GPU
• 5x over fastest HSW time

