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> | Background - Quantum Computing

- Potential exponential speedups
« Optimization
*  Quantum chemistry

 NISQ era
* Noisy and error prone

* Need scalable and efficient performance predictors



- 1 Motivation

* Question:

Can we use machine learning to better
understand the capabilities of a quantum
device?

* QOur goal:

Train neural networks on classically
simulable circuits to predict the
performance of generic quantum circuits




. 1 Motivation

* Question:

Can we use machine learning to better
understand the capabilities of a quantum
device?

* This work:

Train neural networks on classically
simulable circuits to predict the success
rate of (new) classically simulable circuits




* Question:

Can we use machine learning to better
understand the capabilities of a quantum
device?

* This work:

How do dataset size and data quality affect
a neural network’s ability to learn?
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6 | Background - Other Approaches

« Current guantum computers are noisy and error prone

«  Phenomenological models’
« Built on benchmarking tools

* Rely on human extracted features
« Poor performance

« Quantum process models?
* Informed by “tomography”

« Depend on circuit structure
* Specious assumptions
* Hardto scale

« Neural network models
« Extract their own features

* Few assumptions
- Potentially scalable

"Characterizing Quantum Gates via Randomized Benchmarking, Magesan et
al, Phys. Rev. A 85, 042311, 11 April 2012
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7 1 Our Approach

Encode circuits as images

Feed images into convolutional
layers

Extracted features are input into a
deep multilayer perceptron

Predict success probability with a
softmax function




« Multiple datasets with 100, 300, 500, 1000, 16600 circuits
« 11 different 100 circuit datasets

- 5 different datasets per circuit count for the rest

« Each dataset was simulated at four levels of precision (shot count)
« Same error model

* Hyperparameter tuning
* Once per level of precision and dataset size (except for 16600 circuits)
* Remaining models use the same architecture
« 16600 circuit models use the best architecture from the corresponding 1000 circuit model
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> 1 Results - Simulated Data

CNN Predictions - Take 13
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* Qutperforms models based on per gate
error rates estimated from the data
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10 | Results - Simulated Data cont.
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Results - Performance and Data

BCE Ratio for Random Circuits
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More circuits = Better performance
Increased precision = Better Performance
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Preliminary Results - Experimental Data

Run on IBMQ Ourense
« Unknown error model

Mirror Clifford circuits
« Width: 1 to 5 qubits
*  Depth: 3to 319 layers

Neural networks were provided with
additional information

Worse performance than on simulated
data
«  Still beats MLE model
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* CNNs can learn to predict the success rates of some quantum circuits

« Performance scaling
« Circuit count

* Measurement precision

« Future work
« Scaling to wider circuits
- Different types of networks
* More complicated error models
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