

Exceptional service in the national interest

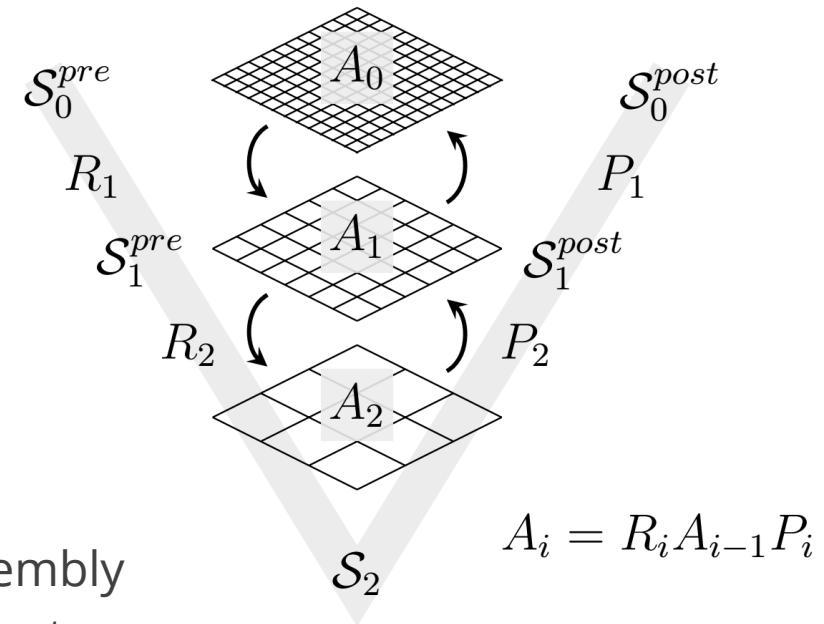
A Matrix-Free Approach to Smoothed Aggregation Algebraic Multigrid

Graham Harper, 1442
Center for Computing Research
Sandia National Laboratories

8/2/2022

Background

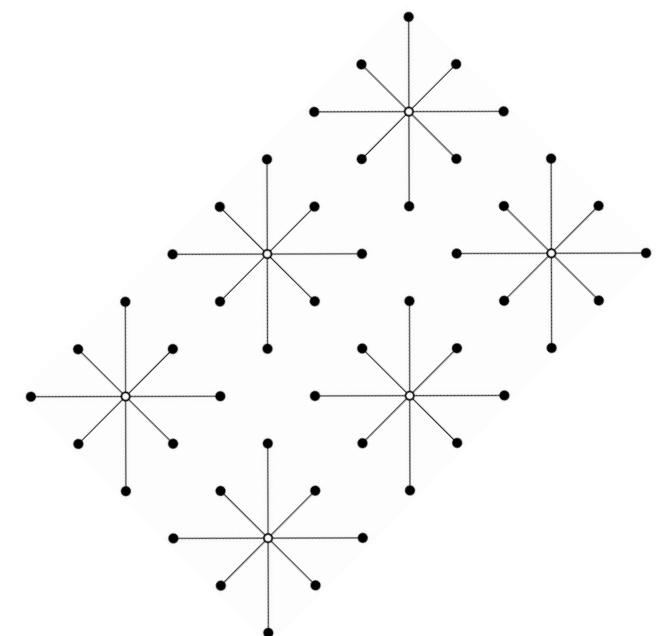
- What is multigrid?
 - One of the most efficient solvers for discretized PDE systems
 - Main idea: reduce high frequency error, then transfer to a coarser grid
- What is matrix-free?
 - Solving linear systems where a matrix is replaced by its action
 - Matrix apply operator recomputes expensive finite element assembly
 - Enables applications to push extreme scales on advanced architectures
 - Preconditioning/acceleration is critical!
- Matrix-free geometric multigrid (GMG) studied extensively
 - Kronbichler, Ljungkvist, *Multigrid for matrix-free high-order finite element computations on graphics processors*, ACM TOPC (2019)
 - Davydov, Pelteret, Arndt, et al, *A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid*, IJNME (2020)
 - Brown, Barra, Beams, et al, *Performance Portable Solid Mechanics via Matrix-Free p-Multigrid*, arXiv (2022)
- GMG often requires geometric structure
- Algebraic multigrid (AMG) robustly handles grids with less geometric structure
 - Several challenges have prevented matrix-free AMG



Algebraic Multigrid

- AMG constructs coarse grids by looking at algebraic properties of an operator
 - A_{ij} represents correlation between DOF i and j
- 1. Aggregates constructed from operator information
 - Root node injected to coarse grid
- 2. Prolongator, restrictor constructed using aggregates
- 3. Error smoothed on the fine grid
$$x \leftarrow x + \omega D^{-1}(f - Ax)$$
- 4. Residual transferred to the coarse grid
$$r_c = R(f - Ax)$$
- 5. Coarse matrix computed by RAP, solve/recurse
- 6. Correction from the coarse grid is applied
$$x \leftarrow x + Px_c$$

- Challenge: construct a robust AMG solver without explicitly forming A



Smoothed Aggregation

- Smoothed Aggregation AMG (SA-AMG) constructs grid transfers by **smoothed** aggregation

1. Construct tentative prolongator on aggregates
2. Compute eigenvalue estimate for $D^{-1}A$

$$\lambda_{\ell,m} = \rho(D_{\ell}^{-1}A_{\ell})$$

3. Apply prolongator smoother to tentative prolongator

$$P_{\ell} = (I - \omega D_{\ell}^{-1}A_{\ell}) P_{\ell}^{(t)}$$

where

$$\omega = \frac{4}{3\lambda_{\ell,m}}$$

4. For symmetric problems,

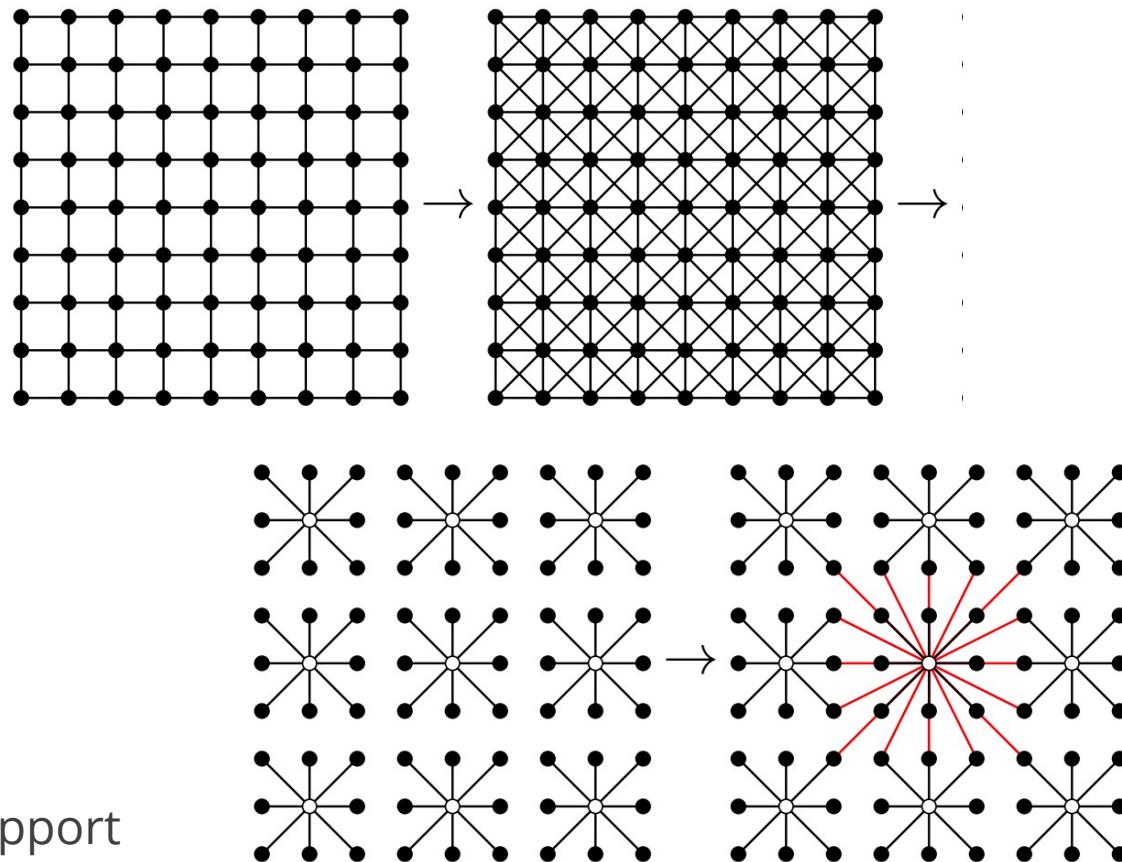
$$R_{\ell} = P_{\ell}^T$$

$$P_{\ell}^{(t)} = \begin{pmatrix} 1 & & & \\ 1 & \ddots & & \\ 1 & & \ddots & \\ & 1 & \ddots & \\ & 1 & \ddots & \\ & 1 & \ddots & \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & 1 \\ \vdots & \ddots & \ddots & 1 \end{pmatrix}$$

*scale columns

Matrix-Free Smoothed Aggregation

- Aggregate construction problems:
 - Often need matrix entries
 - Can cross processor boundaries
- Simple case solution:
 - Interpret mesh nodes as a graph
 - Connect nodes on same elements
- Prolongator construction problems:
 - Matrix-matrix multiply
 - Diagonal construction
 - Tentative prolongator is simple, but prolongator smoother extends basis support
- Solution:
 - Distance-2 coloring of aggregates to compress
 - Take few power method iterations, multiply by factor



$$P_\ell = (I - \omega D_\ell^{-1} A_\ell) P_\ell^{(t)}$$

Coarse Problem Construction

- Goal: form a coarse problem without performing many matrix-vector multiplies
- Problem: coarse problem takes the form

$$A_c = R_\ell A_\ell P_\ell = (P_\ell^{(t)})^T (I - \omega A_\ell^T D^{-1}) A_\ell (I - \omega D^{-1} A_\ell) (P_\ell^{(t)})^T$$

1. Form the coarse grid matrix and solve
 - not necessarily in-line with low-memory goals
 - mitigated by more aggressive coarsening
2. Solve the coarse grid iteratively
 - apply A at least 3 times per coarse grid iteration

- Graph colorings on prolongator drastically reduce required effort
- Form the coarse grid matrix by N_{colors} matrix-vector multiplies
 - N_{colors} affected by coarsening rate
- Option 1 works well with unsmoothed aggregation

$$P_\ell^{(t)} = \begin{pmatrix} 1 & & \cdot & & \\ 1 & & \cdot & & \\ 1 & & \cdot & & \\ & & 1 & \cdot & \\ & & 1 & \cdot & \\ & & 1 & \cdot & \\ \cdot & \cdot & \cdot & \cdot & \\ \cdot & \cdot & \cdot & \cdot & \\ \cdot & \cdot & \cdot & \cdot & \\ & & & 1 & \\ & & & 1 & \\ & & & 1 & \end{pmatrix}$$

*scale columns

2-Level Multigrid Algorithm

Matrix-free smoothed aggregation algorithm for nodal DOFs

- One-time costs:
 - Aggregation on locally owned mesh nodes
 - Color aggregates
 - Eigenvalue estimate (10 fine-grid apply)

1. Construct grid transfers
2. Apply pre-smoother (1 fine-grid apply)
3. Construct coarse matrix (N_{colors} fine-grid apply)
4. Direct solve residual on coarse grid (1 fine-grid apply to transfer)
5. Apply coarse grid correction (1 fine-grid apply to transfer)
6. Apply post-smoother (1 fine-grid apply)

Matrix-free smoothed aggregation algorithm for high-order discretizations

- Coarsen to nodal case via p-multigrid

Fine-scale apply scales based on coloring of the problem

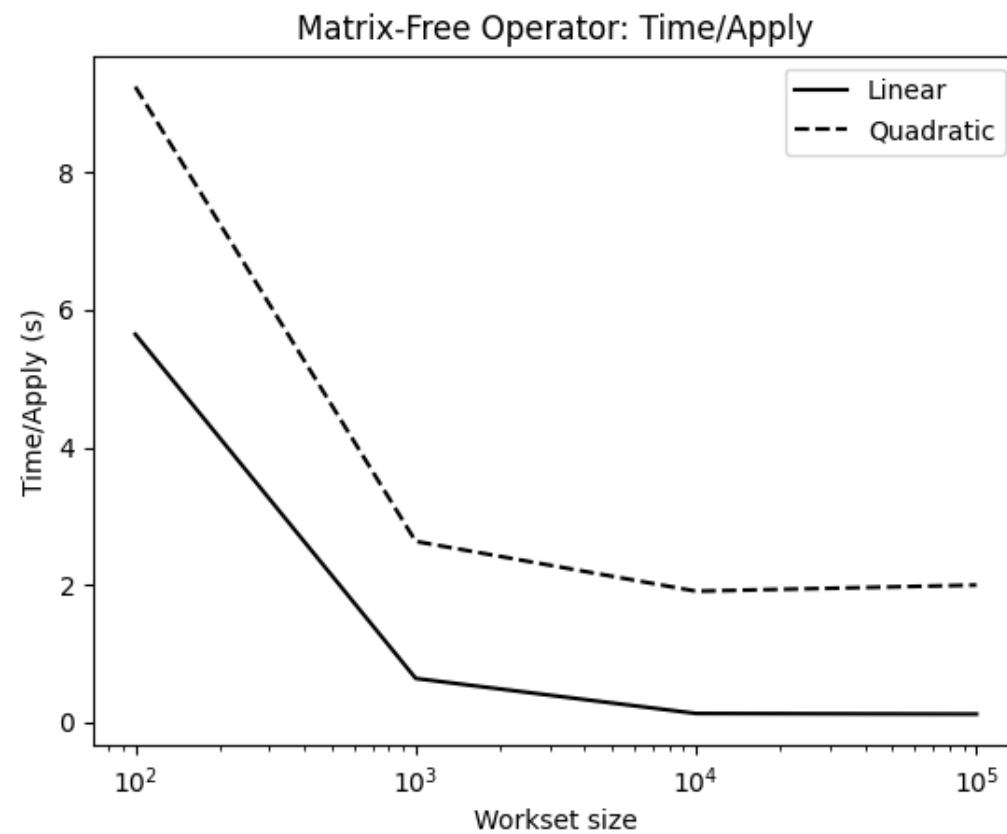
Fine-scale apply reduced greatly for unsmoothed aggregation... but less scalable

Implementation Details

- Tests are run on Sandia's Weaver machine
 - Dual IBM Power9 with Dual Nvidia Tesla V100s. 319GB RAM per node
- Implementation details
 - Panzer: DOF manager, handle STK mesh under the hood
 - Intrepid2: Finite element evaluation and integration, sum factorization
 - Tpetra: Templated linear algebra
 - Belos: Linear solvers
 - MueLu: Multigrid
 - Kokkos: Performance portability
- Matrix-free finite elements written from scratch, utilizing above tools
- Matrix-free multigrid hierarchy written from scratch, utilizing MueLu for aggregation

Results – Matrix-Free Operator Evaluation on GPU

- Hgrad basis
- 100x100x100 structured mesh
- Reduce memory load via hierarchical parallelism, i.e. “worksets”
- Degree, workset size varied
- Cubic and higher crash on GPU due to insufficient shared Cuda memory
- Balance problem size and solve speed; see diminishing returns
- Sum factorization helps reduce iterations as p grows



Extensions

- Computational benefits not realized until high-order discretizations
 - Sum factorizations slower for linears, lower spatial dimensions
- Use p-multigrid to reduce to the linear case
- Explore more advanced smoothing options
- Use auxiliary operators
 - Low-order refined operators
 - Distance Laplacian for collocated DOF problems
 - Captures mesh irregularities
- Explore more aggressive coarsening
- Explore face-, edge-based elements
- Region-based multigrid, hybrid hierarchical grids
- Deeper hierarchies

$$L_{ij} = \begin{cases} -1/dist(i, j) & \text{if } i \neq j \\ -\sum_{k \neq i} L_{ik} & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

Conclusion

- Still room for improvement!
- Matrix-free capabilities still being added to other Trilinos packages
- Many configurations/choices to explore
 - Smoothed vs unsmoothed aggregation
 - Choice of coarse grid approach
 - Approaches for high-order solvers
- Current priorities:
 - Add ability for aggregation directly on meshes in MueLu
 - Add customizable matrix-free operators to Trilinos proper
 - Identify issues with shared memory allocations on device

Thank You!

Questions?

gbharpe@sandia.gov