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Motivation: Safeguards at enrichment facilities are
expensive and considered in isolation

• Multiple potential class of safeguards anomalies at bulk facilities
• Over enrichment, excess production, material diversion, etc.

• Existing safeguards effective, but address safeguards anomalies in isolation
• Weigh scales for cylinders are not used to help monitor for excess production

• Key question: Can a unified analysis of facility signals provide better
safeguards anomaly detection than existing approaches that consider
anomalies individually?

• Bonus: Could this unified analysis be performed cheaper (both in terms of
labor and direct capital costs) than the existing traditional approach?
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Context: gaseous enrichment overview

• Centrifuges spin very fast to
separate homogeneous mixture
of UF6

• Gaseous centrifuge enrichment
plants (GCEPs) consists of
hundreds to thousands of
individual centrifuges

• Specific arrangements of

centrifuges are often classified or

proprietary

• Safeguards often conducted
outside the cascade hall
(with exception to design
verification activities).
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Context: State-of-the-art systems to measure
enrichment - OLEM

• Online Enrichment Monitor
(OLEM) can verify enrichment
levels

• Utilizes several data modalities to

estimate enrichment

• Temperature, pressure,
gamma spectra

• Highly effective, but not widely
deployed

• Does not provide information on
other classes of safeguards
anomalies V. Fournier/IAEA
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Context: material accountancy relies on counting

everything
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where

• ∑
𝑛I
𝑖=1 𝐼𝑖,𝑡 is the total inventory at time 𝑡 across all locations

• ∑
𝑛in
𝑖=1 𝑇𝑖𝑛𝑖,𝑡 is the total input at time 𝑡 across all locations

• If inputs are flows they should be summed over the time period of interest
(i.e. 𝑡 − 1 to 𝑡)

• ∑
𝑛out
𝑖=1 𝑇𝑜𝑢𝑡𝑖,𝑡 is the total output at time 𝑡 across all locations

• Similar to the inputs, if outputs are flows, they should be summed over the
time period of interest
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Machine learning can solve all our problems!

Pros:

• Powers many modern
conveniences

• Demonstrated beyond human
levels of performance on several
tasks

• Accessible state-of-the-art
approaches and frameworks

Cons:

• Documented issues with
unsupervised approaches for
safeugards tasks

• Large quantities of training data
needed in some cases

• Labeled examples required to
leverage full power of machine
learning
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Problem overview

• Key question: Can data science, combined with the totality of signals
currently observed at enrichment facilities, outperform traditional
safeguards approaches?

• Key question: What are the limitations for supervised methods? Could
documented remedies in machine learning literature for common
problems (e.g., small training datasets, lack of labels) or domain knowledge
reduce the impact of known limitations?

• Key question: Could important streams be implemented using
unattended or autonomous approaches?

• Experiment: Apply a state-of-the-art time-series classification model to
safeguards data from a synthetic enrichment model to evaluate
performance and search for remedies to common machine learning
limitations.

• Requiring examples of all possible anomaly pathways is infeasible for
safeguards applications.
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Methodology: algorithm

• InceptionTime algorithm

demonstrated state-of-the-art

performance on UCR dataset

archive (supervised time series

classification)

• Using a benchmarked
algorithm should eliminate
architecture as a reason for
poor performance

• Several algorithmic features to
address challenges with time
series (e.g., vanishing gradients
from long sequences)

• Somewhat more intuitive than
cutting edge Transformer based
architectures

Fawaz et al., “InceptionTime: Finding Alexnet for time series classification”
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Methodology: data generation

• Based on synthetic data generated from GCEP model

• Generic balance-of-plant model with 8 parallel cascades

• Designed to support simulation of measurements that could feasibly be obtained by IAEA

• Simulates thermophysical feedbacks in facility resulting from operations

• Ignored detailed questions around time series off-normal classification interval

GCEP Model Parameters

Parameter Value

Throughput 600 𝑡𝑆𝑊𝑈

𝑦𝑟

Feed enrichment 0.711 wt% 235U

Product enrichment 4.5 wt% 235U

Tails enrichment 0.2 wt% 235U
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Experiments: scenario description

Work considered several scenarios at different locations within GCEP facility.
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Experiments: empirical performance

Performance of InceptionTime classification algorithm when trained of different
scenarios.
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Explainability: SHAP Values

• “The core idea behind Shapley
value based explanations of
machine learning models is to
use fair allocation results from
cooperative game theory to
allocate credit for a model’s
output among its input features”

• Shap values explain difference
between specific observation and
the model average prediction

• Model-agnostic approach to
approximate feature impact on
model

• Local only explanations

• Useful for understanding model
decisions

Slundberg et al., Shap values documentation: Example on house pricing
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Explainability: focus on comparison of two scenarios;
one high performance and low performance
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Explainability: why the performance discrepancy? Shap
values of high performance case.

Response of InceptionTime to scenario 3 when trained on scenario 1 (F1 = 0.84
– high performance case). Note the strong Shap value response to different
feature values for feature 87 and 88.
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Explainability: Contributing factors to high performance
case.

Good performance on unseen anomaly (scenario 3) largely arises from common features in
unseen anomaly. Although the anomaly pattern is new/different, anomalous behavior had been
previously observed at that location causing the algorithm to learn about those relevant features.
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Explainability: SHAP values for low performance case

Response of InceptionTime to scenario 3 when trained on scenario 2 (F1 = 0.01
– low performance case). Note the smaller Shap value response to top features.
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Explainability: features of the lower performance case
seen during training
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Explainability: performance scaling with number of
anomaly locations.
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Conclusions

• Presented work sought to improve enrichment safeguards by utilizing
existing features combined with machine learning for enhanced anomaly
detection

• Good performance observed on anomalies seen during training

• Generally, supervised approaches tended to exhibit poor generalization on
scenarios with anomalous features not seen in training

• Non-zero detection was observed for new anomalous patterns that contained
features previously observed with different anomalies

• Possible engineering of training datasets could lead to better supervised
performance, even on unseen datasets
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