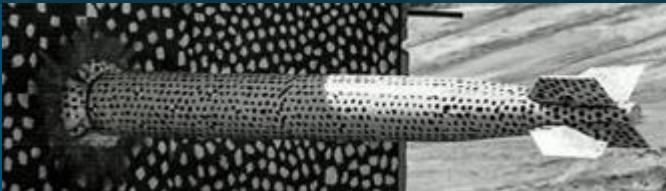


A performance portable implementation of high-order, entropy-stable spectral collocation schemes for compressible turbulent flows



July 31st to August 5th, 2022

PRESENTED BY

Jerry Watkins, Travis Fisher, and Wyatt Horne

15th World Congress on Computational Mechanics

8th Asian Pacific Congress on Computational Mechanics

Yokohama, Japan (Virtual)

Sandia
National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

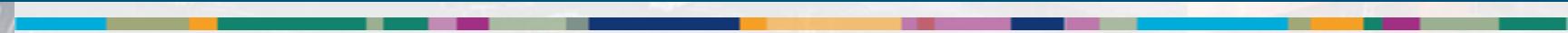
SAND

Outline

- Introduction
 - Motivation – High-fidelity simulations
 - Motivation – Exascale computing
- High-order, matrix-free methods and performance portability
 - High-order, entropy-stable methods
 - High-order communication and operators
 - High-order methods on modern hardware
 - Matrix-free methods
 - Matrix-free methods on modern hardware
 - Performance portable C++ frameworks
- Numerical Results
 - Case/Study setup
 - Taylor-Green Vortex
 - Flat plate

Motivation

Why are we interested in performance and portability?



High-fidelity simulations

High-fidelity simulations on exascale systems for analysis/design in hypersonics

Multi-fidelity design tools

Direct Numerical Simulation (DNS)

- Purpose: Model Development and Uncertainty Quantification
- Methods: High-order structured or unstructured methods

Wall-modeled LES and hybrid RANS/LES

- Purpose: Higher-fidelity engineering analysis
- Methods: High-order or low-dissipation finite volume

RANS

- Purpose: Engineering calculations
- Methods: Second-order finite volume

Reduced-order and semi-empirical models

- Purpose: Engineering
- Methods: Various

Target systems

LANL Trinity
Intel (KNL)

Sierra
NVIDIA (V100)

El Capitan
AMD

Crossroads
Intel

Exascale computing

Challenges:

- Diverse set of HPC vendors and architectures
 - Intel, AMD, NVIDIA, IBM, ARM-based
 - CPUs with vector processing; GPUs
- Software life cycle is much longer than hardware

Different architectures, trend remains the same

- Need algorithms with **high arithmetic intensity** (total ops/byte)
- Need fundamental **abstractions** during code development

Performance portability: A reasonable level of performance is achieved across a wide variety of computing architectures with the same source code.

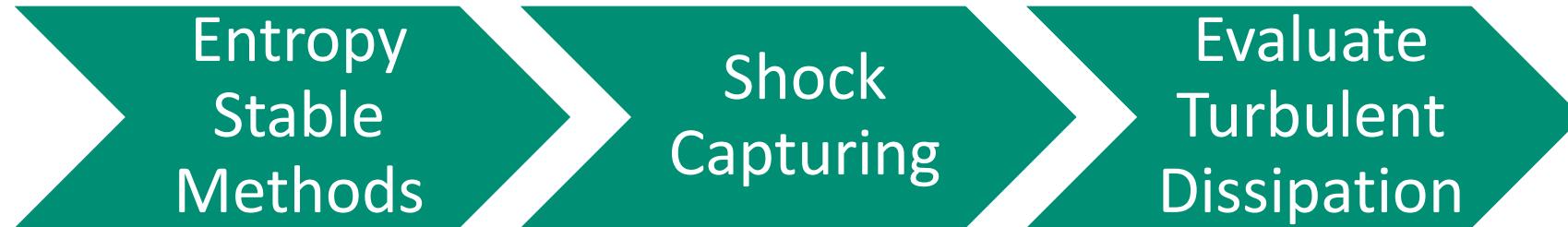
Approaches:

- **Libraries** – High-level abstractions with specified input/output (e.g. BLAS)
- **Task-based** – Data-centric abstractions for mapping tasks to resources (e.g. Legion)
- **MPI+X** – Algorithmic-level abstractions for distributed (MPI) and shared (X) memory parallelism (e.g. **Directives**: OpenMP, OpenACC; **Frameworks**: Kokkos, RAJA, OCCA)

High-order, matrix-free methods and performance portability

What strategies are we using for high-order, matrix-free methods and performance portability?

High-order, entropy-stable methods



Entropy Stable Summation-by-Parts Methods:

- Multi-block structured finite difference (**HOFD**)
- Unstructured spectral collocation elements (**SCE**)

Shock capturing:

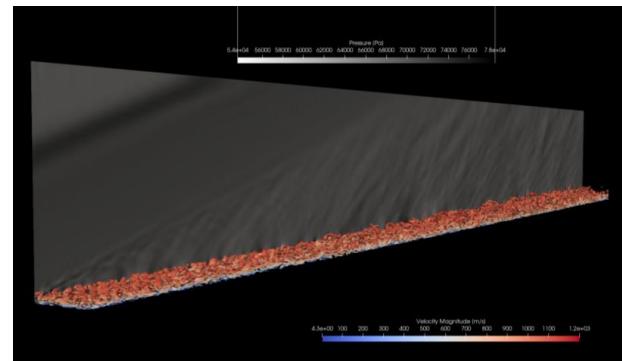
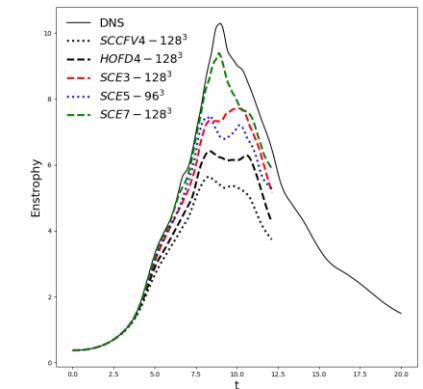
- WENO
- Artificial viscosity
- Hybridized with Larsson shock sensor

Evaluate Turbulent Dissipation:

- Need accurate and robust methods

Where do discontinuous Galerkin (DG) methods fit?

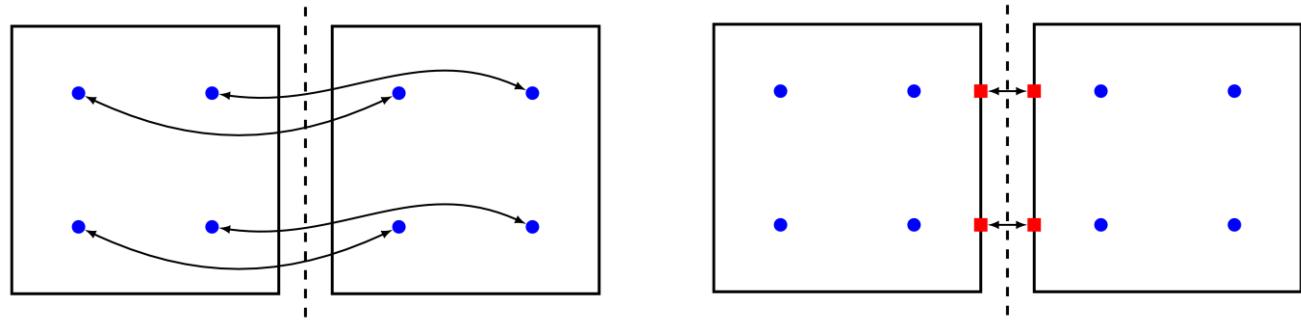
- **SCE** schemes are **nodal DG schemes** where nonlinear operators are used in place of linear operators to achieve entropy stability
- **Entropy stability** is used to help ensure **robustness** in the presence of **shocks**



High-order communication and operators

Communication:

- Ghost cell communication (LG)
- Ghost face communication (LGL)



Three major operators: Volume, Interface and Boundary

Linear Operators

$$\mathcal{D}w$$

- Gradient operators
- Matrix-vector operations in each cell (matrix-matrix including cells)
- w vector is reused for local assembly

Nonlinear Operator (Entropy Stability)

$$[\mathcal{D} \circ \mathcal{F}] 1$$

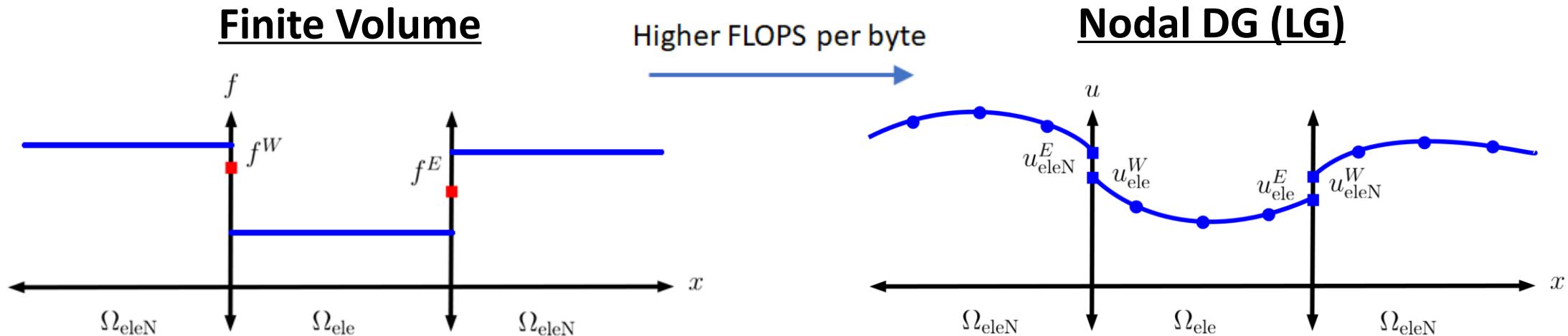
- Flux divergence operators
- Batch vector inner product in each cell (Batch vector-matrix including cells)
- \mathcal{F} matrix is not reused

Two strategies used to avoid race conditions: **graph coloring** and **atomics**

High-order methods on modern hardware

Higher arithmetic intensity to efficiently utilize modern hardware

Example: No extrapolation operator in finite volume



Increasing polynomial order

- More operations per degree of freedom
 - Increases computational throughput
- Majority of operations are element-local
 - Allows for efficient use of shared memory
- Improves strong scaling; reduces error
- Challenges:
 - Diminishing returns
 - Better performance given a fixed error metric

Matrix-free methods

Time Stepping Schemes:

Semi-discrete equation

Solution

$$\frac{\partial \mathbf{U}}{\partial t} = -\mathbf{V}^{-1} \hat{\nabla}^\delta \cdot \hat{\mathbf{F}}$$

↑ ↑
Determinant geometric
Jacobian matrix Residual

$$R(\mathbf{U}) = -\mathbf{V}^{-1} \hat{\nabla}^\delta \cdot \hat{\mathbf{F}}$$

↑ ↑
Divergence
of the flux

Runge-Kutta methods

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \Delta t^n \sum_{s=1}^{N_{\text{stages}}} b_s \mathbf{R}_s$$

↑
Stages can be solved sequentially
(No linear system)

BDF1 for steady-state

$$\Delta \mathbf{U}^m = \Delta \mathbf{T}^m R(\mathbf{U}^{m+1})$$

$$\left((\Delta \mathbf{T}^m)^{-1} - \frac{\partial \mathbf{R}^m}{\partial \mathbf{U}^m} \right) \Delta \mathbf{U}^m = \mathbf{R}^m$$

↑
Residual Jacobian matrix
(Large sparse matrix)

Explicit methods (Ex: RK44)

- Pros:
 - No matrix and linear system solve required
 - Performance limited by residual
- Cons:
 - Time step often limited by numerical stability
 - Difficult to determine reliable time step
 - High-order time step restriction h/P^2

Implicit methods (Ex: BDF1)

- Pros:
 - Time step tuned to accuracy
 - More computation per sequential time step
- Cons:
 - Matrix and linear system solve required
 - Nonlinear stability is not guaranteed
 - High-order matrix size P^3

Matrix-free methods on modern hardware

Jacobian-free Newton-Krylov:

- Using GMRES to solve the linear system only requires matrix-vector products
 - Less memory (no need to store a large matrix) which allows an increase in utilization
 - Less data movement (no need to assemble a large matrix) which allows efficient bandwidth use
 - More computation (evaluate matrix-vector product at each linear iteration)
- May need matrix if preconditioning is required

Matrix-free approximate

Use Frechet derivative

- Pros:
 - Performance limited by residual
- Cons:
 - Residual evaluation at each linear iteration
 - Approximation may limit stability

Matrix-free exact

Use automatic differentiation (AD)

- Pros:
 - Quadratic convergence at best
- Cons:
 - AD evaluation at each linear iteration
 - Nonlinear stability is not guaranteed
 - More difficult to solve for stiff equations

Performance portable C++ frameworks

MPI+X: C++ frameworks within Trilinos for performance portability

- Automatic differentiation (*Sacado*)
- Distributed memory linear algebra (*Tpetra*)
- Shared memory parallelism (*Kokkos*)

Abstract **data layouts** and **hardware features** on current and future architectures

- Allocation: `U = Kokkos::DualView<double***[5]>(Ncells,Nspts,Nv)`
- Memory transfer: `U.modify_host(); U.sync_device();`
- Memory layout: `Kokkos::LayoutLeft` (col-major)
- Data parallelism: `Kokkos::parallel_for(policy, functor)`
 - `policy` defines iteration range: `Kokkos::RangePolicy(N)`
 - `functor` defines function to be parallelized
- SIMD performance portability: `SIMD_Double`

Allows researchers to focus more on **algorithm development** instead of **architecture specific programming**

<https://github.com/trilinos/Trilinos/>
<https://github.com/kokkos/kokkos/>

Numerical Results

How well do performance-portable, high-order, matrix-free methods perform?

Case setup

Taylor-Green Vortex (TGV):

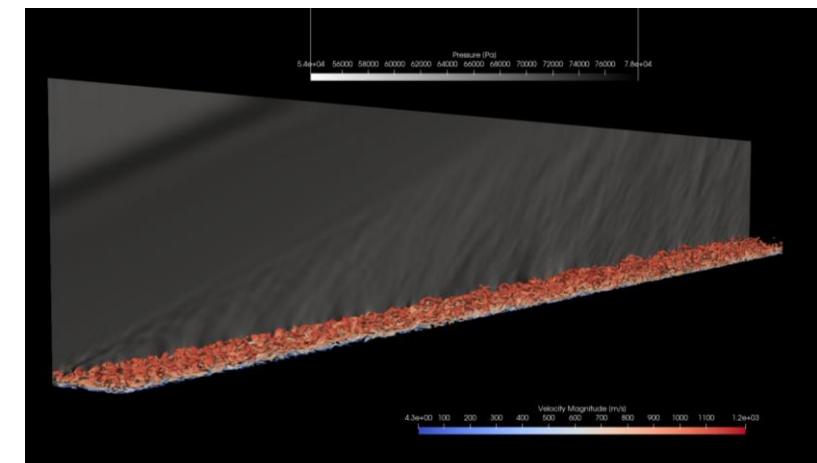
- 30s simulation time, explicit time step control

Mach 0.2 Turbulent Flat Plate Boundary Layer:

- Steady-state simulation, finite volume, matrix-free

Mach 3.5 Flat Plate Boundary Layer ILES:

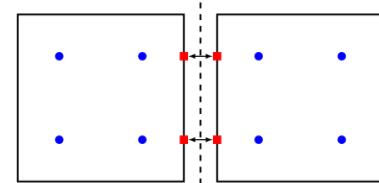
- Synthetic turbulent inflow
- Shock capturing: Shock sensor limiting artificial viscosity
- BDF2 implicit time integration
- Low-order preconditioned Jacobian-free Newton-Krylov



Study setup

Methods:

- Structured cell-centered finite volume (**SCCFV**)
- Structured high-order finite difference (**HOFD**)
- Unstructured spectral collocation element (**SCE**)
 - $P = 1-7$; LGL



Node Architectures

- Intel Haswell (**HSW**) – 32 cores, 64 threads, AVX2 (4 doubles)
- Intel Knights Landing (**KNL**) – 64 cores, 256 threads, AVX512 (8 doubles)
- Intel Cascade Lake (**CLX**) – 48 cores, 96 threads, AVX512 (8 doubles)
- ARM64 Cavium ThunderX2 (**TX2**) – 56 cores, 112 threads, Neon (2 doubles)
- NVIDIA Volta (**V100**) – 4 GPUs, Cuda (no simd)

MPI+X Notation

$r(\text{MPI} + jX)$, $X \in \{\text{OMP}, \text{OMPV}, \text{GPU}\}$

r = # MPI ranks

j = # OpenMP threads or GPUs/rank

X = architecture for shared memory parallelism

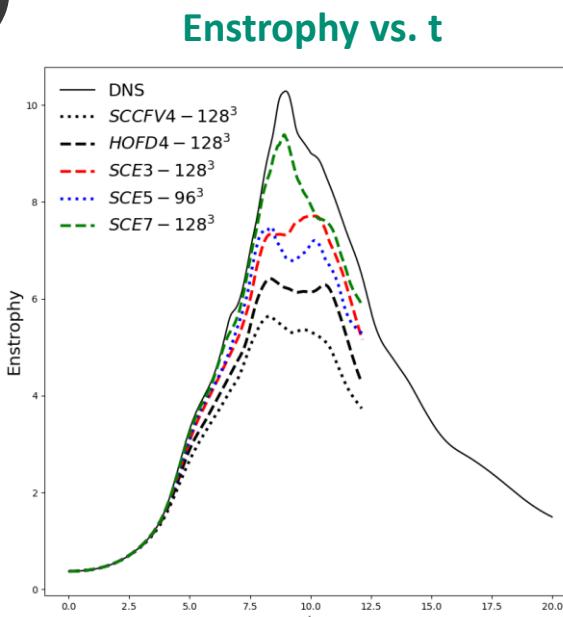
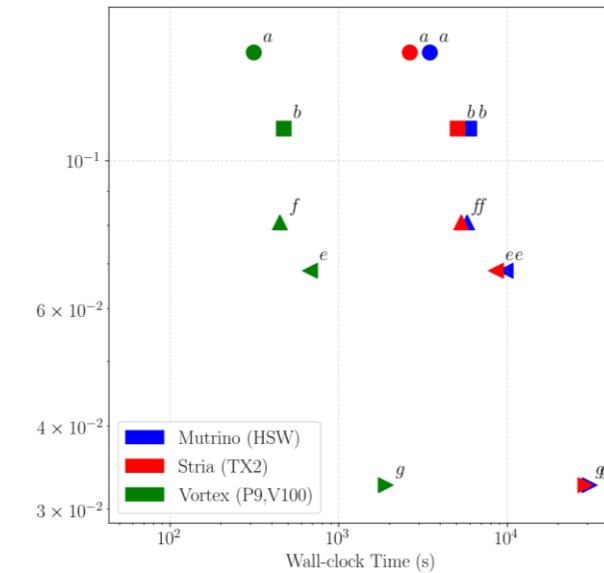
Taylor-Green Vortex (TGV)

Enstrophy Error vs.
Wall-clock time

Setup:

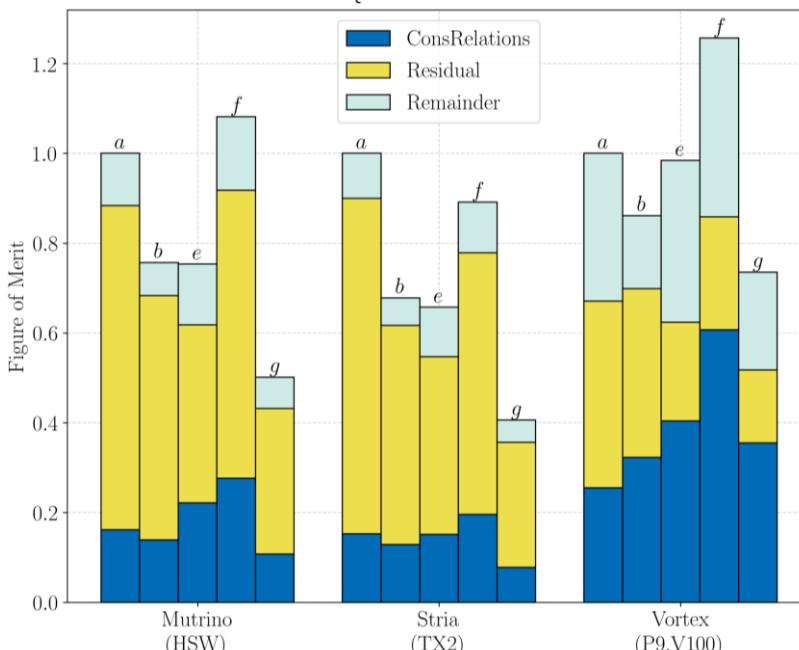
$$\text{Figure of Merit} = \frac{T_{SCCFV} \cdot err^{\varepsilon}_{SCCFV}}{T \cdot err^{\varepsilon}}$$

- T - Wall-clock time for 30s simulation time (s)
- $err^{\varepsilon} = \int |\varepsilon(t) - \varepsilon_{ref}(t)|^2 dt$ - Enstrophy error
- Reference: Spectral element solution, 512^3
- Note: results are architecture independent



Results:

- Current optimal is near **SCE5**
- High-order performing better on GPUs
- Bottlenecks
 - CPU – Residual (computation)
 - GPU – ConsRelations (gradient, communication)
 - Remainder also needs more profiling/improvement



Discretization - DoF

a: SCCFV4 - 128^3
 b: HOFD4 - 128^3
 e: SCE3 - 128^3
 f: SCE5 - 96^3
 g: SCE7 - 128^3

SIMD performance on TGV

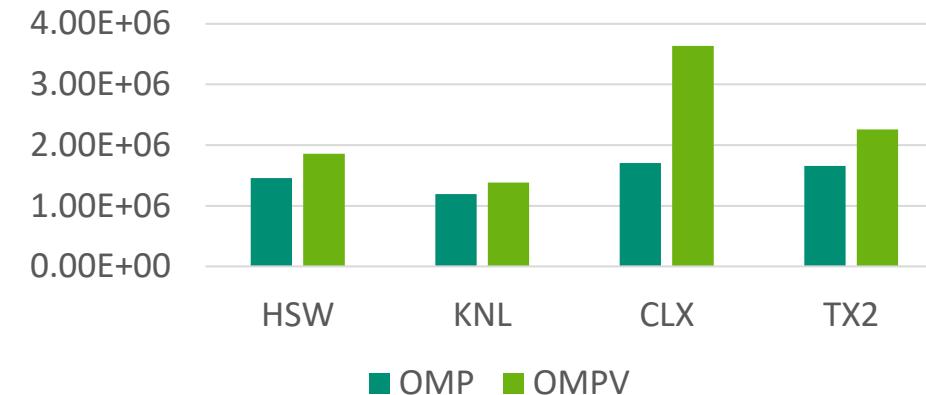
Setup: 128^3 Degrees of Freedom (Dof)

- Wall-clock time over 100 RK44 iterations
- Compare best MPI+OpenMP cases
 - OMP: LayoutRight on Array(**cell**,spt,**var**)
 - No explicit vectorization
 - OMPV: LayoutLeft on Array(**cell**,spt,var)
 - Explicit vectorization

Results:

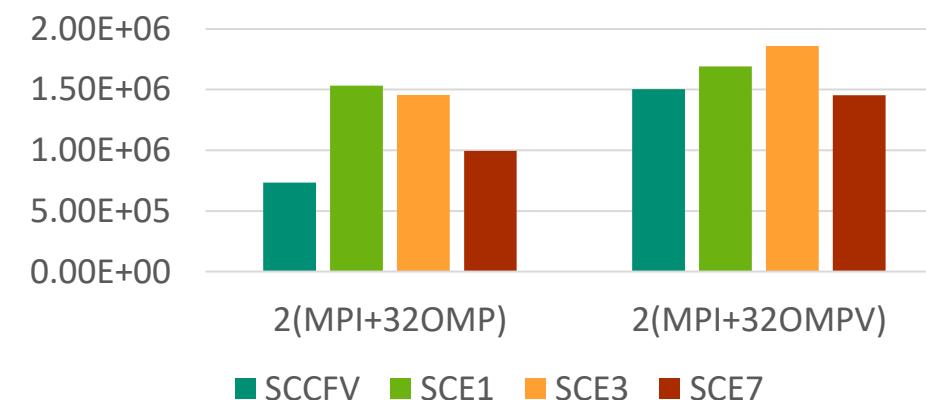
- Higher throughput with explicit vectorization
 - LayoutRight performs better in rare cases
 - Better caching?
- Larger throughput at higher orders
 - SCE7 has smaller throughput
- Large benefit in SCCFV
 - High-order improvements are relatively modest

SCE3: Dof/s/TimeStep across different architectures (1 Node)



↑
Larger (Better)

HSW: Dof/s/TimeStep without/with explicit vectorization



Mach 0.2 Turbulent Flat Plate Boundary Layer

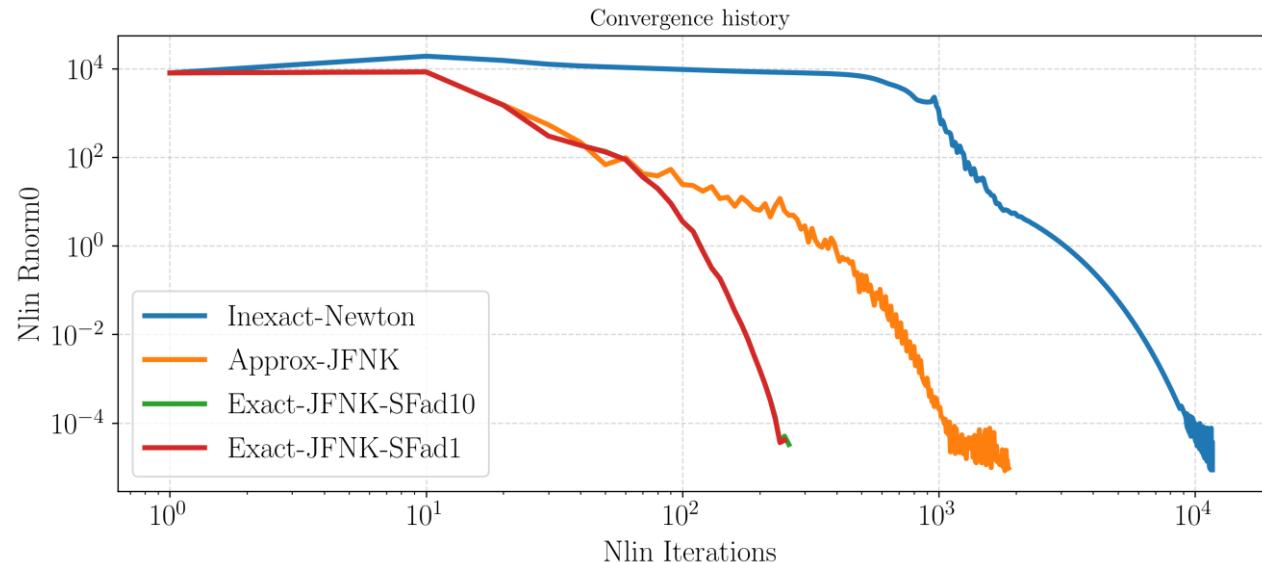
Setup:

- Steady-state: pseudo-transient continuation
- Inexact Jacobian
 - Second-order finite volume discretization
 - First-order inviscid Jacobian, neglect viscous cross-terms
 - Used for inexact Newton and preconditioned JFNK
- Linear solve
 - Block tridiagonal solver or GMRES/ILU

Results:

- Exact matrix-free led to 7x speedup over inexact Newton for SA turbulence model
- Robustness issues when applying matrix-free methods to SST turbulence model

Convergence history for flat plate, Spalart-Allmaras (SA) turbulence model



	Nlin Iterations	Problem Solve Time (s)	Belos Solve Time (s)
Inexact-Newton	11684	109.216	58.7482
Approx-JFNK	1873	51.9301	43.1881
Exact-JFNK-SFad10	262	46.3098	44.2337
Exact-JFNK-SFad1	256	15.2841	13.4616

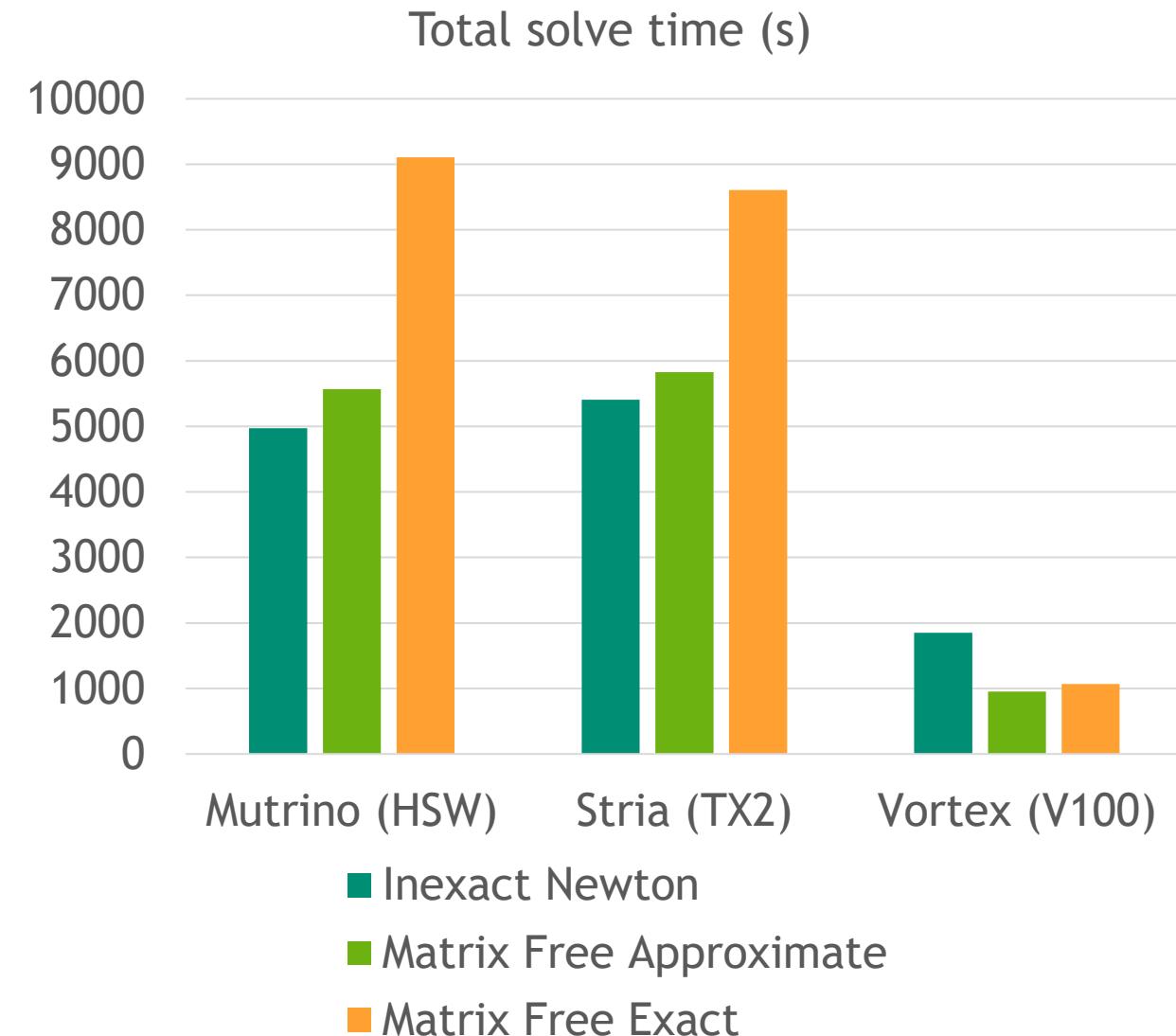
Mach 3.5 Flat Plate Boundary Layer ILES

Setup:

- SCE3, 8 nodes
- Jacobi preconditioner

Results:

- **Inexact Newton** performed better on **CPU** platforms
- **Matrix-free approximate** performed better on **GPU** platforms
- **Matrix-free exact** performed better on platforms with **more threads**
- **Fastest wall-clock time** was on **GPU**
- 5x over fastest **HSW** time



Discussion

Discussion

- HPC architectures are changing rapidly which poses a significant challenge
- **Trilinos/Kokkos** offers an efficient way to meet this challenge for large scale, high-fidelity simulations
- High-order and matrix-free methods can improve accuracy while benefitting from the high computational throughput on modern hardware but more R&D is needed to improve robustness and performance for hypersonics

Future Work

- Additional data layout testing (strided or AoSoA)
- Full integration of Kokkos SIMD
- Improve end-to-end performance of implicit solver