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Motivation

Why are we interested in performance and 
por tability?



High-fidelity simulations4

High-fidelity simulations on exascale systems for analysis/design in hypersonics

Direct Numerical Simulation (DNS)

• Purpose: Model Development and Uncertainty Quantification

• Methods: High-order structured or unstructured methods

Wall-modeled LES and hybrid RANS/LES

• Purpose: Higher-fidelity engineering analysis

• Methods: High-order or low-dissipation finite volume 

RANS

• Purpose: Engineering calculations

• Methods: Second-order finite volume

Reduced-order and semi-empirical models

• Purpose: Engineering

• Methods: Various

Multi-fidelity design tools Target systems

LANL Trinity

Intel (KNL)

Sierra

NVIDIA (V100)

El Capitan

AMD

Crossroads

Intel



Exascale computing5

Challenges:

• Diverse set of HPC vendors and architectures
• Intel, AMD, NVIDIA, IBM, ARM-based
• CPUs with vector processing; GPUs

• Software life cycle is much longer than hardware

Different architectures, trend remains the same

• Need algorithms with high arithmetic intensity (total ops/byte)

• Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety 
of computing architectures with the same source code.

Approaches:

• Libraries – High-level abstractions with specified input/output (e.g. BLAS)

• Task-based – Data-centric abstractions for mapping tasks to resources (e.g. Legion)

• MPI+X – Algorithmic-level abstractions for distributed (MPI) and shared (X) memory 
parallelism (e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)



High-order methods and 
performance portability

What strategies are we using for high-order 
methods and performance por tability?



Entropy 
Stable 

Methods

Shock 
Capturing

Evaluate 
Turbulent 

Dissipation

High-order, entropy-stable methods7

Entropy Stable Summation-by-Parts 
Methods:

• Unstructured spectral collocation elements 
(SCE)

Shock capturing:

• Artificial viscosity

• Hybridized with Larsson shock sensor

Evaluate Turbulent Dissipation:

• Need accurate and robust methods

Where do discontinous Galerkin (DG) methods fit?

• SCE schemes are nodal DG schemes where 
nonlinear operators are used in place of linear 
operators to achieve entropy stability

• Entropy stability is used to help ensure 
robustness in the presence of shocks



High-order communication and operators8

Communication:

• Ghost cell communication (LG)

• Ghost face communication (LGL)

Three major operators: Volume, Interface and Boundary

• Gradient operators

• Matrix-vector operations in each cell 
(matrix-matrix including cells)

• 𝑤 vector is reused for local assembly

• Flux divergence operators

• Batch vector inner product in each cell 
(Batch vector-matrix including cells)

• ℱ matrix is not reused

Linear Operators Nonlinear Operator (Entropy Stability)

Two strategies used to avoid race conditions: graph coloring and atomics



Higher arithmetic intensity to efficiently utilize modern hardware

Example: No extrapolation operator in finite volume

Nodal DG (LG)Finite Volume

High-order methods on modern hardware9

Increasing polynomial order

• More operations per degree of freedom
• Increases computational throughput

• Majority of operations are element-local
• Allows for efficient use of shared memory

• Improves strong scaling; reduces error

• Challenges:
• Diminishing returns

• Better performance given a fixed error metric



Performance portable C++ frameworks10

MPI+X: C++ frameworks within Trilinos for performance portability

• Distributed memory linear algebra (Tpetra)

• Shared memory parallelism (Kokkos)

Abstract data layouts and hardware features on current and future architectures

• Allocation: U = Kokkos::DualView<double***[5]>(Ncells,Nspts,Nv)

• Memory transfer: U.modify_host(); U.sync_device();

• Memory layout: Kokkos::LayoutLeft (col-major)

• Data parallelism: Kokkos::parallel_for(policy, functor)
• policy defines iteration range: Kokkos::RangePolicy(N)

• functor defines function to be parallelized

Allows researchers to focus more on algorithm development instead of architecture 
specific programming

https://github.com/trilinos/Trilinos/

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/
https://github.com/kokkos/kokkos/


Performance portable SIMD 
vector intrinsics

What does a perfor mance por table implementation 
of  SIMD vector intrinsics look l ike?



SIMD vector intrinsics12

SISD: Single Instruction Single Data

• Compilers may auto-vectorize 
simple loops but not always

• Explicit vectorization with 
intrinsics improves performance

SIMD: Single Instruction Multiple Data

Data

Type

Func

Remainder



SIMD performance portability13

Architectures:

• Intel CPUs: AVX2, AVX-512

• ARM64: ARM Neon

• CUDA: SIMT model
• maintain performance with same source code

Libraries:

• Trilinos/STK – utilizes Kokkos simd-math library for SIMD data types support
• Portable across AVX2/AVX-512/Neon

• Plan to transition to Kokkos SIMD
• Portable across current and future SIMD architectures

• Kokkos core will provide SIMD data types (Work-in-progress)

• Dan Ibanez providing initial implementation: https://github.com/kokkos/kokkos/pull/5016

Strategy:

• SIMD_Double: Data type for explicit vector

• Operators for SIMD_Double

• Functions for SIMD_Double
• (e.g. loads/stores, math functions, if_then_else())

https://github.com/kokkos/kokkos/pull/5016


SIMD example for high-order14

Example: Inviscid volume term

• Template parameter for SIMD 
index types (masked/unmasked)

• Array class operators for SIMD 
types

• Arithmetic operators for SIMD 
types

• Use of auto type for portability

• Function overloads in some cases



Numerical Results

How well does performance por table SIMD 
perform?



Case setup16

Gradient Test (GradTest):

• Initialize solution with exact polynomial on unit cube

• Compute gradient, check exactness and performance

Taylor-Green Vortex (TGV):

• Initialize solution on 3D Cartesian mesh

• Wall-clock time over 100 RK44 iterations

Mach 3.5 Flat Plate Boundary Layer ILES (FP):

• Synthetic turbulent inflow

• Shock capturing: Shock sensor limiting artificial viscosity

• BDF2 implicit time integration

• Low-order preconditioned Jacobian-free Newton-Krylov



Study setup17

Methods:

• Structured cell-centered finite volume (SCCFV)

• Unstructured spectral collocation element (SCE)
• P = 1-7; LGL

Node Architectures

• Intel Haswell (HSW) – 32 cores, 64 threads, AVX2 (4 doubles)

• Intel Knights Landing (KNL) – 64 cores, 256 threads, AVX512 (8 doubles)

• Intel Cascade Lake (CLX) – 48 cores, 96 threads, AVX512 (8 doubles)

• ARM64 Cavium ThunderX2 (TX2) – 56 cores, 112 threads, Neon (2 doubles)

• NVIDIA Volta (V100) – 4 GPUs, Cuda (no simd)

𝑟 MPI + 𝑗X , X ∈ {OMP, OMPV, GPU}

𝑟 = # MPI ranks
𝑗 = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

MPI+X Notation



SIMD performance on LayoutLeft18

Setup:

• Compare with and without explicit 
vectorization given cell contiguous data
• i.e. LayoutLeft on Array(cell,spt,var)

• GradTest and TGV

Results:

• Speedup with explicit vectorization
• GradTest: up to 3.2x (HSW), 5.6x (KNL)

• TGV Residual: up to 3.9x (HSW), 8.1x (KNL)

• TGV Step: up to 3.3x (HSW), 6.4x (KNL)

• Larger speedups at higher orders
• GradTest: 1.5->3.2x (HSW), 1.6->5.6x (KNL)

• TGV Residual: 2.5->3.9x (HSW), 5.9->8.1x (KNL)

• TGV Step: 2.3->3.3x (HSW), 4.4->6.4x (KNL)
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SIMD performance on TGV19

Setup: 128^3 Degrees of Freedom (Dof)

• Compare best MPI+OpenMP cases
• OMP: LayoutRight on Array(cell,spt,var)
• No explicit vectorization

• OMPV: LayoutLeft on Array(cell,spt,var)
• Explicit vectorization

Results:

• Higher throughput with explicit vectorization
• LayoutRight performs better in rare cases
• Better caching?

• Larger throughput at higher orders
• SCE7 has smaller throughput

• Large benefit in SCCFV
• High-order improvements are relatively modest
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SIMD performance on flat plate20

Setup:

• Jacobian-free Newton-Krylov
• Frechet approximation

• Low-order, Block Jacobi preconditioner

• All results are using 8 nodes

• Speedup relative to Haswell (HSW) node

Results:

• Largest speedup from GPU node (18.7x)

• Largest CPU speedup from CLX (2.6x)
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Discussion



Discussion22

• HPC architectures are changing rapidly which poses a significant challenge

• Trilinos/Kokkos offers an efficient way to meet this challenge for large scale, 
high-fidelity simulations

• SIMD performance portable libraries offer a means to perform explicit 
vectorization on a variety of different architectures

• Performance results are promising but more R&D is needed to improve 
robustness and performance for high-order methods and hypersonics

Future Work

• Additional data layout testing (strided or AoSoA)

• Full integration of Kokkos SIMD

• Improve end-to-end performance of implicit solver



Backup slides



High-order methods – Introduction24

Increasing polynomial order allows for more efficient simulations

Drag coefficient error for Joukowski airfoil 
(Ma=0.5, Re=1000) using ZEFR (2017)

More DOFs Less DOFs
(Better)

Strong Scalability for cubed-sphere, shallow 
water equations using Aeras (2018)

Higher P
(Better)



TGV Results25

First attempt to quantify performance of high-order

𝐹𝑖𝑔𝑢𝑟𝑒 𝑜𝑓 𝑀𝑒𝑟𝑖𝑡 =
𝑇𝑆𝐶𝐶𝐹𝑉 ∙ 𝑒𝑟𝑟𝑆𝐶𝐶𝐹𝑉

𝜀

𝑇 ∙ 𝑒𝑟𝑟𝜀

• 𝑇 - Wall-clock time for 30s simulation time (s)

• 𝑒𝑟𝑟𝜀 = ׬ |𝜀 𝑡 − 𝜀𝑟𝑒𝑓(𝑡)|
2𝑑𝑡 - Enstrophy error

• Reference: Spectral element solution, 5123

• Note: results are architecture independent

Analysis: 

• Current optimal is near SCE5

• High-order performing better on GPUs

• Bottlenecks
• CPU – Residual (computation)
• GPU – ConsRelations (gradient, communication)
• Remainder also needs more profiling/improvement



Matrix-free methods – Introduction26

Time Stepping Schemes:

Semi-discrete equation

Determinant geometric 
Jacobian matrix

Solution Divergence 
of the flux

Residual

Runge-Kutta methods

Explicit methods (Ex: RK44)

• Pros:
• No matrix and linear system solve required

• Performance limited by residual

• Cons:
• Time step often limited by numerical stability

• Difficult to determine reliable time step

• High-order time step restriction h/P2

Implicit methods (Ex: BDF1)

• Pros:
• Time step tuned to accuracy

• More computation per sequential time step

• Cons:
• Matrix and linear system solve required

• Nonlinear stability is not guaranteed

• High-order matrix size P3

BDF1 for steady-state 

Residual Jacobian matrix
(Large sparse matrix)

Stages can be solved sequentially
(No linear system)



Matrix-free methods – Introduction27

Jacobian-free Newton-Krylov:

• Using GMRES to solve the linear system only requires matrix-vector products
• Less memory (no need to store a large matrix) which allows an increase in utilization

• Less data movement (no need to assemble a large matrix) which allows efficient bandwidth use

• More computation (evaluate matrix-vector product at each linear iteration)

• May need matrix if preconditioning is required

Matrix-free approximate

Use Frechet derivative

• Pros:
• Performance limited by residual

• Cons:
• Residual evaluation at each linear iteration

• Approximation may limit stability

Matrix-free exact

Use automatic differentiation (AD)

• Pros:
• Quadratic convergence at best

• Cons:
• AD evaluation at each linear iteration

• Nonlinear stability is not guaranteed

• More difficult to solve for stiff equations



Matrix-free methods – Results28

Example: Turbulent flat plate boundary layer 
(M=0.2)

Steady-state: pseudo-transient continuation

• Inexact Jacobian
• Second-order finite volume discretization

• First-order inviscid Jacobian, neglect viscous 
cross-terms

• Used for inexact Newton and preconditioned 
JFNK

• Linear solve
• Block tridiagonal solver or GMRES/ILU

Results:

• Exact matrix-free led to 7x speedup over 
inexact Newton for SA turbulence model

• Robustness issues when applying matrix-
free methods to SST turbulence model

Convergence history for flat plate, Spalart-Allmaras (SA) 
turbulence model



Matrix-free methods – Results29
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Focusing on performance with Jacobi:

All results are using 8 nodes on each platform
◦ Intel Haswell (HSW) CPU (32 cores/node)

◦ ARM64 Cavium ThunderX2 (TX2) CPU (56 
cores/node)

◦ NVIDIA Volta (V100) GPU (4 GPUs/node)

Inexact Newton performed better on CPU
platforms

Matrix-free approximate performed better on 
GPU platforms

Matrix-free exact performed better on 
platforms with more threads

Fastest wall-clock time was on GPU
• 5x over fastest HSW time


