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_,/ Motivation: Safeguards at enrichment facilities are
expensive and considered in isolation

/4
4 * Multiple potential class of safeguards anomalies at bulk facilities
® Over enrichment, excess production, material diversion, etc.
* Existing safeguards effective, but address safeguards anomalies in isolation
® Weigh scales for cylinders are not used to help monitor for excess production
¢ Key question: Can a unified analysis of facility signals provide better
safeguards anomaly detection than existing approaches that consider
anomalies individually?

® Bonus: Could this unified analysis be performed cheaper (both in terms of
labor and direct capital costs) than the existing traditional approach?
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¢ Centrifuges spin very fast to
separate homogeneous mixture
of UF,

® Gaseous centrifuge enrichment
plants (GCEPs) consists of
hundreds to thousands of
individual centrifuges

¢ Specific arrangements of
centrifuges are often classified or
proprietary
® Safeguards often conducted
outside the cascade hall
(with exception to design
verification activities).

/ Context: gaseous enrichment overview
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Online Enrichment Monitor
(OLEM) can verify enrichment
levels

Utilizes several data modalities to
estimate enrichment

® Temperature, pressure,
gamma spectra

Highly effective, but not widely
deployed

Does not provide information on
other classes of safeguards
anomalies

// Context: State-of-the-art systems to measure
enrichment - OLEM

V. Fournier/IAEA




,/Context: material accountancy relies on counting
everything

Nin Nout

n n
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where
J 2211 l;; is the total inventory at time t across all locations

J Zl”'=”1 Tin;, is the total input at time t across all locations

¢ Ifinputs are flows they should be summed over the time period of interest
(i.e.t —1tot)

o Z;:Ut Tout;, is the total output at time t across all locations

e Similar to the inputs, if outputs are flows, they should be summed over the
time period of interest
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3 Pros:

* Powers many modern
conveniences

¢ Demonstrated beyond human
levels of performance on several
tasks

® Accessible state-of-the-art
approaches and frameworks

~~ Machine learning can solve all our problems!

Documented issues with
unsupervised approaches for
safeugards tasks

Large quantities of training data
needed in some cases

Labeled examples required to
leverage full power of machine
learning
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Problem overview

/
74 * Key question: Can data science, combined with the totality of signals

currently observed at enrichment facilities, outperform traditional
safeguards approaches?

* Key question: What are the limitations for supervised methods? Could
documented remedies in machine learning literature for common
problems (e.g., small training datasets, lack of labels) or domain knowledge
reduce the impact of known limitations?

* Key question: Could important streams be implemented using
unattended or autonomous approaches?

* Experiment: Apply a state-of-the-art time-series classification model to
safeguards data from a synthetic enrichment model to evaluate

performance and search for remedies to common machine learning
limitations.

® Requiring examples of all possible anomaly pathways is infeasible for
safeguards applications. ‘
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//Methodology: algorithm

® InceptionTime algorithm
demonstrated state-of-the-art

performance on UCR dataset
archive (supervised time series
classification)

channels

E

architecture as a reason for
poor performance

Several algorithmic features to

input.time/ X 7~
® Using a benchmarked M '
algorithm should eliminate //"’E‘E

ok
« \_output
I (classes

fully

global
connected

average
pooling

\ residual

connections

address challenges with time
series (e.g., vanishing gradients
from long sequences)

Somewhat more intuitive than
cutting edge Transformer based
architectures

Fawaz et al., “InceptionTime: Finding Alexnet for time series classification”



Methodology: data generation

Based on synthetic data generated from GCEP model

Generic balance-of-plant model with 8 parallel cascades

® Designed to support simulation of measurements that could feasibly be obtained by IAEA
* Simulates thermophysical feedbacks in facility resulting from operations

* |gnored detailed questions around time series off-normal classification interval

GCEP Model Parameters

Parameter Value
Throughput 600 22

yr
Feed enrichment 0.711 wt% 235U

Product enrichment | 4.5 wt% 2*U

Tails enrichment 0.2 wt% 2*U




~ Experiments: scenario description

/4 Work considered several scenarios at different locations within GCEP facility.
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/" Experiments: empirical performance

7 Performance of InceptionTime classification algorithm when trained of different

scenarios.
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“The core idea behind Shapley
value based explanations of
machine learning models is to
use fair allocation results from
cooperative game theory to
allocate credit for a model's
output among its input features”

Shap values explain difference
between specific observation and
the model average prediction

Model-agnostic approach to
approximate feature impact on
model

Local only explanations

Useful for understanding model
decisions

// Explainability: SHAP Values

fix)
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Slundberg et al., Shap values documentation: Example on house pricing



// Explainability: focus on comparison of two scenarios;
one high performance and low performance
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/'Explainability: why the performance discrepancy? Shap

values of high performance case.

~ Response of InceptionTime to scenario 3 when trained on scenario 1 (F1 =0.84
- high performance case). Note the strong Shap value response to different
feature values for feature 87 and 88.

Y

Summary plot for a model trained on scenario 1 and evaluated on scenario 3
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_,/ Explainability: Contributing factors to high
4 case.
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/" Good performance on unseen anomaly (scenario 3) largely arises from common features in
unseen anomaly. Although the anomaly pattern is new/different, anomalous behavior had been
previously observed at that location causing the algorithm to learn about those relevant features.

Anomaly intensity
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7 Response of InceptionTime to scenario 3 when trained on scenario 2 (F1 =0.01
- low performance case). Note the smaller Shap value response to top features.

Summary plot for a model trained on scenario 2 and evaluated on scenario 3
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/" Explainability: SHAP values for low performance case
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_,/ Explainability: features of the lower performance case
seen during training
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// Explainability: performance scaling with number of
anomaly locations.
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Conclusions

Presented work sought to improve enrichment safeguards by utilizing
existing features combined with machine learning for enhanced anomaly
detection

* Good performance observed on anomalies seen during training
* Generally, supervised approaches tended to exhibit poor generalization on
scenarios with anomalous features not seen in training
® Non-zero detection was observed for new anomalous patterns that contained
features previously observed with different anomalies
* Possible engineering of training datasets could lead to better supervised
performance, even on unseen datasets
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