Thislpaperldescribesfobiectiveftechnicallresultslandlanalysis JAnvisubiectivelviewslorjopinionsithamightibelexpressedfin| SAND2022-9567C
helpaperfdojnotinecessarilyfrepresentlthefviews|ofltheJU.S JDepartmentjoflEnergylorithejUnitedjStatesjGovernment.

Sandia
National
Laboratories

— HWW'
. -

A performance portable implementation of SIMD ~ D —
vector intrinsics on high-order, entropy-stable spectral

collocation schemes for compressible turbulent flows

July 19, 2022

Jerry Watkins, Victor Brunini, and Travis Fisher

T U GERARTEERE OF
—

(JENERGY NJSA

Contributors: Jungyeoul (Brad) Maeng

b Sandia National Laboratories is a
North American High Order Methods Conference mulimission aboratry managed and
San Diego, California

operated by National Technology and
Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
SAND Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

SandialNationalfLaboratoriesfislalmultimissionllaboratorvimanagedlandjoperatedibylNationalfTechnologvi&IEngineerinalSolutionsiofiSandia ILLC
subsidiaryjof[Honeywelljinternationalfinc. JforfthejU.S JDepartmentloflEnergy's| i

NationallNuclearSecurityJAdministrationjunderlcontractiDE-N

. | Outline

Introduction
* Motivation — High-fidelity simulations
* Motivation — Exascale computing

High-order methods and performance portability
* High-order, entropy-stable methods

* High-order communication and operators

* High-order methods on modern hardware

* Performance portable C++ frameworks

Performance portable SIMD vector intrinsics
* SIMD vector intrinsics

* SIMD performance portability

* SIMD example for high-order

Numerical Results
* Case/Study setup
* SIMD Performance

Motivation

Why are we interested in performance and
portability?

. | High-fidelity simulations

High-fidelity simulations on exascale systems for analysis/design in hypersonics

Multi-fidelity design tools

Direct Numerical Simulation (DNS)

e Methods: High-order structured or unstructured methods

N

e Purpose: Model Development and Uncertainty Quantification

Wall-modeled LES and hybrid RANS/LES
e Purpose: Higher-fidelity engineering analysis
e Methods: High-order or low-dissipation finite volume

RANS
e Purpose: Engineering calculations
e Methods: Second-order finite volume

Reduced-order and semi-empirical models
e Purpose: Engineering
e Methods: Various

Target systems

LANL Trinity
Intel (KNL)

e -
|
MO = e

El Capitan
AMD

Sierra
NVIDIA (V100)

CROSS (ROADS

—

Crossroads
Intel

s | Exascale computing

AMDO
_ INSTINCT

Challenges:

* Diverse set of HPC vendors and architectures
* Intel, AMD, NVIDIA, IBM, ARM-based

* CPUs with vector processing; GPUs

* Software life cycle is much longer than hardware
Different architectures, trend remains the same

* Need algorithms with high arithmetic intensity (total ops/byte)
* Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code.

Approaches:

* Libraries — High-level abstractions with specified input/output (e.g. BLAS)
* Task-based — Data-centric abstractions for mapping tasks to resources (e.g. Legion)

* MPI+X — Algorithmic-level abstractions for distributed (MPI) and shared (X) memory
parallelism%e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)

High-order methods and
performance portability

What strategies are we using for high-order
methods and performance portability?

;| High-order, entropy-stable methods

Entro Evaluate
PY Shock
Stable Canturin Turbulent
Methods P 5 Dissipation
Entropy Stable Summation-by-Parts Where do discontinous Galerkin (DG) method:s fit?
Methods:

* SCE schemes are nodal DG schemes where
* Unstructured spectral collocation elements nonlinear operators are used in place of linear

(SCE) operators to achieve entropy stability

Shock capturing: * Entropy stability is used to help ensure
robustness in the presence of shocks

* Artificial viscosity

* Hybridized with Larsson shock sensor

Evaluate Turbulent Dissipation:

* Need accurate and robust methods

s | High-order communication and operators

Communication: \j; — . . oAb e
* Ghost cell communication (LG) \:;7-*—\ . I

* Ghost face communication (LGL)

Three major operators: Volume, Interface and Boundary

Linear Operators Nonlinear Operator (Entropy Stability)
Dw Do F]1
* Gradient operators * Flux divergence operators
* Matrix-vector operations in each cell * Batch vector inner product in each cell
(matrix-matrix including cells) (Batch vector-matrix including cells)

* w vector is reused for local assembly * F matrix is not reused

Two strategies used to avoid race conditions: graph coloring and atomics

» | High-order methods on modern hardware

Higher arithmetic intensity to efficiently utilize modern hardware

Example: No extrapolation operator in finite volume

Finite Volume Higher FLOPS per byte Nodal DG (LG)

f
' A
W
[f f‘l’f
I
- » I
Sl{‘I{‘.“{ \J 521‘]1* \ SZ{'l{-.\'

Increasing polynomial order

* More operations per degree of freedom
* Increases computational throughput

* Majority of operations are element-local
* Allows for efficient use of shared memory

QeleN l’ Qele \/ QeleN

Improves strong scaling; reduces error

Challenges:

* Diminishing returns
* Better performance given a fixed error metric

Performance portable C++ frameworks

MPI+X: C++ frameworks within Trilinos for performance portability ”

* Distributed memory linear algebra (Tpetra)

F Si.INOS
Abstract data layouts and hardware features on current and future architectures

* Allocation: U = Kokkos: :DualView<double***[5]>(Ncells,Nspts,Nv)
* Memory transfer: U.modify host(); U.sync device();

* Shared memory parallelism (Kokkos)

* Memory layout: Kokkos: :LayoutLeft (col-major)

 Data parallelism: Kokkos: :parallel for(policy, functor)
* policy defines iteration range: Kokkos: :RangePolicy(N)
 functor defines function to be parallelized

Allows researchers to focus more on algorithm development instead of architecture
specific programming
https://github.com/trilinos/Trilinos/
https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/
https://github.com/kokkos/kokkos/

Performance portable SIMD
vector intrinsics

What does a performance portable implementation
of SIMD vector intrinsics look like?

- 1 SIMD vector intrinsics

SISD: Single Instruction Single Data

alo] + b[0] = c[o]
a[l] + b[1] = c[1]
a[2] + b[2] = c[2]
a[3] + b[3] = c[3]
for (int i = 0; i < N; ++i) {

}

c[i]l = ali]l + bl[i];

Compilers may auto-vectorize
simple loops but not always

Explicit vectorization with
intrinsics improves performance

SIMD: Single Instruction Multiple Data

b256) ;

a[0] b[0] c[0]
a[1] b[1] c[1]
| =
a[2] b[2] c(2]
a[3] b[3] c(3]
Data for (int i = 0; i < N/4; ++i) {
Tvpe L==B256d |a256 = _m256_loadu_pd(a+4xi);
YPE€ 0564 b256 = _m256_loadu_pd (b+4%i);
__m256d c256 = _m256_add_pd (a256,
Func —| _m256 _storeu_pd|(c+4*i, c256);
+
for (int i = N-N%4; i < N; ++i) {
cli] = ali]l + bl[il;
} Remainder

s 1 SIMD performance portability

Architectures: Strategy:

* Intel CPUs: AVX2, AVX-512 * SIMD_Double: Data type for explicit vector
* ARM®64: ARM Neon * Operators for SIMD_Double

* CUDA: SIMT model * Functions for SIMD_Double

* maintain performance with same source code * (e.g.loads/stores, math functions, if then_else())

Libraries:

* Trilinos/STK — utilizes Kokkos simd-math library for SIMD data types support
* Portable across AVX2/AVX-512/Neon ”

* Plan to transition to Kokkos SIMD
° Portable across current and future SIMD architectures

-

* Kokkos core will provide SIMD data types (Work-in-progress)
* Dan Ibanez providing initial implementation: https://github.com/kokkos/kokkos/pull/5016

https://github.com/kokkos/kokkos/pull/5016

« | SIMD example for high-order

Example: Inviscid volume term

template <typename SIMDIndexT>
Template parameter for SIMD j KOKKOS_FORCEINLINE_FUNCTION void

index types (masked/unmasked) compute (const SIMDIndexT &cell, const int &spti) const
{

for (int dir = 0; dir < num_dims; ++dir)
{
Array class operators for SIMD «—— * o < jends i)
types {
ComputeFluxT (jcell_V(cell,spti), cell_V(cell, sptj)
tmpflux) ;
Arithmetic operators for SIMD
for (dnt var = 0: var < numVars:; ++var)
typeS hoflux[var] += coeffj * tmpflux[var];

}
¥

Use of auto type for portabilit
yP P Y <_|— const - lid = lid_map(cell, spt, 0);
AddToResidual (1id, hoflux);

Function overloads in some cases j

-

Numerical Results

How well does performance portable SIMD
perform?

« | Case setup

Gradient Test (GradTest):

* Initialize solution with exact polynomial on unit cube
* Compute gradient, check exactness and performance

Taylor-Green Vortex (TGV):

* |nitialize solution on 3D Cartesian mesh
* Wall-clock time over 100 RK44 iterations
Mach 3.5 Flat Plate Boundary Layer ILES (FP):

* Synthetic turbulent inflow
* Shock capturing: Shock sensor limiting artificial viscosity
* BDF2 implicit time integration

* Low-order preconditioned Jacobian-free Newton-Krylov

» | Study setup

'
[} +L [}

: : . .
Methods: L MPI+X Notation

r(MPI + jX), X € {OMP,OMPV, GPU}

r = # MPI ranks
j = # OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

- Structured cell-centered finite volume (SCCFV)

* Unstructured spectral collocation element (SCE)
- P=1-7;LGL

Node Architectures

* Intel Haswell (HSW) — 32 cores, 64 threads, AVX2 (4 doubles)

* Intel Knights Landing (KNL) — 64 cores, 256 threads, AVX512 (8 doubles)

* Intel Cascade Lake (CLX) — 48 cores, 96 threads, AVX512 (8 doubles)

* ARM®64 Cavium ThunderX2 (TX2) — 56 cores, 112 threads, Neon (2 doubles)
* NVIDIA Volta (V100) — 4 GPUs, Cuda (no simd)

s | SIMD performance on LayoutlLeft

GradTest: KNL speedup with explicit
Setup: vectorization

* Compare with and without explicit
vectorization given cell contiguous data

* i.e. LayoutLeft on Array(cell,spt,var)
* GradTest and TGV II I II I II I II

N ~

o

RESUItS: Ax4x4 8x8x8 16x16x16 32x32x32
W SCE1 mSCE2 mSCE3 mSCE4 mSCES M SCE6 M SCE7
» Speedup with explicit vectorization Larger
* GradTest: up to 3.2x (HSW), 5.6x (KNL) TGV: KNL speedup with explici (Better) |
* TGV Residual: up to 3.9x (HSW), 8.1x (KNL) vectorization
* TGV Step: up to 3.3x (HSW), 6.4x (KNL) 10

* Larger speedups at higher orders : II]
* GradTest: 1.5->3.2x (HSW), 1.6->5.6x (KNL) II II II L
TGV Residual: 2.5->3.9x (HSW), 5.9->8.1x (KNL) ., NN ll
« TGV Step: 2.3->3.3x (HSW), 4.4->6.4x (KNL) Constitutive Residual TimeStep ‘

B SCE1 mSCE2 SCE3 ®mSCE5 mSCE7

s | SIMD performance on TGV

Setup: 128”3 Degrees of Freedom (Dof)

Compare best MPI+OpenMP cases

OMP: LayoutRight on Array(cell,spt,var)

No explicit vectorization

OMPV: LayoutLeft on Array(cell,spt,var)

Explicit vectorization

Results:

Higher throughput with explicit vectorization

LayoutRight performs better in rare cases
Better caching?

Larger throughput at higher orders

SCE7 has smaller throughput

Large benefit in SCCFV

High-order improvements are relatively modest

SCE3: Dof/s/TimeStep across different
architectures (1 Node)

4.00E+06
3.00E+06
2.00E+06

o I I I I I I I I
0.00E+00
HSW KNL CLX TX2

HOMP mOMPV

Larger

(Better)
HSW: Dof/s/TimeStep without/with

explicit vectorization
2.00E+06

1.50E+06
1.00E+06
5.00E+05 . I
0.00E+00

2(MPI+320MP) 2(MPI+320MPV)

W SCCFV mSCE1l mSCE3 mSCE7

» | SIMD performance on flat plate

Setup:

* Jacobian-free Newton-Krylov

* Frechet approximation
* Lowe-order, Block Jacobi preconditioner

* All results are using 8 nodes

* Speedup relative to Haswell (HSW) node

Results:

Largest speedup from GPU node (18.7x)
Largest CPU speedup from CLX (2.6x)

100000
10000
1000
100

10

—

SCE3: Wall-clock Time (s)

HSW KNL CLX X2

m TotalTime m Constitutive

V100

Residual

SCE3: Speedup relative to Haswell Node

16

4

1

0.25

I_n_.._ll

mm TotalTime mmmConstitutive

KNL CLX TX2 V100

Residual —Baseline

» | Discussion

* HPC architectures are changing rapidly which poses a significant challenge

* Trilinos/Kokkos offers an efficient way to meet this challenge for large scale,
high-fidelity simulations

* SIMD performance portable libraries offer a means to perform explicit
vectorization on a variety of different architectures

* Performance results are promising but more R&D is needed to improve
robustness and performance for high-order methods and hypersonics

Future Work

* Additional data layout testing (strided or AoSoA)
* Full integration of Kokkos SIMD

* Improve end-to-end performance of implicit solver

. | High-order methods — Introduction

Increasing polynomial order allows for more efficient simulations

Drag coefficient error for Joukowski airfoil
(Ma=0.5, Re=1000) using ZEFR (2017)

10_3?
10_4~j
2107
] o pP—]
10_ £ : A P: 2 =
|V P=3 |
; P=4 |
I — ine fit |
-7
10 — —
107° | 107°
More DOFs «<—— h = \/”]')T > Less DOFs

(Better)

Strong Scalability for cubed-sphere, shallow
water equations using Aeras (2018)

16
Device Configuration, Order
14 || == Ideal
- = 8(MPI+80penMP), p3 &
12 || =a =8(MPI4+80penMP), p4 2z ,L
8(MPI+80penMP), p5 0%, -
~ 10 || =8 =8(MPI+80penMP), p6 L
= ¢ -
3 P
® 8 e - =
(IQ:; -, {’ - -— ™ = -
6 I oG
< ”
% -
4 ¢
/ —
2 |
) 4 6 8 10 12 14 16

Number of Devices

{ Higher P

(Better)

T

2 ‘ TGV Results

First attempt to quantify performance of high-order

Tscerv * €TTsccry
T -erré
* T - Wall-clock time for 30s simulation time (s)

Figure of Merit =

« err® = [|e(t) — gref(t)|?dt - Enstrophy error
* Reference: Spectral element solution, 5123

* Note: results are architecture independent

Analysis:

* Current optimal is near SCE5
* High-order performing better on GPUs

* Bottlenecks
* CPU — Residual (computation)
* GPU - ConsRelations (gradient, communication)
* Remainder also needs more profiling/improvement

Enstrophy

—— DNS

s SCCFva4 —128°
—=- HOFD4 - 128°
——- SCE3-128°

g weern SCE5 — 96°

-=—- SCE7-128°

10.0
t

1.0

o

Figure of Merit

0.4

0.0

Mutrino
(HSW)

I ConsRelations
[Residual
1 Remainder

4] (]

— L

a
[L 1]
b bb
|
10714
f If
A A
€ [
<1 - d
G x 1072
431077 o \futrino (HSW)
I Stria (TX2) q @
,| HEE Vortex (P9,V100) > .
3% 1072
107 10° 10°
Wall-clock Time (s)
[

(Discretization - DoF1
a: SCCFV4 - 1283
b: HOFD4 - 1283
BEE e: SCE3 - 1283
f: SCE5 - 962

g: SCET - 1283
-

Vortex
(P9,V100)

% ‘ Matrix-free methods — Introduction

Time Stepping Schemes:

Semi-discrete equation

Runge-Kutta methods

BDF1 for steady-state

Nstages

. Divergence AU™ = AT™ R (Um"'l)
v / of the flux U™t =U"+ A"y bR, OR™
U . E o s=1 (AT™) ' — —) AU™ = R™
0 =V IV .F RU)=-V1V . F () aum™

* 1

Determinant geometric Residual
Jacobian matrix

Explicit methods (Ex: RK44)

* Pros:
* No matrix and linear system solve required
* Performance limited by residual

* Cons:
* Time step often limited by numerical stability
* Difficult to determine reliable time step
* High-order time step restriction h/P?

Stages can be solved sequentially
(No linear system)

T T

Residual Jacobian matrix
(Large sparse matrix)

Implicit methods (Ex: BDF1)

Pros:

Time step tuned to accuracy
More computation per sequential time step

Cons:

Matrix and linear system solve required
Nonlinear stability is not guaranteed
High-order matrix size P3

» | Matrix-free methods — Introduction
Jacobian-free Newton-Krylov:

* Using GMRES to solve the linear system only requires matrix-vector products
* Less memory (no need to store a large matrix) which allows an increase in utilization
* Less data movement (no need to assemble a large matrix) which allows efficient bandwidth use
* More computation (evaluate matrix-vector product at each linear iteration)

* May need matrix if preconditioning is required

Matrix-free approximate Matrix-free exact
Use Erechet derivative Use automatic differentiation (AD)
Y Pros ¢ PFOS

* Performance limited by residual * Quadratic convergence at best

* Cons:
* AD evaluation at each linear iteration

o o N * Nonlinear stability is not guaranteed
* Approximation may limit stability * More difficult to solve for stiff equations

* Cons:
* Residual evaluation at each linear iteration

28 ‘ Matrix-free methods — Results

Example: Turbulent flat plate boundary layer

(M=0.2)
Steady-state: pseudo-transient continuation

* |nexact Jacobian
* Second-order finite volume discretization

* First-order inviscid Jacobian, neglect viscous
cross-terms

* Used for inexact Newton and preconditioned
JENK

* Linear solve
* Block tridiagonal solver or GMRES/ILU

Results:

* Exact matrix-free led to 7x speedup over
inexact Newton for SA turbulence model

* Robustness issues when applying matrix-
free methods to SST turbulence model

Convergence history

Convergence history for flat plate, Spalart-Allmaras (SA)
turbulence model

10‘1 g ————
102 i
Z 10"
e
i 10-2 - - [nexact-Newton
Approx-JFNK
10-4] Exact-JENK-SFad10
Exact-JFNK-SFad1
107 10! 102 103 10"

Nlin Iterations

Nlin Iterations

Problem Solve Time (s)

Belos Solve Time (s)

Inexact-Newton 11684 109.216 58.7482
Approx-JFNK 1873 51.9301 43.1881
Exact-JFNK-SFad10 262 46.3098 44.2337
Exact-JFNK-SFad1 256 15.2841 13.4616

Matrix-free methods — Results

Focusing on performance with Jacobi:

All results are using 8 nodes on each platform
° Intel Haswell (HSW) CPU (32 cores/node)

o ARM®64 Cavium ThunderX2 (TX2) CPU (56
cores/node)

> NVIDIA Volta (V100) GPU (4 GPUs/node)

Inexact Newton performed better on CPU
platforms

Matrix-free approximate performed better on
GPU platforms

Matrix-free exact performed better on
platforms with more threads

Fastest wall-clock time was on GPU
* 5x over fastest HSW time

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

Total solve time (s)

Mutrino (HSW) Stria (TX2) Vortex (V100)

H [nexact Newton
m Matrix Free Approximate
Matrix Free Exact

