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Motivation

« Sandia National Laboratories (SNL) recently
developed a methodology to characterize
uncertainty in Derived Response Levels (DRLSs)
used as contours on map products developed by
the DOE Consequence Management (CM)
program in support of the Federal Radiological

Monitoring and Assessment Center (FRMAC)

* Goal is to develop a framework for propagating
uncertainty through the HRTM to generate
inhalation dose coefficient probability distributions
for radionuclides that represent a broader set of
incidents to which DOE CM could potentially
respond

Probability Density
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The ICRP 66 Human Respiratory Tract Model (HRTM)

« Components of the HRTM

* Morphometry

* Respiratory physiology
* Radiation biology

« Particle deposition

» Particle clearance

* Dosimetry

* All components of the HRTM carry with them
uncertainty that must be considered in order to
propagate uncertainty through the model

* Regions of the HRTM

* Extrathoracic
e Thoracic

* Bronchial

* Bronchiolar

* Alveolar
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HRTM Implementing Software

» Several codes have been developed to implement and solve the HRTM
e Lung Dose Uncertainty Code (LUDUC) — T.E. Huston (2003)

 Ultilizes Latin Hypercube Monte Carlo sampling with uncertainty distributions based on work by
Bailey and Roy (1994)

Activity and Internal Dose Estimates (AIDE) — Luiz Bertelli (2008)

Klumpp Dose Evaluation Program (KDEP) — Implementation of ICRP HRTM by John
Klumpp and Luiz Bertelli (2017)

Integrated Modules for Bioassay Analysis (IMBA) — UK Health Security Agency (2003)
 Built on Lung Dose Evaluation Program (LUDEP) — A. Birchall et al. (1991)

* Maximum likelihood method; Monte Carlo sampling with superimposed random data on
geometric standard deviation

Dose and Risk Calculation (DCAL) — Oak Ridge National Laboratory (2006)

« Multi-Path Particle Dosimetry Model (MPPD) — Applied Research Associates (ARA)
(rev. 2017)

» Radiological Exposure Dosimetry Calculator (REDCAL) - Georgia Tech (2022+)
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Solving System of ODEs for Organ Activity: Biokinetics

Y] [L(Y) - G(TRy) 0 Yy
alv| | 0 . GaR) 0 |7
al: |7 o . Lwmy o ||:

vl |+ . 0o Lyl

* Terms| L: Loss, G: Gain, TR: transfer rate

* Equation for blood activity as a function of time for lodine-131

» UEOCBA = —(TRyy + TRz + DR)Yy + TRyY; + TRyY, + TRy Vs + TRoYy +

TR30Y13

* Blood: losses to thyroid and bladder; gains Al (1,2,3), bbi(gel, sol, seq), BBi(gel, sol,
seq), Lymph Nodes (ET, Th), ET2(sur, seq)
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The anatomical location and the total magnitude of radioactivity of radium and its various progeny is R_Marrow Spleen

depicted following three intake scenarios: (top) inhalation of the radioisotope 22°Ra, (middle) ingestion of the

radioisotope ?26Ra, and (bottom) injection of the radioisotope %23Ra.

Tissue weights ICRP 60/61 remainder formulation

Reproduced from Abergel et al. The enduring legacy of Marie Curie: impacts
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Parameter Uncertainty Review: Parameter Distributions

* Review of the literature yielded a comprehensive list of parameters
that contribute to uncertainty within the HRTM

e Total Parameters: 69
* Deposition: 26
* Regional deposition, sub-region breakdown (compartment fractions), Breathing parameters

e Clearance: 23

* Mechanical clearance, Clearance type (F,M,S, V), Blood absorption rates, Macrophage uptake
rate

* Dosimetry: 20

« Phantom series used with radiation transport modeling, Decay data (ICRP 107), Tissue
Weights, Remainder formulation
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Summary of Evaluated Inputs

Particle size

Breathing rate

Deposition fractions
(Regional and compartmental)

Lung model rates
(Absorption/Clearance values, dissolution
rates)

Anatomical differences in lung geometry
and volume (scaling factors)

Dosimetry values
(Tissue Weighting factors, Specific
Absorbed Fractions (SAF))

@RED?

Radiclogical Enginsaring, Detection, and Do)

Uncertain
(lognormal)

Uncertain
(public versus worker parameter range)

Uncertain
(function of aerosol parameters)

Uncertain
(distribution around type: F/M/S)

Static values
(reference values ICRP 66)

Static values
(tissue weights from ICRP 60)

Aerosol generation results in range of
particle sizes

Regional deposition based on activity-
dependent ventilation rate

Method of transport determines method of
deposition (sedimentation/impaction)

Dissolution rates greatly impact the dose
values to the lungs

Volume scaling impacts flow through
airways and thus deposition. Would like
CFD modeling to determine the impact

Changes in SAF value require radiation
transport runs with new organ geometry
and organ volumes
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Regional Deposition Efficiency

Table 12. Recommended parameters for substitution in the model of regivnal deposition for the fraction of intake inhaled and exhaled through the
nose, L., for any subject, as functions of respiratory varizbles and anatomical size

Regional Deposition Efficiency, 1,
P .
b Aerodynamic Thermodynamic WVolumetric
1 Filer Region Fraction
s J n,, = 1-exp (-aR? fy, = 1-exp [-aRH) Py
L i
a R P a R P

:. 1 ET 30x 104 d} v, sF! 1 18 Dy, SF )14 1 I
b . .
s 2 ET,! 55x10° di v, sk} 117 15.1 DV, SF)-4 0.538 1
1

. Vo (ET)
N BB 4081210 d} VSE® 1152 2202 5F) M 0 Dry 0.6391 2
i (0.056+1,'*) i [ Vp(ET)+ Vp(BB))
o 4 bb 0.1147 xd " L173 -76.8 +167 SF, 14 by, 05676 . [
n

[ { Vo (ET)HV;(BB)+V;,(bb)

el ° Al 0.146 SF,°% aiia 06495 | 1704103 5F,213 Dr, ostor [l 2
x (0.056+1,)%) [ Vp(ET)+ V(BB
h 6 bb 0.1147 d ,.4!» LI17 -16.8 +167 SF,04 Ds, 0.5676 (-2 V.
2 e L

. Vo(ET)
: 7 BB 204x 10% dx VSED 1152 2202 SEI My, Dry 0.6391 1- —"T'
l - -
i| 8 ET, 55x10° di v, SE? 117 15.1 D(V, SF,)-u4 0.538 !
L] - .
n 30107 d3 v, SF} ! 18 D(V, 5F,)\14 n )

@RED?

Radichogical Enginsaring, Detaction, and Dosimatry

Deposition efficiency is the
fraction of particles that enter a
region that is deposited in that
region
ICRP 66 recommends addressing
uncertainty via a scaling factor ¢
on fitting parameter a that
represents a 95% confidence
bound on experimental data
ICRP 66 has tabulated default
deposition fractions as a function
of breathing rate (Table F.1-6)
Table 12 (above) shows formulae
to calculate deposition efficiency
as a function of breathing
parameters including a scaling
factor for anatomical size

Tooh
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Compartmental Deposition Fraction

 After deposition into the 5 primary regions 2.?:;.:& lff::i:":.fe::]:f 335:?.::?:::3;33ﬂ}fﬁmﬁfﬁ:ﬁmﬁe:ﬁ?ﬂi&?
of the respiratory tract model, the s
deposition is further partitioned into

B. Partition of deposit in each region between compartments”

. Region or Fraction of deposit in region
compartments for use in the clearance depositionsite ~ Compartment assigned to compartment*
moce | = i

* |CRP 66 recommends an uncertainty BB BB, L
factor of 2-3 to define the 95% confidence BB.., 0.007
interval for compartmental deposition » b, i ks
fractions » e g\

* The slow-clearing fraction of particles ﬂj 01
deposited in the BB and bb regions are e Riklioé i sppocsibige s the telained vihiesSare
dependent on particle size. Bolch et al L Laltokme o e Sivem o s eamopens o0 o Al 45 Ebbe ptcs
(2003) recommends adding a random Ef’nzih‘oé”“: Th cearane alime o comparment ALy detemined
error term to introduce uncertainty to the e Paragrap 181 Chapte 3 for et vales usd o rling
slow-cleari ng fraction ok l:isn:sps:;::ic :hEtistl::kill;:r::;];ared fraction £ is size-dependent. For

f=0.5ford,<2.5/p/x umand

(=0.5e"063dfx7p-25) for d _>2. . gy .
£ e ord,>2.5 [p/y um ~ GEOI‘gla
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Fractional Clearance Rate

* Type F clearance rates (without
blood absorption),
Intercompartmental relationships

» Clearance up the respiratory tract
e Clearance into lymph nodes

* Blood absorption

* Main lungs regions that feed into
blood

 Chemical form affects dissolution
rates
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Current Challenges: Survey Methods for ODE Solving

* |nitial value problem « Required Inputs
- Python functions « Defined transfer rates [days™]
. Solve IVP « Deposition fractions: initial activity at
. Radau. LSODA. BDF, RK45. .. gg;ie\:,&yo.oo, normalized to inhale
* ODEINT - Subcategory fractions
* FORTRAN ODEPACK LSODA » BBi as aregion of lung gets a DF
o i » -gel, -sol, and —seq compartments
Elgenvalue prOblem gget a fraction of tﬁe DF P
* Python « Method function
* Linear algebra package « Derivatives as a functionof ¥, & t
 Stiffness of system, [-131
« 2157.414

« Magnitude ratio of transfer
coefficients for ET2-seq
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Current Challenges: Mathematical Kinetic Solving

Compartmental Activity Concentration (Normalized)
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Compartmental Activity Concentration (Normalized)

Sr-90 (Clearance Type S) DCAL Vs REDCAL
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Conclusion

* A framework for propagating uncertainty through the HRTM to
generate inhalation dose coefficient probability distributions is being
developed

» Several codes have been developed to solve the HRTM and attempt
to address the uncertainty

* |CRP 66 HRTM is comprised of 69 uncertain parameters, of which this
project is handling 27

* Next presentation covering the impact of the project in more detail
from a consequence management perspective
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223 Decay Chain: Half-lives and Branching Fractions

Nuclide Halflife ] NMuclide 2 Nuclide {3 Nuclide
ta-223 11.43d 1.8+88-> Rn-219

3.96s
E-3s
36.1m
Z2.14m
4.77m

8.516s

il e

Po-215
Pb-211
Bi-211
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Ra-226 Decay Chain: Half-lives and Branching Fractions
Nuclide Halflife f1 Nuclide f2 Nuclide f3 Nuclide
Ra-226 1688y 1.8+86-> 2 Rn-222

Rn-222 3.8235d 1.0+00-> 3 P0-218

Po-218 }.18m 1.0+00-> 4 Pb-214 2.0-084->

Pb-214 26.8m 1.8+00-> 6 Bi-214

At-218 . 1.84+80-> 6 Bi-214 .0-83-> 7 Rn-218
Bi-214 0.0 1.8480-> 8 Po-214 . p4-> 9 T1-210
Rn-218 3.5E-25 1.8400-> 8 Po-214

Po-214 1.643 s 1.8+006->10 Pb-210

Tl1-2186 1. 3E 1.84+86->10 Pb-218

Pb-2186 22.26y 1.6+4+006->11 Bi-210

Bi-216 L8130 1.8+86->13 Po-210

Hg-2086 8.15m 1.68+86->14 Tl-2806

Pop-218 (

Tl1-2866

LY B = W W

R )
M = 0 W 00 ~J

=
B
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Dosimetric Models

HEWBORN 1-FEAR &YEAR 10-YEAR 15-YEAR ADULT

» To create a dose coefficient, biokinetic
models integrated with physical
dosimetry models

 Biokinetics defines source strength as a
function of time

« Phantom defines geometry for radiation
transport modeling

* Organ masses & volumes

 Decay type & data (ICRP 107)

 Quantities
+ UT) = [, A(t)dt
- AF(T, S) _ T energy absorption

S energy emission

« SEE (T<t—s) = Mirzﬁn Wi ERYzAFg(T < S, Eg)
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