Thislpaperldescribeslobiectiveftechnicallresultsland analy5|s Anvisubijectivelviewsloropinionsithatimight’belexpressed in|
hefpaperfdojnotinecessarilyfrepresentlth heJu.S | f kUnitedgStatesgG §

Exceptional service in the national interest National

Laboratories

WCCM: July 31 - August 5, 2022

Nathan V. Roberts
nvrober@sandia.gov
Sandia National Laboratories

.S. DEPARTMENT OF "l

@EREDEY MNA Y S
horatoriesis a'multimission laboratorymanaged-and operated by National“Technoioay*&Engineering-Soiutions® 'of*'Sandia, L|
Honeywellginternationalyinc.,sforgthe;U.S.jDepartmentjofEnergy'syNationalyNuclear;SecuritygyAdministrationgundercontract; DE

(~ I I I~ I [~ I

Sandia

Outline e

Why Structure Matters

Sum Factorization/Partial Assembly Motivation
Structured Data Classes in Intrepid2

Sum Factorization Results

Vlasov-Poisson and Orthogonal Extrusions
Camellia: Support for Structured Data
Example: Cold Diode Problem

Conclusion

Sandia

Structure Preservation flre

Typical high-level FEM codes ignore or discard structure in order to
maintain generality.

Sandia
Structure Preservation () e

Typical high-level FEM codes ignore or discard structure in order to
maintain generality.

Example: using the standard Intrepid2 interface, if you want Jacobians
on an affine grid, you compute and store these at each quadrature
point, in a multi-dimensional array (a Kokkos View) with shape
(C,P,D,D). This is wasteful, and waste grows with polynomial order
and number of spatial dimensions.

By contrast, a custom implementation could store the same Jacobians
in a (C,D,D) array. For a uniform grid, this reduces to an array of
length (D).

WCCM: July 31 - August 5, 2022 4

Sandia
Structure Preservation () e

The new Intrepid2 Data class is a starting point for addressing this. It
stores just the unique data, but presents the same functor interface as
the standard View.

Old way: 4 doubles per Jacobian per point per cell. Same access pattern for both old and new:

Kokkos: :View 10
J(8,6) = [0]}

1 1 1

1 1 1
O oo oo o OO0 o oo oo asealusss]usnsaans]
£ Corn e e D oo ren e 0 O frn
000t B e D oo o e [Emeafunms]=smsfmans|
00 o oo e CITH oo o e O 000 oo e

New way: 2 doubles.

- - 10
Intrepid2::Data . "(2'1"’:[(: 1]

Kokkos::View

w00t

Our interest is not primarily in reducing storage costs, but in enabling
structure-aware algorithms, such as sum factorization.

WCCM: July 31 - August 5, 2022 5

Sandia
Motivation: Sum Factorization () e

Assembly/Evaluation Costs?

Storage | Assembly | Evaluation
Full Assembly + matvec O(p?) O(p3d) O(p?9)
Sum-Factorized Full Assembly + matvec | O(p?¢) | O(p2¢+l) O(p?4)
Partial Assembly + matrix-free action oY) O(p9) O(pdth)

For hexahedral elements in 3D:
® standard assembly: O(p®) flops
® sum factorization: O(p”) flops in general; O(p®) flops in special cases.
® partial assembly: O(p*) flops (but need matrix-free solver)

Savings increase for higher dimensions. . .
Basic idea: save flops by factoring sums.

Adds | Multiplies | Total Ops
Y YN aby | N2—1 N2 | 2N2—1
Y a Y by [2N=2 N 3N -2

1Table 1 in Anderson et al, MFEM: A modular finite element methods library. doi: 10.1016/j.camwa.2020.06.009.

WCCM: July 31 - August 5, 2022 6

Intrepid2’s Basis Class () =,

= Principal method: getValues () — arguments: points, operator,
Kokkos View for values

= Fills View with shape (P) or (P,D) with basis values at each ref. space
quadrature point.

Structure has been lost:
= points: flat container discards tensor structure of points.

= values: each basis value is the product of tensorial component bases; we
lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than a
structure-preserving data structure would allow.

But our major interest is in supporting algorithms that take advantage of
structure: we add a getValues () variant that accepts a BasisValues
object (see next slide).

WCCM: July 31 - August 5, 2022 7

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

WCCM: July 31 - August 5, 2022 10

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

WCCM: July 31 - August 5, 2022 11

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

= TensorPoints: tensor point container defined in terms of component
points.

WCCM: July 31 - August 5, 2022 12

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

WCCM: July 31 - August 5, 2022 13

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

TransformedBasisValues: BasisValues object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

WCCM: July 31 - August 5, 2022 14

Two Sum Factorization Approaches () =,

In N-dimensional hypercube integration, we can have N + 2 nested
summations; we want to compute and store these in an efficient
manner.
We implement two sum factorization algorithms:
Basis-indexed:
= standard approach (see e.g. Mora & Demkowicz)
= |oop nesting structure: point loops contain basis loops
= intermediates are indexed by basis ordinals, with implicit reference
to quadrature indices
H Point-indexed:
= our design, based on Intrepid2 data layout: we attempt to improve
data locality.
= |oop nesting: basis loops contain point loops

= intermediates are indexed by point ordinals, with implicit reference
to basis ordinals

WCCM: July 31 - August 5, 2022 15

Estimated Flops for Each Algorithm

Sandia
National
Laboratories

We use Poisson assembly on a 162 grid, with elementwise integrals of
the form

Kij = L Vi Vo 3K,

as our test problem. We implement a flop estimator (counting each
add or multiply as one flop), with results:

~No ok wWw NN R T

8

Standard
1.6e+07
5.3e+08
6.7e+09
4.9e+10
2.5e+11
1.0e+12
3.3e+12
9.6e+12

Basis-Indexed
2.7e+07
3.6e+08
2.4e+09
1.1e+10
3.7e+10
1.1e+11
2.7e+11
6.0e+11

Speedup
0.60x
1.5x
2.8x
4.5x
6.8x
9.1x
12x

16x

Point-Indexed
2.9e+07
3.8e+08
2.5e+09
1.1e+10
3.9e+10
1.1e+11
2.7e+11
6.1le+11

Speedup
0.55x
1.4x
2.7x
4.5x
6.4x
9.1x

12x

16x

(Speedup values here are theoretical, based only on flop counts.)

WCCM: July 31 - August 5, 2022

16

Sandia
H - National
- .
Poisson Results: Serial flre
Integration Time (Serial CPU) Actual Speedup (Serial CPU) Estimated Throughput
—e—Standard Intrepid2 . —e— Point-Indexed
6,000 1 o Point-Indexed /1 20 1 7 2 1
§4.000 T 8 < 15 8
B ‘ E
, : E
2 / & w0 18, 1
2,000 //‘ 1 £
/” 5 n| k7
5001 — 1 w05 1
| | | | 1P | | | |
2 4 6 8 2 4 6 8 2 4 6 8
P P P

Figure: Serial (Intel Xeon W, 2.3 GHz) timing comparison for 3D Poisson
integration, 4096 elements. (Optimal workset sizes for each case determined
experimentally.)

Sandia

H National
Poisson Results: OpenMP s
Integration Time (OpenMP CPU) Speedup on Xeon W (16 threads) Estimated Throughput
| |
7
1 & 30 1
‘ 2
—_ / 4 o
§' 400 - ‘s‘“ 1 é_ I
= 200 A e =
N =
/ " | |
4 4 4
O e—o—+—o—4 o—2—2 |

Figure: OpenMP (Intel Xeon W, 2.3 GHz, 16 threads) timing comparison for
3D Poisson integration, 4096 elements. (Optimal workset sizes for each case
determined experimentally.)

Poisson Results: CUDA P100 () e

Integration Time (CUDA P100) Speedup on CUDA Estimated Throughput
e Standard Intrepid2 4 J. 200 1
800 | {—o— Basis-Indexed : / 7 e Basis-Indexed

—»— Point-Indexed 20| /o 2 150 ndexed i
—~ 600 | 7 / &
g E 4 2

S a0l 13" 1 2 100f |
g 4 g H
= 10 1 £

200 . Fosof .
. 51 1 &

T Ty T 0 Ll — i]]

1 2 3 4 5 6 7 8 T2 3 4 5 6 7 2 4 3 8
» p P

Figure: CUDA (P100) timing comparison for 3D Poisson integration, 4096
elements. (Optimal workset sizes for each case determined experimentally.)

Note: The p = 8 case has a dramatic slowdown for standard (for this case, the only
workset size that ran to completion was 1); we exclude it from the speedup plot so

as to not to throw off the scaling.

WCCM: July 31 - August 5, 2022 19

The 3D3V (3 space dimensions + 3 velocity dimensions)
Vlasov-Poisson equations take the form:

of | of qp of _

V-E:qud3v (2)
€0
E+Vd=0 (3)

Here, we have introduced a potential ¢ such that E = -V
(convenient for BCs). We can simplify further by restricting to 1D1V:

of of q_ Of

ot T Tm oy, O *)
oE ¢
9E _ 9 | tav, 5
ox eoj v (5)
20
E — =
+5. =0 (6)

WCCM: July 31 - August 5, 2022 20

Vision for DPG Vlasov Solver () e

The goal: flexible, robust, accurate plasma physics solver for regimes
that PIC does not address well.

Our approach: DPG for Vlasov.

DPG has many attractive features:
= discrete stability is automatic
= almost total flexibility in solution basis (can go high-order)

= “minimum-residual method”: solution error is minimized in an
energy norm

= comes with a built-in error indicator: AMR is natural and robust

WCCM: July 31 - August 5, 2022 21

Sandia
National
Laboratories

Vlasov in Camellia

Camellia is my Trilinos-based FEM library, with support for DPG +
AMR.
= For Vlasov, we need hyper-dimensional meshes, up to 7D total.
= Key feature: allow orthogonal extrusion of any mesh in new

dimensions.
= Assume orthogonal: simplifies Jacobian computations, etc.

= Do not assume uniform divisions: allow AMR in the new

dimensions.
[omere T Tttt mrIIraErA
IR PR .- |
L2 .- by

WCCM: July 31 - August 5, 2022 22

Camellia: Support for Structured Data () %,

= Camellia aims to be quite general, with support for arbitrary
PDEs on unstructured grids.

= Working to add mechanisms to preserve structure for improved
performance.

= A work in progress: foundation laid for e.g. using Intrepid2’'s sum
factorization, but not yet implemented.

= Two examples: Function and ExtrudedMeshTopology
classes.

WCCM: July 31 - August 5, 2022 23

Function Class and Structured Data () e

The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:

®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.
values () method: accepts an object representing the
computational /geometric context (e.g., which cells and points to compute

values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

WCCM: July 31 - August 5, 2022 24

Sandia
Function Class and Structured Data () &,
The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:
®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.

values () method: accepts an object representing the

computational /geometric context (e.g., which cells and points to compute
values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

= a version of values () that outputs to an Intrepid2: :Data object
(alongside methods that allow the subclass to specify the structure of
the data)

WCCM: July 31 - August 5, 2022 25

Function Class and Structured Data () e

The Function class represents an arbitrary function, which may be
mesh-dependent; subclasses include:

®m ConstantScalarFunction - a constant scalar value.

" SimpleSolutionFunction - mesh-based solution for a specified
variable.

® Sin_ax - sine of ax, where a is a constant.

values () method: accepts an object representing the

computational /geometric context (e.g., which cells and points to compute
values for), and outputs a multi-dimensional array with shape (C,P) (for
scalar-valued functions).

Two key additions for structure preservation:

= a version of values () that outputs to an Intrepid2: :Data object
(alongside methods that allow the subclass to specify the structure of
the data)

® 3 bit-packed member variable _variesInDimension that allows
subclasses to specify in which spatial dimensions the Function varies

WCCM: July 31 - August 5, 2022 26

Sandia

ExtrudedMeshTopology s

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

Sandia

ExtrudedMeshTopology s

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

ExtrudedMeshTopology () i,

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.

WCCM: July 31 - August 5, 2022 29

ExtrudedMeshTopology () i,

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.

= maintains a 1D MeshTopology object for each extrusion dimension,
with the rule that this is at least as fine as any corresponding
phase-space cell in that dimension.

WCCM: July 31 - August 5, 2022 30

ExtrudedMeshTopology () i,

Camellia’s MeshTopology maintains the geometry of the mesh, including
neighbor and parent-child relationships. (Contrast with Mesh, which
additionally includes degrees of freedom for each cell.)

ExtrudedMeshTopology is a subclass of MeshTopology that supports
orthogonal extrusion of a lower-dimensional MeshTopology in arbitrary
dimensions.

= constructor takes a root-level /unrefined MeshTopology and a set of
coordinates in each extruded dimension.

= maintains a 1D MeshTopology object for each extrusion dimension,
with the rule that this is at least as fine as any corresponding
phase-space cell in that dimension.

= overrides addCell () method (a bottleneck for refinements), and
maintains maps from phase-space cells to cells in each extrusion
dimension (and back).

WCCM: July 31 - August 5, 2022 31

Challenges: Computational Cost and the Curse () =,

The curse of dimensionality looms. We have three key mitigations:
Adaptive Mesh Refinement

= Full support for isotropic h-adaptivity.
= Anisotropic adaptivity: necessary for performance in high
dimensions.

Underway: Hyperdimensional Serendipity bases?

Smart Assembly
= Structure of Vlasov allows most terms to be integrated in lower
dimensions, and multiplied by a pre-computed integral
corresponding to remaining dimensions.
= Not yet implemented.

1Serendipity basis support in Intrepid2; Trilinos master SHA1 22d0482, 7/7/22.

WCCM: July 31 - August 5, 2022 32

Sandia

Space-Time Formulation: Vlasov e s
We may write the 1D1V Vlasov equation as:

Vy f
Vv - f =0.
AEf

Multiplying by test w € H! and integrating by parts:

Vi
(tn,w) — f | Vxoww | =0,
dE f
where formally
Vi f Ty
th =tr f -t
dEf n,

We use the graph norm on the test space.

Sandia
Space-Time Formulation: Poisson () %,

Our space-time Poisson Formulation:
<\A/Ev TnX> - (VEI aXT) + (EXIT) = 0

(Bx, d 1) — (Ex, 0xq) = (e"o q> |

Note that the traces Vg, E are only defined at the spatial interfaces
(those for which ny # 0). Note also that p is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on Ve at the left and right boundaries; for the cold diode, we
impose Ve =0 at each.

We use the graph norm on the test space.

WCCM: July 31 - August 5, 2022 34

Solution Strategy: Fixed Point Iteration () i,

We use a fixed-point iteration with a set maximum number of
iterations:

= up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10~°).

= Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10~7 and 10~°.

WCCM: July 31 - August 5, 2022 35

The Cold Diode Problem () e

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.

10 kEV beam
—_—
T — T = r'l =.0lm
$(0)=0 o(d) =0

= We have an exact solution due to Jaffé.
= EMPIRE-PIC has very accurate results for this problem.

= Tom Smith provided me the Python scripts used in EMPIRE's
analysis; I've adapted these.

WCCM: July 31 - August 5, 2022 36

The Cold Diode Problem and Vlasov () e

Some notes on our approach:
= We nondimensionalize for computations, such that v{_, =1 and
* _
Hinal = 1.
= We rescale on output for comparison to exact solution.

= Inflow BC: approximated with a Maxwellian with thermal velocity
0 = 0.025Vpeam.

= 0 >0 = solving a slightly different problem; can expect some
error due to that difference.

= |mportant to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

= We also introduce a linear temporal “ramp”, phasing in the
injection BC between t =0 and t = 0.25.

WCCM: July 31 - August 5, 2022 37

Space-Time Results: Uniform Refinement Studies

Table: Relative L? errors

Sandia
National
Laboratories

f order Mesh Size E err. ¢ err. e err. vy err.
0 4 x 40 x 40 2.458E-01 | 2.228E-01 | 2.276E-02 | 2.386E-02
0 8 x 80 x 80 1.228E-01 | 1.133E-01 | 1.130E-02 | 1.198E-02
0 16 x 160 x 160 | 6.137E-02 | 5.690E-02 | 5.630E-03 | 5.998E-03
1 4 x 20 x 40 2.481E-03 | 2.505E-02 | 2.446E-03 | 2.200E-03
1 8 x 40 x 80 7.065E-04 | 6.266E-03 | 6.660E-04 | 6.212E-04
1 16 x 80 x 160 3.924E-04 | 1.605E-03 | 3.641E-04 | 3.399E-04
2 4 x 10 x 40 5.021E-04 | 4.206E-04 | 2.586E-03 | 6.109E-04
2 8 x 20 x 80 3.660E-04 | 3.673E-04 | 4.753E-04 | 3.365E-04
2 16 x 40 x 160 3.618E-04 | 3.635E-04 | 4.016E-04 | 3.138E-04
3 4 x5 x40 6.151E-03 | 2.189E-03 | 2.614E-02 | 3.178E-03
3 8 x 10 x 80 3.624E-04 | 3.632E-04 | 4.126E-04 | 3.133E-04
3 16 x 20 x 160 3.619E-04 | 3.637E-04 | 3.353E-04 | 3.126E-04

Uniform refinement study for space-time, for poly orders from 0 to 3. As with our finest
time-marching solves, we see error of roughly 3 X 10™* in each variable, due to the nonzero
value for 0. Note that the second dimension is time; we use coarser discretizations in time
for higher polynomial orders so that we have roughly the same number of temporal nodes

as in the time-marching scheme.

WCCM: July 31 - August 5, 2022

38

Adaptive Space-Time Results () =,

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L? norm on the boundary. In this
run, we use the following setup:

= coarse mesh: 2 x 4 x 10 elements
= 0 =0.025

BC tol: 107°

quadratic field variables

= test space enrichment Ap =4

= greedy refinement parameter 6 = 0.2

WCCM: July 31 - August 5, 2022 39

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia
Conclusion () e

= The more structured the problem, the greater gains we can
achieve by taking advantage of that structure.

= Intrepid2 has a new, rich set of foundational classes for preserving
structure through FEM computations.

= We have begun to take advantage of these in Camellia,
particularly in the context of the Vlasov problem.

Thanks for your attention!

WCCM: July 31 - August 5, 2022 49

	Why Structure Matters
	Sum Factorization/Partial Assembly Motivation
	Structured Data Classes in Intrepid2
	Sum Factorization Results
	Vlasov-Poisson and Orthogonal Extrusions
	Camellia: Support for Structured Data
	Example: Cold Diode Problem
	Conclusion

