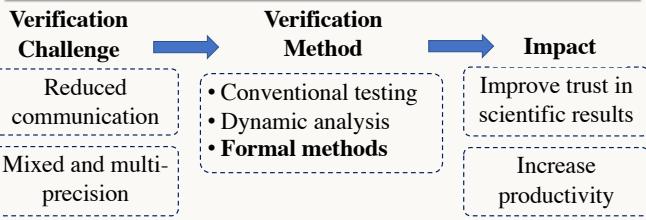


Cornell University


A Verification Toolchain for Numerical Programs

Ariel E. Kellison (with Andrew W. Appel) *

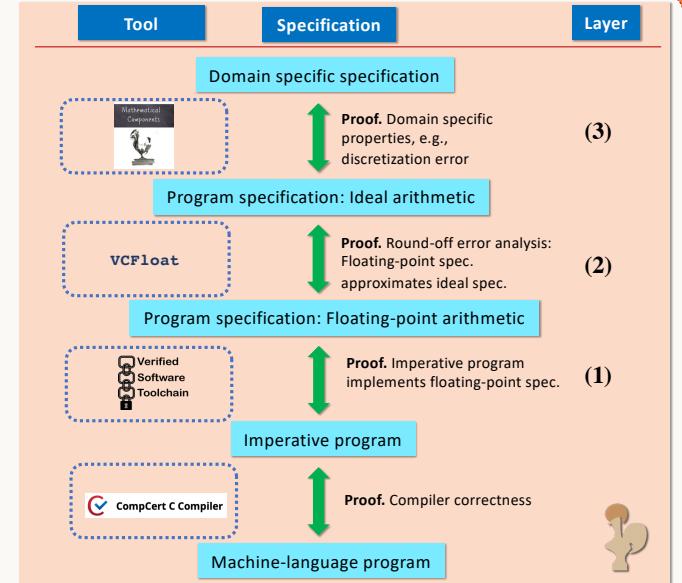
1. Motivation

As core numerical algorithms evolve to fully exploit high-performance computers, verifying the accuracy and correctness of their implementations becomes more challenging.

2. Formal Methods

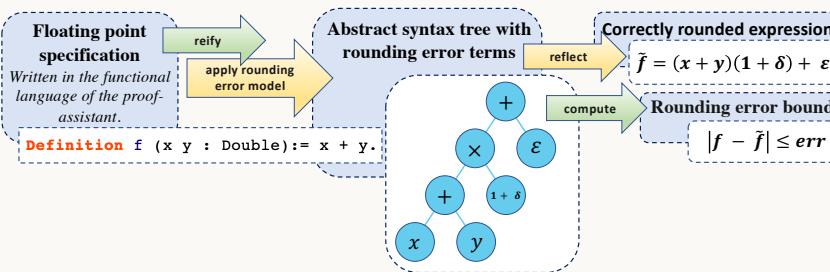
Formal verification tools use mathematical logic to *exhaustively check* and *formally prove* properties such as program correctness.

Formally verifying *numerical* software requires reasoning about program properties at least three *layers*:


1. **Language-level properties** such as data-structures, function pointers, data abstraction, and design patterns.
2. **Floating-point properties** such as those described by the IEEE-754 specification of floating-point arithmetic.
3. **Domain specific properties** such as abstractions for derivatives and matrices.

3. Proposed Framework

- Develop specifications that encapsulate expected program behavior at each *layer*: (1) language-level behavior, (2) floating-point behavior, and (3) domain specific behavior.
- Formalize specifications and correctness proofs at each layer in a *proof-assistant* (赖以生存) to reduce logical gaps at specification interfaces.
- Compose correctness proofs from each layer.


Guarantees program correctness from the compiled program to domain specific properties.

- Develop embedded tools in the proof-assistant as necessary.
- Unlike *software testing*, framework not limited by a test set.
- Can guarantee *reproducibility* and correctness.

4. A Formal Verification Tool for Floating-Point Properties (VCFloat)

VCFloat: Process floating-point specifications to automatically generate provably correct rounding error bounds [1, 2].

5. Ongoing and Future Work

- Framework applied to verifying a symplectic solver for an ODE [3].
- Challenges: proof automation & extensibility; rounding error bounds on conserved quantities & symplectic error.
- Future Applications: pipelined CG, multiple precision iterative solvers, double-double & quad-double arithmetic packages.

1. "A Unified Coq Framework for Verifying C Programs with Floating-Point Computations," by Tahina Ramananandro et al., in CFP'16.
2. "VCFloat2: Floating-point Error Analysis in Coq," by Andrew W. Appel and Ariel E. Kellison, draft, April 2022.
3. "Verified Numerical Methods for Ordinary Differential Equations," by Ariel E. Kellison and Andrew W. Appel, to appear in NSV'22.

* In collaboration with
David Bindel, Geoffrey Hulette, and Heidi Thornquist.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.