Thislpaperidescribesfobiectiveftechnicallresults
helpaperfdojnotinecessarilyirep thithefvi

andlanalysis JAnylsubijectivelviewslodopinionsfthatimightibelexpressedfin}
U.S of|[Energyforfthe]United|StatesiGovernment.

Sandia

National
Laboratories

— HWW'
. -

A

4 -';-._: T e

A performance portable implementation of high-order, >~ "=

- - |l p by

entropy-stable spectral collocation schemes for

compressible turbulent flows

July 315t to August 5%, 2022

Jerry Watkins, Travis Fisher, and Wyatt Horne

15% World Congress on Computational Mechanics
8t Asian Pacific Congress on Computational Mechanics

Yokohama, Japan (Virtual
SandialNationalfLaboratoriesfislalmultimissionllaboratorvimanagediandjoperatedibylNationalfTechnologvi&IEngineeringlSolutionslofiSandia ILLC Jalwhol
subsidiaryjofl[Honeywelljinternationalfinc. JforftheJU.S JDepartmenfoflEnergy'siNationalfNuclearfSecuritylAdministrationjundericontractiDE-

SAND2022-9512C

{-'\1 U DEFARTEE AT OF 2
(Z)ENERGY NISH

Sandia National Laboratories is a
multimission laboratory managed and
operated by National Technology and

Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International
Inc. for the U.S. Department of Energy’s
National Nuclear Security Administration
under contract DE-NA0003525.

. | Outline

* Introduction
* Motivation — High-fidelity simulations
* Motivation — Exascale computing

* High-order, matrix-free methods and performance portability
* High-order, entropy-stable methods
* High-order communication and operators
* High-order methods on modern hardware
* Matrix-free methods
* Matrix-free methods on modern hardware
* Performance portable C++ frameworks

* Numerical Results
* Case/Study setup
* Taylor-Green Vortex
* Flat plate

Motivation

Why are we interested in performance and
portability?

. | High-fidelity simulations

High-fidelity simulations on exascale systems for analysis/design in hypersonics

Multi-fidelity design tools

Direct Numerical Simulation (DNS)

e Methods: High-order structured or unstructured methods

N

e Purpose: Model Development and Uncertainty Quantification

Wall-modeled LES and hybrid RANS/LES
e Purpose: Higher-fidelity engineering analysis
e Methods: High-order or low-dissipation finite volume

RANS
e Purpose: Engineering calculations
e Methods: Second-order finite volume

Reduced-order and semi-empirical models
e Purpose: Engineering
e Methods: Various

Target systems

LANL Trinity
Intel (KNL)

e -
|
MO = e

El Capitan
AMD

Sierra
NVIDIA (V100)

CROSS (ROADS

—

Crossroads
Intel

s | Exascale computing

AMDO
_ INSTINCT

Challenges:

* Diverse set of HPC vendors and architectures
* Intel, AMD, NVIDIA, IBM, ARM-based

* CPUs with vector processing; GPUs

* Software life cycle is much longer than hardware
Different architectures, trend remains the same

* Need algorithms with high arithmetic intensity (total ops/byte)
* Need fundamental abstractions during code development

Performance portability: A reasonable level of performance is achieved across a wide variety
of computing architectures with the same source code.

Approaches:

* Libraries — High-level abstractions with specified input/output (e.g. BLAS)
* Task-based — Data-centric abstractions for mapping tasks to resources (e.g. Legion)

* MPI+X — Algorithmic-level abstractions for distributed (MPI) and shared (X) memory
parallelism%e.g. Directives: OpenMP, OpenACC; Frameworks: Kokkos, RAJA, OCCA)

High-order, matrix-free
methods and performance
portability

What strategies are we using for high-order, matrix-
free methods and performance portability?

;| High-order, entropy-stable methods

Entropy
Stable

Methods

Shock
Capturing

AEHIE =
Turbulent
Dissipation

Entropy Stable Summation-by-Parts Methods: \Where do discontinous Galerkin (DG) methods fit?

* Multi-block structured finite difference (HOFD) ,

* Unstructured spectral collocation elements

(SCE)
Shock capturing: .
 WENO

* Artificial viscosity
* Hybridized with Larsson shock sensor

Evaluate Turbulent Dissipation:

* Need accurate and robust methods

SCE schemes are nodal DG schemes where
nonlinear operators are used in place of linear
operators to achieve entropy stability

Entropy stability is used to help ensure
robustness in the presence of shocks

s | High-order communication and operators

Communication: \j; — . . oAb e
* Ghost cell communication (LG) \:;7-*—\ . I

* Ghost face communication (LGL)

Three major operators: Volume, Interface and Boundary

Linear Operators Nonlinear Operator (Entropy Stability)
Dw Do F]1
* Gradient operators * Flux divergence operators
* Matrix-vector operations in each cell * Batch vector inner product in each cell
(matrix-matrix including cells) (Batch vector-matrix including cells)

* w vector is reused for local assembly * F matrix is not reused

Two strategies used to avoid race conditions: graph coloring and atomics

» | High-order methods on modern hardware

Higher arithmetic intensity to efficiently utilize modern hardware

Example: No extrapolation operator in finite volume

Finite Volume Higher FLOPS per byte Nodal DG (LG)

f
' A
W
[f f‘l’f
I
- » I
Sl{‘I{‘.“{ \J 521‘]1* \ SZ{'l{-.\'

Increasing polynomial order

* More operations per degree of freedom
* Increases computational throughput

* Majority of operations are element-local
* Allows for efficient use of shared memory

QeleN l’ Qele \/ QeleN

Improves strong scaling; reduces error

Challenges:

* Diminishing returns
* Better performance given a fixed error metric

0 ‘ Matrix-free methods

Time Stepping Schemes:

Semi-discrete equation Runge-Kutta methods BDF1 for steady-state
. Divergence Netoges AU™ = AT™ R (Um"'l)
Solution n n n
Y of the flux Urtt =U™ + At Z bs R OR™
ouU s A P ! (AT™) ™ — —) AU™ = R™
- = —VIVO.F RU)=-V IV . F T () 8?”"’
Determinant geometric Residual Stages can be solved sequentially Residual Jacobian matrix
Jacobian matrix (No linear system) (Large sparse matrix)
Explicit methods (Ex: RK44) Implicit methods (Ex: BDF1)
* Pros: * Pros:
* No matrix and linear system solve required * Time step tuned to accuracy
* Performance limited by residual * More computation per sequential time step
* Cons: * Cons:
* Time step often limited by numerical stability * Matrix and linear system solve required
* Difficult to determine reliable time step * Nonlinear stability is not guaranteed

* High-order time step restriction h/P? * High-order matrix size P3

+ | Matrix-free methods on modern hardware
Jacobian-free Newton-Krylov:

* Using GMRES to solve the linear system only requires matrix-vector products
* Less memory (no need to store a large matrix) which allows an increase in utilization
* Less data movement (no need to assemble a large matrix) which allows efficient bandwidth use
* More computation (evaluate matrix-vector product at each linear iteration)

* May need matrix if preconditioning is required

Matrix-free approximate Matrix-free exact
Use Erechet derivative Use automatic differentiation (AD)
Y Pros ¢ PFOS

* Performance limited by residual * Quadratic convergence at best

* Cons:
* AD evaluation at each linear iteration

o o N * Nonlinear stability is not guaranteed
* Approximation may limit stability * More difficult to solve for stiff equations

* Cons:
* Residual evaluation at each linear iteration

2 | Performance portable C++ frameworks

MPI+X: C++ frameworks within Trilinos for performance portability

* Automatic differentiation (Sacado)

* Distributed memory linear algebra (Tpetra) ?..:t:i:l:.iNU)

* Shared memory parallelism (Kokkos)

Abstract data layouts and hardware features on current and future architectures

* Allocation: U = Kokkos: :DualView<double***[5]>(Ncells,Nspts,Nv)
* Memory transfer: U.modify host(); U.sync device();

* Memory layout: Kokkos: :LayoutLeft (col-major)

 Data parallelism: Kokkos: :parallel for(policy, functor)
* policy defines iteration range: Kokkos: :RangePolicy(N)

 functor defines function to be parallelized

* SIMD performance portability: SIMD Double

Allows researchers to focus more on algorithm development instead of architecture specific

programming https://github.com/trilinos/Trilinos/

https://github.com/kokkos/kokkos/

https://github.com/kokkos/kokkos/
https://github.com/kokkos/kokkos/

Numerical Results

How well do performance-portable, high-order,
matrix-free methods perform?

« | Case setup

Taylor-Green Vortex (TGV):

* 30s simulation time, explicit time step control

Mach 0.2 Turbulent Flat Plate Boundary Layer:

» Steady-state simulation, finite volume, matrix-free

Mach 3.5 Flat Plate Boundary Layer ILES:

* Synthetic turbulent inflow
* Shock capturing: Shock sensor limiting artificial viscosity
* BDF2 implicit time integration

* Low-order preconditioned Jacobian-free Newton-Krylov

s | Study setup

'
[} +L [}

Methods: CoL

» Structured cell-centered finite volume (SCCFV)

MPI+X Notation
r(MPI + jX), X € {OMP, OMPV, GPU}

r = # MPI ranks

* Structured high-order finite difference (HOFD) j = #OpenMP threads or GPUs/rank
X = architecture for shared memory parallelism

* Unstructured spectral collocation element (SCE)
- P=1-7;LGL

Node Architectures

* Intel Haswell (HSW) — 32 cores, 64 threads, AVX2 (4 doubles)

* Intel Knights Landing (KNL) — 64 cores, 256 threads, AVX512 (8 doubles)

* Intel Cascade Lake (CLX) — 48 cores, 96 threads, AVX512 (8 doubles)

* ARM®64 Cavium ThunderX2 (TX2) — 56 cores, 112 threads, Neon (2 doubles)
* NVIDIA Volta (V100) — 4 GPUs, Cuda (no simd)

1 ‘ Taylor-Green Vortex (TGYV)

Setup:
&
Tsccry * €rrsccry

T -erré
* T - Wall-clock time for 30s simulation time (s)

Figure of Merit =

« err® = [|e(t) — gref(t)|?dt - Enstrophy error
* Reference: Spectral element solution, 5123

* Note: results are architecture independent

Results:
* Current optimal is near SCE5
* High-order performing better on GPUs

* Bottlenecks
* CPU — Residual (computation)
* GPU - ConsRelations (gradient, communication)
* Remainder also needs more profiling/improvement

Enstrophy vs. t

Enstrophy Error vs.

Wall-clock time

Enstrophy

1.0

o

Figure of Merit

0.4

0.0

Mutrino
(HSW)

Vortex
(P9,V100)

—— DNS a a a
) SCCFV4 — 1283 ® oe
——- HOFDA4 —128*
——- SCE3-128° b bb
g weern SCE5 — 96° =
~—- SCE7-— 1283 107
f ff
A A
(= ee
<] -
6% 1072
431077 o \futrino (HSW)
I Stria (TX2) q @
,| HEE Vortex (P9.V100) > »>
3% 1072
- 10? 10% 10*
t Wall-clock Time (s)
I ConsRelations - - ~
= Residual Discretization - DoF
f 1 Remainder 3
. M. . a: SCOFV4 - 128
. 3
| f b: HOFD4 - 128

e: SCE3 - 1283
f: SCES5 - 963

g: SCET - 1283
\

+ | SIMD performance on TGV

Setup: 12873 Degrees of Freedom (Dof)

Wall-clock time over 100 RK44 iterations

Compare best MPI+OpenMP cases

OMP: LayoutRight on Array(cell,spt,var)

No explicit vectorization

OMPV: LayoutLeft on Array(cell,spt,var)

Explicit vectorization

Results:

Higher throughput with explicit vectorization

LayoutRight performs better in rare cases
Better caching?

Larger throughput at higher orders

SCE7 has smaller throughput

Large benefit in SCCFV

High-order improvements are relatively modest

SCE3: Dof/s/TimeStep across different
architectures (1 Node) |
‘

4.00E+06
3.00E+06
2.00E+06

o I I I I I I I I
0.00E+00
HSW KNL CLX TX2

HOMP mOMPV

Larger

(Better)
HSW: Dof/s/TimeStep without/with

explicit vectorization
2.00E+06

1.50E+06
1.00E+06
5.00E+05 . I
0.00E+00

2(MPI+320MP) 2(MPI+320MPV)

W SCCFV mSCE1l mSCE3 mSCE7

18 ‘ Mach 0.2 Turbulent Flat Plate Boundary Layer

Setup:

turbulence model

Convergence history for flat plate, Spalart-Allmaras (SA)

 Steady-state: pseudo-transient continuation Comrmence st
3 4 —,—
* |nexact Jacobian 1
* Second-order finite volume discretization 102 -
* First-order inviscid Jacobian, neglect viscous % N
cross-terms g
* Used for inexact Newton and preconditioned Zp2:{ — hexacNewion
JENK Approx-JFNK
= Exact-JFNK-SFad10
. L| near Solve Exact-JFNK-SFad1l
0 11 2 13 vl
* Block tridiagonal solver or GMRES/ILU . . Nlin ﬁlmﬂom . 0
Resu Its: Nlin [terations Problem Solve Time (s) Belos Solve Time (s)
Inexact-Newton 11684 109.216 5H8.74R2
. Approx-JFNK 1873 51.9301 43.1881
+ Exact matrix-free led to 7x speedup over Pt JENICSTdTD % 3058 T
in exa Ct N eWtO n fo r SA tU rb u | e n Ce m Od el Exact-JFNK-SFadl 256 15.2841 13.4616
[)

Robustness issues when applying matrix-
free methods to SST turbulence model

Mach 3.5 Flat Plate Boundary Layer ILES

Setup:

SCE3, 8 nodes

Jacobi preconditioner

Results:

Inexact Newton performed better on CPU
platforms

Matrix-free approximate performed better
on GPU platforms

Matrix-free exact performed better on
platforms with more threads

Fastest wall-clock time was on GPU
* 5x over fastest HSW time

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Total solve time (s)

Mutrino (HSW) Stria (TX2) Vortex (V100)

H [nexact Newton
m Matrix Free Approximate
Matrix Free Exact

,. | Discussion

HPC architectures are changing rapidly which poses a significant challenge

Trilinos/Kokkos offers an efficient way to meet this challenge for large scale,
high-fidelity simulations

High-order and matrix-free methods can improve accuracy while benefitting
from the high computational throughput on modern hardware but more R&D is
needed to improve robustness and performance for hypersonics

Future Work

Additional data layout testing (strided or AoSoA)
Full integration of Kokkos SIMD

Improve end-to-end performance of implicit solver

