

Sandia
National
Laboratories

The ECP Proxy App Project: Highlights and Lessons Learned

Omar Aaziz

Jeanine Cook

PES GM Panel

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Project Primary Goals

Compose and release a proxy application suite to represent the ECP application complex

- Release on a yearly cadence to track changes in application space
- Suite must be easy to use to ensure community adoption

Assess the fidelity of these proxy applications compared to their respective parents

- Since proxies are used in co-design and acquisition, we must know if and how they are/are not representative of parent behavior

Proxies used in Co-Design

Software development, used to evaluate

- Algorithmic options
- Code optimizations
- Programming models
- Performance portability

Hardware/system development, used to evaluate

- New architectural and system components
- Algorithms that drive behavior of hardware components

System Acquisition

- Performance/benchmarking

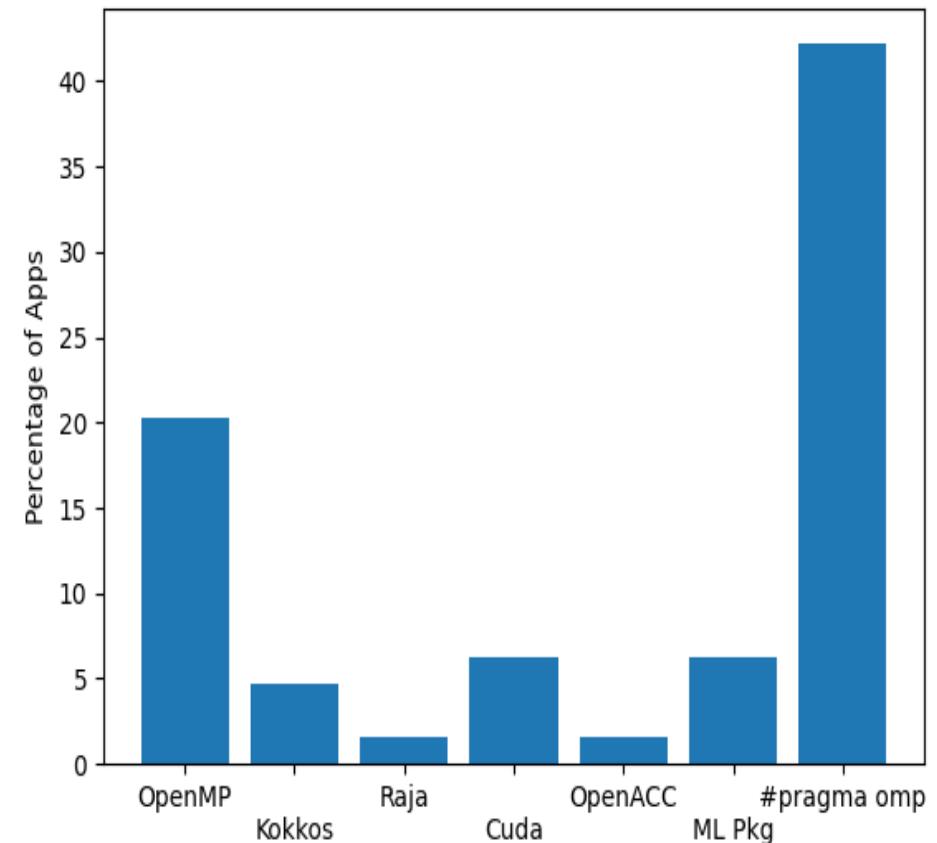
Proxies must represent behavior of applications we care about

Proxies must be easy to obtain, build, and execute across platforms

Project Highlights

ECP Proxy App Suite Release 4.0

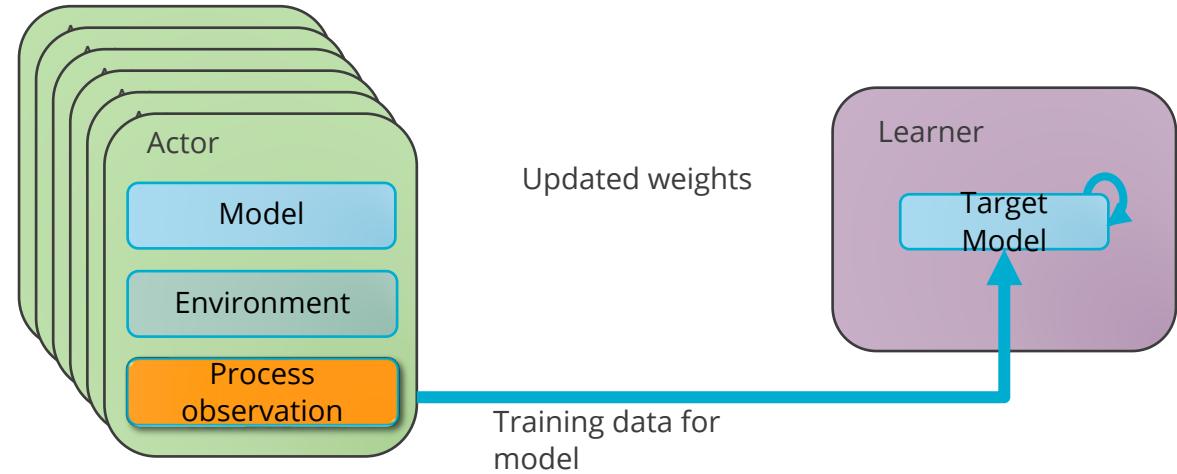
Currently 64 proxies in ECP Proxy App Catalog


- <https://proxyapps.exascaleproject.org/app/>
- Organized by programming model
 - All programming models of interest to DOE

Implemented as spack packages for easier build and portability

- spack info `ecp-proxy-apps`
- spack install [ecp-proxy-apps@4.0](https://proxyapps.exascaleproject.org/app/#ecp-proxy-apps@4.0)
- spack list -tag proxy-app

Proxy App Quality Standards and Best Practices


- <https://proxyapps.exascaleproject.org/standards/>

New ML Proxies

miniRL

- Is a reinforcement learning proxy app derived from EXARL
- Captures important communication and computational aspects
- Demonstrated using Deep Q-Network and a synthetic environment called ExaCartpole
- Provides modular agents, environments, and workflows
- **minitally**
 - Implements tallying system from OpenMC
- **Qtensor-mini**
 - Tensor contraction simulator

- **HyPar**
 - Finite-difference framework to solve any general hyperbolic-parabolic PDEs on structured grids
- **IMEXLBM**
 - Lattice Boltzmann Method proxy app suite for heterogeneous systems

ECP Proxy Apps

POC: ECP Proxy Apps Team (ecp-proxy-apps@llnl.gov)

URL: <https://proxyapps.exascaleproject.org/>

Publications and reports: url

Ways to contribute?

- Submit proxy apps: <https://proxyapps.exascaleproject.org/submit-app/>
- Develop or improve spackage for proxy apps: <https://github.com/spack/spack/>

Proxy Application Fidelity Assessment

Develop method to assess fidelity of proxies that are used in hardware co-design

- Only use proxies that are designed to represent computational/memory/communication behavior of parent applications

Key insights

- An application generates a “fingerprint” during execution on a particular system
 - Reflects how the application behaves in response to system constraints
- Similar application fingerprints mean application responds similarly to particular design constraint and to changes in that particular constraint
 - Expect codes with similar dependence/bottleneck on memory bandwidth to derive similar benefit from memory bandwidth improvement
- Fingerprints must be easy and fast to collect

Method

- Evaluated several ML Similarity techniques
- Fingerprint is 500-700 (based on platform) performance counter events
- Used an average of (take from SC paper)

Experimental Platform

Application fingerprint from two different platforms (IBM & Intel)

- ~700 IBM events; ~500 Intel events
 - Can compare proxy/parent on single platform
 - Have to be careful across platforms
 - Cross-platform events can be very different → group so that only similar events are compared

Used 8 proxy/parent pairs and 5 others that were either proxies or applications (not paired)

Run configuration fixed

- 4 nodes, 128 ranks

Normalize input/problem to consume ~50% of memory

~4500 total runs

- 5 for each application x # groups
- Average over 5 runs, then over ranks → single value for each event

Use LDMS and PAPI sampler

- Sample rate: 1 sec

Apply similarity

- LIST the techniques we used in SC paper

Entire Fingerprint

IBM P9

	ExaMiniMD	19	26	24	19	19	47	22	21	22	18	21	50	18	19	20	20	16	15	17	19
LAMMPS	19	0	14	10	19	11	55	24	16	13	24	26	61	17	24	23	15	14	12	19	10
sw4lite	26	14	0	7	25	17	52	21	17	11	24	26	59	24	23	22	25	23	17	17	18
sw4	24	10	7	0	22	16	54	22	16	13	24	26	61	21	23	23	21	19	15	18	14
SWFFT	19	19	25	22	0	20	45	19	21	24	16	17	52	8	17	16	14	14	9	18	13
HACC	19	11	17	16	20	0	51	23	16	15	23	26	57	18	23	23	17	16	14	18	15
MiniQMC	47	55	52	54	45	51	0	37	49	54	37	36	19	46	39	39	54	49	46	41	51
QMCPack	22	24	21	22	19	23	37	0	21	24	9	10	45	22	13	12	28	21	16	12	20
miniVite	21	16	17	16	21	16	49	21	0	16	20	24	54	19	20	19	23	17	14	14	17
vite	22	13	11	13	24	15	54	24	16	9	24	27	59	24	22	22	23	21	17	17	19
Nekbone	18	24	24	24	16	23	37	9	20	24	0	8	42	18	10	9	25	19	14	11	19
Nek5000	21	26	26	26	17	26	36	10	24	27	9	0	43	20	12	12	27	21	16	15	21
XSBench	50	61	59	61	52	57	19	45	54	59	42	43	0	53	44	44	60	55	53	47	58
openmc	18	17	24	21	8	18	46	22	19	24	18	20	53	0	19	18	12	11	9	18	12
picsarlite	19	24	23	23	17	23	39	13	20	22	10	12	44	19	0	3	25	21	15	12	21
picsar	20	23	22	23	16	23	39	12	19	22	9	12	44	18	3	0	25	20	14	11	21
amg2013	20	15	25	21	14	17	54	28	23	23	25	27	60	12	25	25	0	15	14	25	13
Castro	16	14	23	19	14	16	49	21	17	21	19	21	55	11	21	20	15	0	10	17	11
Laghos	15	12	17	15	9	14	46	16	14	17	14	16	53	9	15	14	14	10	0	12	9
pennant	17	19	17	18	18	18	41	12	14	17	11	15	47	18	12	11	25	17	12	0	18
snap	19	10	18	14	13	15	51	20	17	19	19	21	58	12	21	21	13	11	9	18	0

Intel SKX

	ExaMiniMD	0	3	15	22	31	14	84	79	35	35	56	54	72	17	46	46	15	23	27	29	17
LAMMPS	3	0	15	23	32	14	85	79	34	35	56	54	72	17	46	46	16	23	28	29	18	
sw4lite	15	15	0	13	24	13	77	71	25	25	46	44	65	13	38	37	12	14	16	22	14	
sw4	22	23	13	0	17	16	66	61	21	21	36	34	57	16	29	29	17	12	10	11	12	
SWFFT	31	32	24	17	0	21	62	58	30	30	36	34	49	19	24	25	21	21	17	20	24	
HACC	14	14	13	16	21	0	76	71	29	29	47	45	64	9	37	37	3	16	19	20	16	
MiniQMC	84	85	77	66	62	76	0	11	63	63	36	37	29	74	42	42	77	68	62	61	71	
QMCPack	79	79	71	61	58	71	11	0	59	58	32	33	33	70	38	38	72	63	57	57	66	
miniVite	35	34	25	21	30	29	63	59	0	1	30	28	58	27	30	30	27	14	16	19	21	
vite	35	35	25	21	30	29	63	58	1	0	30	28	58	28	30	29	27	14	17	19	22	
Nekbone	56	56	46	36	36	47	36	32	30	30	0	3	36	45	20	19	46	35	30	31	41	
Nek5000	54	54	44	34	34	45	37	33	28	28	3	0	38	43	19	19	45	34	29	29	39	
XSBench	72	72	65	57	49	64	29	33	58	58	36	38	0	60	32	32	64	59	52	54	62	
openmc	17	17	13	16	19	9	74	70	27	28	45	43	60	0	35	34	6	15	17	22	16	
picsarlite	46	46	38	29	24	37	42	38	30	30	20	19	32	35	0	2	38	30	23	27	34	
picsar	46	46	37	29	25	37	42	38	30	29	19	19	32	34	2	0	37	29	23	26	33	
amg2013	15	16	12	17	21	3	77	72	27	27	46	45	64	6	38	37	0	15	18	23	16	
Castro	23	23	14	12	21	16	68	63	14	14	35	34	59	15	30	29	15	0	9	14	13	
Laghos	27	28	16	10	17	19	62	57	16	17	30	29	52	17	23	23	18	9	0	13	15	
pennant	29	29	22	11	20	20	61	57	19	19	31	29	54	22	27	26	23	14	13	0	17	
snap	17	18	14	12	24	16	71	66	21	22	41	39	62	16	34	33	16	13	15	17	0	

Assessment Summary

ML methods can be used to understand proxy app fidelity

- Node and memory, and communication

COS on-going work

- Re-factoring event groupings to be more accurate within a single platform and to enable more accurate cross-platform comparisons
- Developing a method to determine ground truth
 - Unsupervised learning, ~recommendation system
- Examining ML techniques to reduce data collection
- Developing infrastructure to collect application fingerprints on ARM platforms

I/O assessment work

- Evaluation of MacSio (configurable to match various communication patterns)
- Explore the viability of creating a model to predict certain I/O behaviors of AMR-based applications based on combinations of input parameters and system variability
- Use this model to create a tool that will generate MACSio parameters from an AMReX input file (with placeholders for missing capabilities)

Big Lessons Learned

Assessing proxy fidelity is feasible using ML techniques and performance measurement

- Feedback must be given to proxy developers when proxy fidelity is low
 - Sometimes they haven't updated the proxy!

Curating a proxy app suite is more difficult than it sounds, but possible!

- In spite of 100's of proxies that exist, possible to
 - Organize, document, catalog for easy access
 - Spackify for ease of porting

Developers should understand motivation and use of proxy

- What is the proxy going to be used for?
 - Software optimization? Hardware co-design? Programming model exploration?
- What is it intended to represent?
 - Algorithm? Computational behavior? Programming model?

Proxy documentation must state intended use

Proxies must keep up with application space

Thanks!

The End