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Introduction and Background



Motivation3

Many practical science/engineering problems 
are multiscale in both space and time



• Hybridized finite element (HFE) methods introduce 
additional unknowns along subdomain boundaries

• Subdomains interact solely through these unknowns

• Enables different discretizations, physics, numerical 
methods

• Can be interpreted as variational multiscale methods

Hybridized finite 
element methods 
are well-suited for 
multiscale 
simulation
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Interest in 
alternative time 
integration 
schemes to bolster 
applicability of 
HFE methods

• Most HFE schemes are implicit

• Recent interest in explicit and implicit/explicit (IMEX) 
methods
• E.g., Kronbichler (2015), Stanglmeier (2016), Samii (2019)

• Alternative time integration strategies could make HFE 
more attractive

• HFE framework offers flexibility (spatially and 
temporally)
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Synchronous and Asynchronous 
Time Integrators



Concurrent 
multiscale 
framework leads 
to ”macro-micro-
macro” map
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MrHyDE Provides a General Framework for Concurrent 
Multiscale Methods
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Micro-scale Model
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HFE methods 
produce coupled 
multiscale 
systems
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𝜕𝑢&
𝜕𝑡

+ ∇ ⋅ 𝐹 𝑢& = 𝐺 𝑢& , 𝑖𝑛 Ω&×(0, 𝑇]
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𝐹𝑙𝑢𝑥& 𝜆, 𝑢& ⋅ 𝑛& = 𝐹𝑙𝑢𝑥* 𝜆, 𝑢* ⋅ 𝑛*,
𝑜𝑛 𝜕Ω& ∩ 𝜕Ω*×(0, 𝑇]
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Partitioning

Skeleton

1)

2)



𝜕𝑢$
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Follows multiscale framework, operators not all directly 
accessible
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𝜕𝑢&
𝜕𝑡

+ ∇ ⋅ 𝐹 𝑢& = 𝐺 𝑢& , 𝑖𝑛 Ω&×(0, 𝑇]

𝑢& = 𝜆, 𝑜𝑛 𝜕Ω&×(0, 𝑇]

Operator not explicitly known.
Occurs under-the-hood when enforcing 

flux continuity

𝐹𝑙𝑢𝑥& 𝜆, 𝑢& ⋅ 𝑛& = 𝐹𝑙𝑢𝑥* 𝜆, 𝑢* ⋅ 𝑛*



Order matters…

Time discretizing 
then hybridizing
leads to 
synchronous time 
stepping

• Time scheme shared by coarsescale and finescale

• Appropriate if timescales are also shared

• Simple to implement

• Clear how to get higher order accuracy

• Global solve required every (sub)stage
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Synchronous time advancement14
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Order matters…

Hybridizing then 
time discretizing 
leads to 
asynchronous time 
stepping

• Allows for multirate timestepping

• If appropriate, reduces # of global solves

• Overall order limited by coarsescale

• Coarsescale variable needs to be interpolated

• Nuanced implementation
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Automatic differentiation for multiscale methods

• MrHyDE only evaluates residuals, obtains Jacobians through automatic 
differentiation and forward sensitivity

• Easy to add and couple new physics modules

• Explicit form of “macro-micro-macro” map not necessary

• Much more accurate and efficient than finite difference

• Sensitivity needs to be propagated through microscale model

• More difficult in asynchronous transient case
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Numerical Results



Asynchronous 
Backward Euler 
with finescale
substepping more 
accurate
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Consider a simple model for heat transport

and choose source term, boundary and initial conditions so that,

Notes:

Used a hybridized IPDG method. 

Spatial disc.: PW linear, 32^2

BWE time stepping 

@u

@t
�r · (Kru) = f(x, t),

<latexit sha1_base64="WzQvAeWfblxE3Zwm5aV5EcmlbEY="></latexit>

u(x, t) = (sin(⇡t) + cos(20⇡t)) sin(⇡x) sin(⇡y).

<latexit sha1_base64="SKRtsbliWq9ib87aU4xybDdbH1o="></latexit>



Asynchronous 
Scheme Enables 
Novel 
Implicit/Explicit 
(IMEX) Methods
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Consider a simple model for heat transport

𝑓 = 1, 𝑢 𝑥, 0 , homogeneous Dirichlet boundary conditions.

Compare maximum stable time step size for two schemes:

Single-scale FWE

Multi-scale BWE/FWE

• Implicit global problem

• Explicit local problem

@u

@t
�r · (Kru) = f(x, t),

<latexit sha1_base64="WzQvAeWfblxE3Zwm5aV5EcmlbEY="></latexit>



Multirate Time 
Stepping Can Be 
Combined with 
Other Capabilities 
– Dynamic 
Adaptive Subgrid
Modeling
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Multiscale HDG framework allows 
tremendous flexibility

Local high-resolution time stepping 
can be applied in specific regions
• Boundary layer to resolve a high-

frequency boundary condition

How to choose which subgrid model 
to use in each coarse scale element?
• Region-adaptive (see figure)
• Solution-adaptive
• Error estimation (hierarchical or a 

posteriori)
• Machine Learning (see T. Wildey’s

presentation – MS805)



Conclusions



Conclusions and future work

• Room to make significant progress for timestepping in HFE framework

• Natural to pursue more flexible schemes for multiscale/multiphysics problems

• Develop a framework to perform analysis of HFE systems
• Challenge is understanding structure of macro-micro-macro map

• Can more general time integration strategies increase efficiency/stability?

• Always looking to push HFE methods to become more practical/tractable


