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Background
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• What is multigrid?
• One of the most efficient solvers for discretized PDE systems
• Main idea: reduce high frequency error, 

then transfer to a coarser grid

• What is matrix-free?
• Solving linear systems where a matrix is replaced by its action
• Matrix apply operator recomputes expensive finite element assembly
• Enables applications to push extreme scales on advanced architectures
• Preconditioning/acceleration is critical!

• Matrix-free geometric multigrid (GMG) studied extensively
• Kronbichler, Ljungkvist, Multigrid for matrix-free high-order finite element computations on graphics processors, ACM TOPC (2019)
• Davydov, Pelteret, Arndt, et al, A matrix-free approach for finite-strain hyperelastic problems using geometric multigrid, IJNME (2020)
• Brown, Barra, Beams, et al, Performance Portable Solid Mechanics via Matrix-Free p-Multigrid, arXiv (2022)

• GMG often requires geometric structure
• Algebraic multigrid (AMG) robustly handles grids with less geometric structure

• Several challenges have prevented matrix-free AMG



Algebraic Multigrid
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• AMG constructs coarse grids by looking at algebraic properties of an operator
• Aij represents correlation between DOF i and j

1. Aggregates constructed from operator information
• Root node injected to coarse grid

2. Prolongator, restrictor constructed using aggregates
3. Error smoothed on the fine grid

4. Residual transferred to the coarse grid

5. Coarse matrix computed by RAP, solve/recurse
6. Correction from the coarse grid is applied

• Challenge: construct a robust AMG solver without explicitly forming A



• Smoothed Aggregation AMG (SA–AMG) constructs grid transfers by smoothed aggregation

1. Construct tentative prolongator on aggregates
2. Compute eigenvalue estimate for D-1A

3. Apply prolongator smoother to tentative prolongator

where

4. For symmetric problems,

Smoothed Aggregation
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*scale columns



Matrix-Free Smoothed Aggregation
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• Aggregate construction problems:
• Often need matrix entries
• Can cross processor boundaries

• Simple case solution:
• Interpret mesh nodes as a graph
• Connect nodes on same elements

• Prolongator construction problems:
• Matrix-matrix multiply
• Diagonal construction
• Tentative prolongator is simple, but

prolongator smoother extends basis support

• Solution:
• Distance-2 coloring of aggregates to compress
• Take few power method iterations, multiply by factor



*scale columns
Coarse Problem Construction
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• Goal: form a coarse problem without performing many matrix-vector multiplies
• Problem: coarse problem takes the form

1. Form the coarse grid matrix and solve
• not necessarily in-line with low-memory goals
• mitigated by more aggressive coarsening

2. Solve the coarse grid iteratively
• apply A at least 3 times per coarse grid iteration

• Graph colorings on prolongator drastically reduce required effort
• Form the coarse grid matrix by Ncolors matrix-vector multiplies

• Ncolors affected by coarsening rate

• Option 1 works well with unsmoothed aggregation



2-Level Multigrid Algorithm
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Matrix-free smoothed aggregation algorithm for nodal DOFs
• One-time costs:

• Aggregation on locally owned mesh nodes
• Color aggregates
• Eigenvalue estimate (10 fine-grid apply)

1. Construct grid transfers
2. Apply pre-smoother (1 fine-grid apply)
3. Construct coarse matrix (Ncolors fine-grid apply)
4. Direct solve residual on coarse grid (1 fine-grid apply to transfer)
5. Apply coarse grid correction (1 fine-grid apply to transfer)
6. Apply post-smoother (1 fine-grid apply)

Matrix-free smoothed aggregation algorithm for high-order discretizations
• Coarsen to nodal case via p-multigrid

Fine-scale apply scales based on coloring of the problem
Fine-scale apply reduced greatly for unsmoothed aggregation... but less scalable



Implementation Details
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• Tests are run on Sandia’s Weaver machine 
• Dual IBM Power9 with Dual Nvidia Tesla V100s. 319GB RAM per node

• Implementation details
• Panzer: DOF manager, handle STK mesh under the hood
• Intrepid2: Finite element evaluation and integration, sum factorization
• Tpetra: Templated linear algebra
• Belos: Linear solvers
• MueLu: Multigrid
• Kokkos: Performance portability

• Matrix-free finite elements written from scratch, utilizing above tools
• Matrix-free multigrid hierarchy written from scratch, utilizing MueLu for aggregation



Results – Matrix-Free Operator Evaluation on GPU
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• Hgrad basis
• 100x100x100 structured mesh
• Reduce memory load via hierarchical 

parallelism, i.e. “worksets”
• Degree, workset size varied
• Cubic and higher crash on 

GPU due to insufficient shared
Cuda memory 

• Balance problem size and solve 
speed; see diminishing returns

• Sum factorization helps reduce 
iterations as p grows



Extensions
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• Computational benefits not realized until high-order discretizations
• Sum factorizations slower for linears, lower spatial dimensions

• Use p-multigrid to reduce to the linear case
• Explore more advanced smoothing options
• Use auxiliary operators

• Low-order refined operators
• Distance Laplacian for collocated DOF problems

• Captures mesh irregularities

• Explore more aggressive coarsening
• Explore face-, edge-based elements
• Region-based multigrid, hybrid hierarchical grids
• Deeper hierarchies



Conclusion
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• Still room for improvement!
• Matrix-free capabilities still being added to other Trilinos packages
• Many configurations/choices to explore

• Smoothed vs unsmoothed aggregation
• Choice of coarse grid approach
• Approaches for high-order solvers

• Current priorities:
• Add ability for aggregation directly on meshes in MueLu
• Add customizable matrix-free operators to Trilinos proper
• Identify issues with shared memory allocations on device



Thank You!
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Questions?

gbharpe@sandia.gov


