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Motivation for studying yielding fluids

Yield stress can be seen in wax, whipped cream, 
toothpaste, lava, ceramic pastes, and Carbopol 

1



Develop computational models for free-
surface flows of yield stress fluids

We propose developing numerical methods informed by novel 
experimental diagnostics that transition from solid-to-fluid, while 
accurately predicting the stress and deformation regardless of phase.  

Target system: solidifying 
continuous phase with particles 
and droplets (e.g. polyurethane 
foams)

Why is this needed?
• Accurate predictions of surface profiles and spreading 

dynamics for flowing systems

Current state-of-the-art in production codes: 
• Ramp viscosity arbitrarily high to “solidify” a fluid
• Does not accurately preserve the stress state that 

develops in the fluid
• One way coupling between fluid and solid codes

2.5 mm shot, 40% injection speed

2.5 mm shot, 100% injection speed

Green ceramic 
processing 
shows yield 
stress and 
both fluid and 
solid-like 
behavior



Newtonian fluid shows 
evidence of Poiseuille 
flow across channel

All Carbopol solutions 
show constant velocity 
across the channel 

Away from the inlet, 
there are regions of local 
arrest within the channel 
for the yield stress fluid 
not seen in the 
Newtonian fluid

Injection 
speed  10 
ml/min
Area = 6.5 
cm2

10 mL/min, 
0.08% 
Carbopol

Newtonian

Carbopol 
0.08%

0.3%

1%
<- 6” wide ->



Morphology of Injected Fluid Drop
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Change in morphology of 
the fluid domain from more 
triangular to round
Drop morphology depends 
on the combination of yield 
and flow stresses 
Same aspect ratio is 
observed at higher speeds 
for lower Carbopol 
concentrations



Transition from Triangular to Rounded: Collapse of Data

• Collapse of data if we scale it to an effective width and diameter based on spherical drop
• Mechanism of flow changes with yield stress
• Triangular flows are inertial dominated while fluids with yield stress are rounded and flow dissipates in a 

circular manner  



Equations of motion and stress constitutive equations

Guénette, R. and Fortin, M. Journal of Non-Newtonian Fluid Mechanics 
(1995) 60: 1, 27-52. 
Saramito, P. Journal of Non-Newtonian Fluid Mechanics (2007) 145: 1, 1-14.
Fraggedakis, D et al. Journal of Non-Newtonian Fluid Mechanics (2007) 
236,  104-122.

Herschel-Buckley (HB)-Saramito yield 
model

Momentum and Continuity

Oldroyd-B stress constitutive model + Saramito yield model



Mold filling geometry: flow between two thin plates

No slip, no 
penetration



Characterization of Carbopol and parameter fitting

μ0, (Pa•s)
μ∞, 
(Pa•s) b (s-1) a n τy, (Pa)

R2

217.15 0.018 3.112 0.966 0.190 31.21 0.954

Saramito-Oldroyd-B 

Bingham-Carreau-Yasuda (BCY)

 Small amplitude stress vs. strain curve, gives the 
elastic modulus, G.

 Other rheological parameters were determined 
using a nonlinear least squares fit.

n k, (Pa•sn) τy, (Pa) G, (s) R2

Saramito == 1 52.85 32.10 576.9

HB-Saramito 0.368 58.9 17.89 576.9 0.991
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3D mold filling simulations

No 
penetration, 
Navier slip 
BCs

Kinetic, 
capillary BCsSymmetry 

BCs

Tabulated 
inflow 
velocity

No mesh 
motion

gravity

x

y

z

x
z

y

Contact 
angles 
fixed at 
90°

Constitutive models
 Bingham-Carreau-Yasuda 

(generalized Newtonian) 
 Saramito-Oldroyd-B
 Constant viscosity
 Herschel-Buckley (HB)

Computations
 Finite element method in Goma
 Arbitrary Eulerian-Lagrangian 

moving mesh framework 
 Remeshing done every ~30 

timesteps

Validation Experiments
 0.3 wt.% Carbopol
 5-20 mL/min flow rate



Droplet dimensions computed from 3D simulations

 Droplet height predictions for both flavors of the Saramito accurately capture 
droplet height.
◦ Constant viscosity variant performs a bit better at the highest flow rate considered

 BCY model tends to overestimate droplet height



Droplet dimensions computed from 3D simulations

 HB-Saramito model accurately predicts width for 5, 10 mL/min inflow, but 
overestimates at higher flow rates.

 BCY model substantially underestimates droplet width at low to moderate (5-10 
mL/min) inflow.



Droplet shape computed from 3D simulations

 Experimental droplet transitions from round triangular as volume is increased.
◦ For a fixed droplet volume, higher flow rate leads to a rounder droplet.

 The Saramito and HB-Saramito models predict this behavior (though imperfectly).
◦ BCY model struggles to show transition to a triangular shape at larger volumes.



from experiment

from experiment

HB-Saramito

HB-Saramito

Comparison experimental shear and velocity maps to 
computations

 For the available data, x-
velocity and shear rate 
computed by the HB-Saramito 
model are generally in 
agreement with experimental 
values

 Differences manifest near the 
inlet region:
◦ Near-wall velocity is 

underestimated
◦ Computations predict a shear-

rate reversal which is not 
observed experimentally

◦ This indicates slip near the inlet 
is underestimated

ᵆ� ᵆ�

5 mL/min,
2 in2



Yield coefficient computed by HB-Saramito model

5 mL/min 10 mL/min 20 mL/min



Summary and conclusion

 Both Saramito and HB Saramito models yielded accurate predictions for droplet 
height.
 Predicting droplet width is more difficult – both EVP models considered were more 

accurate than the BCY model, though neither Saramito-type model was decisively 
more accurate than the other.

 Shear rate and horizontal velocity computed from the HB-Saramito model generally 
agree with available experimental data. 
 Noticeable differences near the fluid inlet likely due to underestimation of local fluid slip on boundaries.

 Ongoing efforts:
 Hele-Shaw and level set implementations of EVP models
 Computations over a range of fluid properties for the mold filling scenario
 Confined free-surface flows over an obstruction

J. McConnell, et al., “Computational modeling and experiments of an elastoviscoplastic 
fluid in a thin mold-filling geometry,” to be published, JNNFM, June, 2022
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