

Using Manifold Learning to Enable Computationally Efficient Stochastic Inversion with High-dimensional Data

Tian Yu Yen and Tim Wildey

July 13, 2022

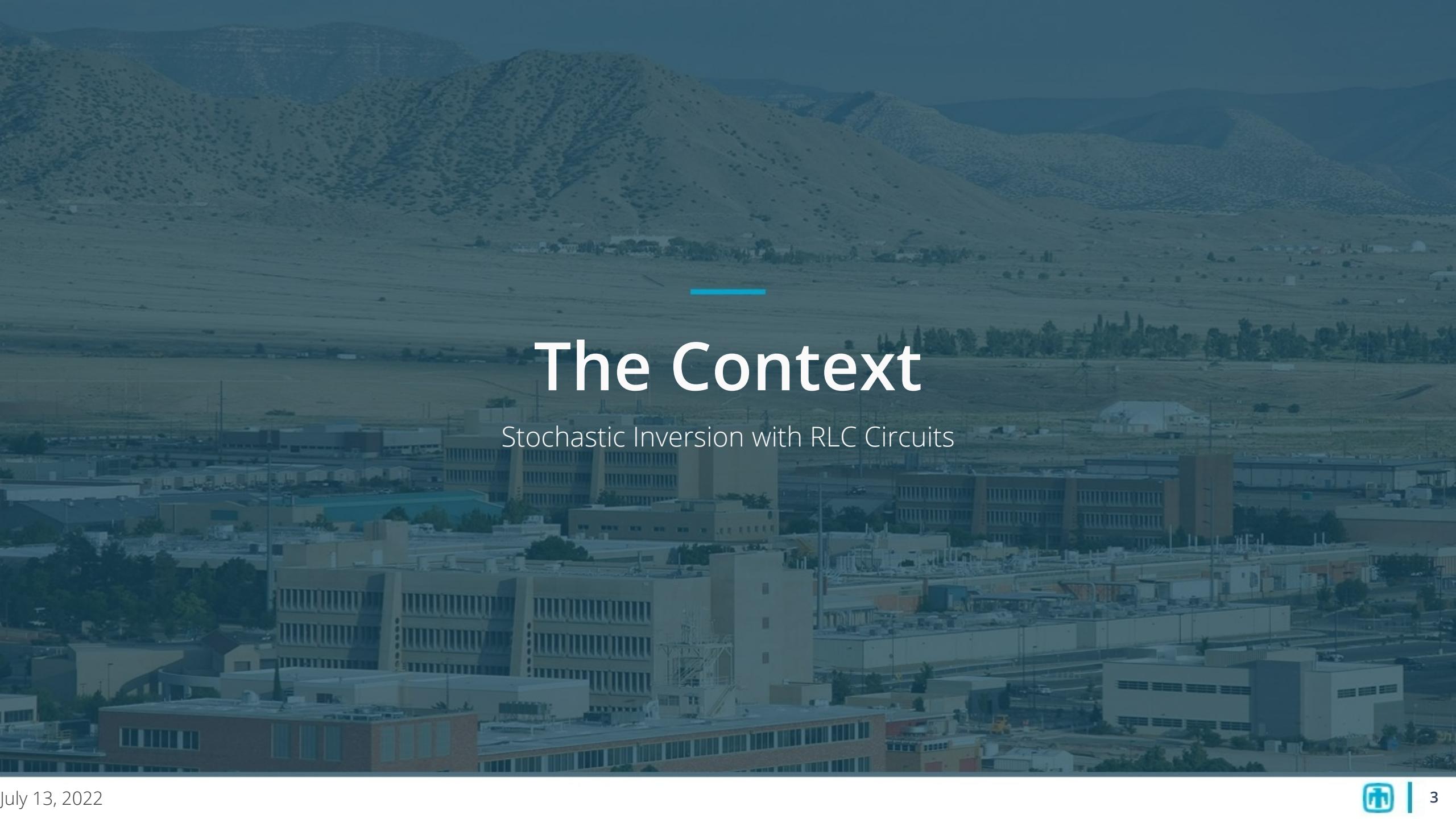
Virtual Talk for WCCM-APCOM 2022

Session 1707: *Uncertainty Quantification for Data-Intensive Inverse Problems and Machine Learning*

Acknowledgements: This material is based upon work supported by the U.S. Department of Energy, Office of Science, ASCR, Early Career Research Program.

Outline

1. The Context: Stochastic Inverse Problems (RLC Circuit Example)
2. The Method: Data-consistent Inversion (DCI)
3. The Approach: Tackling High-dimensional Data (Manifold Learning)
4. Some Reflections: Future Work and Analysis



The Context

Stochastic Inversion with RLC Circuits

Typical Inverse Problem

Goal of a Typical Inverse Problem:

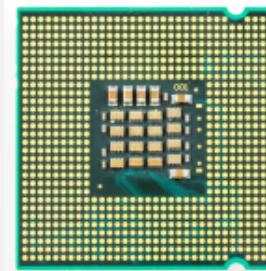
Given a model $Q(\lambda)$ and data $\{q_i\}$,

1. Find the best estimate of λ
2. Quantify uncertainty in estimate
(e.g., using prob. distributions)

Typical Solution: Bayesian posterior!

What is the parameter for this component
given uncertain measurements (*epistemic*)?

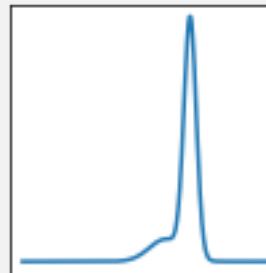
One Component



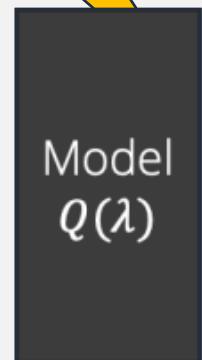
Measurements

Inverse
Problem
 $Q^{-1}(\lambda)$

*Problem:
Ill-posed!*



Parameters



Stochastic Inverse Problem

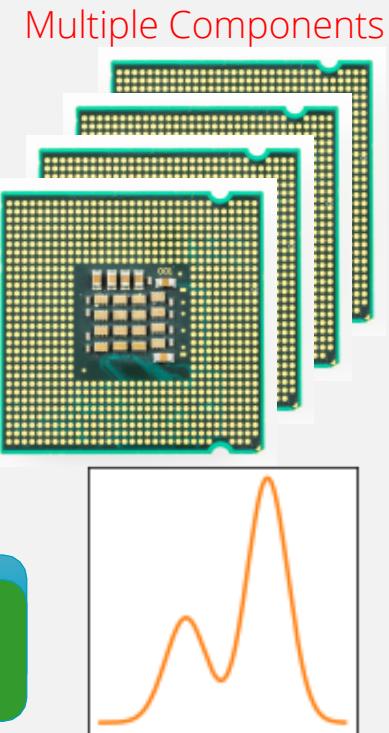
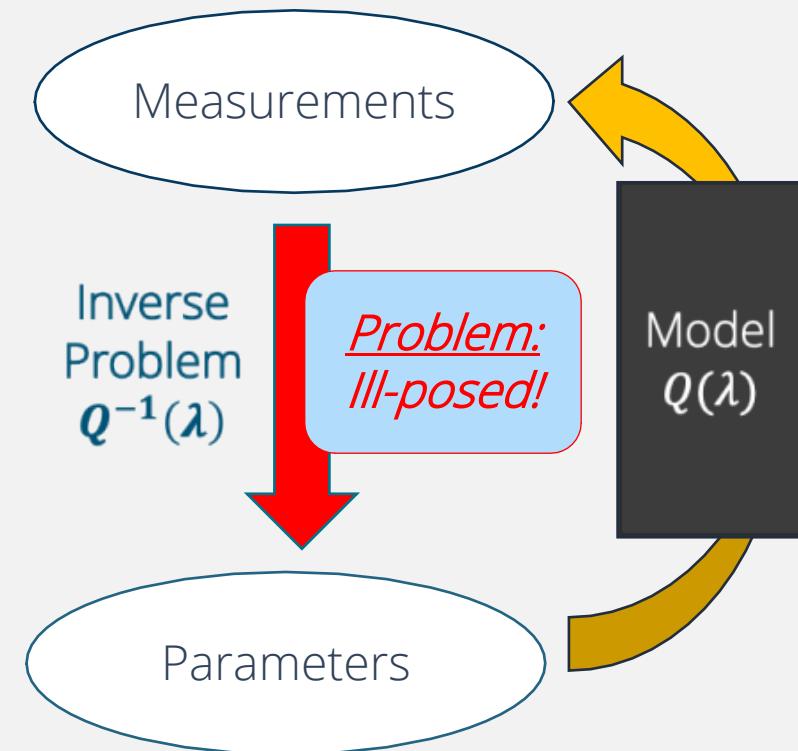
Goal of a Stochastic Inverse Problem:

Given a model $Q(\lambda)$ and data $\{q_i\}$,

1. Characterize the variability of λ
2. Quantify uncertainty of λ using prob. distributions

Alt. Solution: Data-consistent inversion!

What is the uncertainty in the parameter due to variability between components (*aleatoric*)?

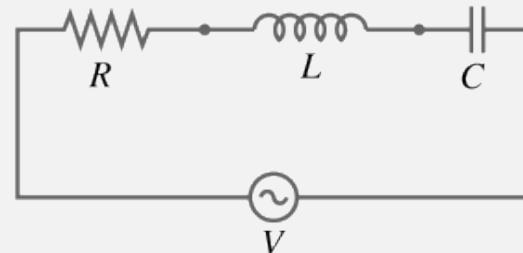


Stochastic Inverse Problem: RLC Circuits Example

Parameters
 $\lambda = (R, L, C)$

Model

$$L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C}q = f(t)$$

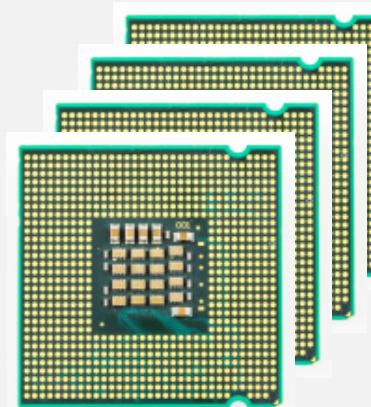
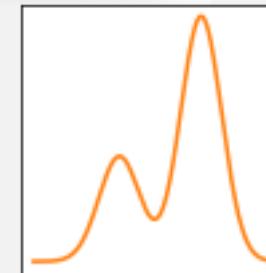


Quantity of Interest
 $Q(\lambda) = (I_1(t), I_2(t))$

Time series of current with
freq. = (ω_1, ω_2)

What is the uncertainty in the parameter due to variability between components (*aleatoric*)?

Multiple Components



Inverse
Problem
 $Q^{-1}(\lambda)$

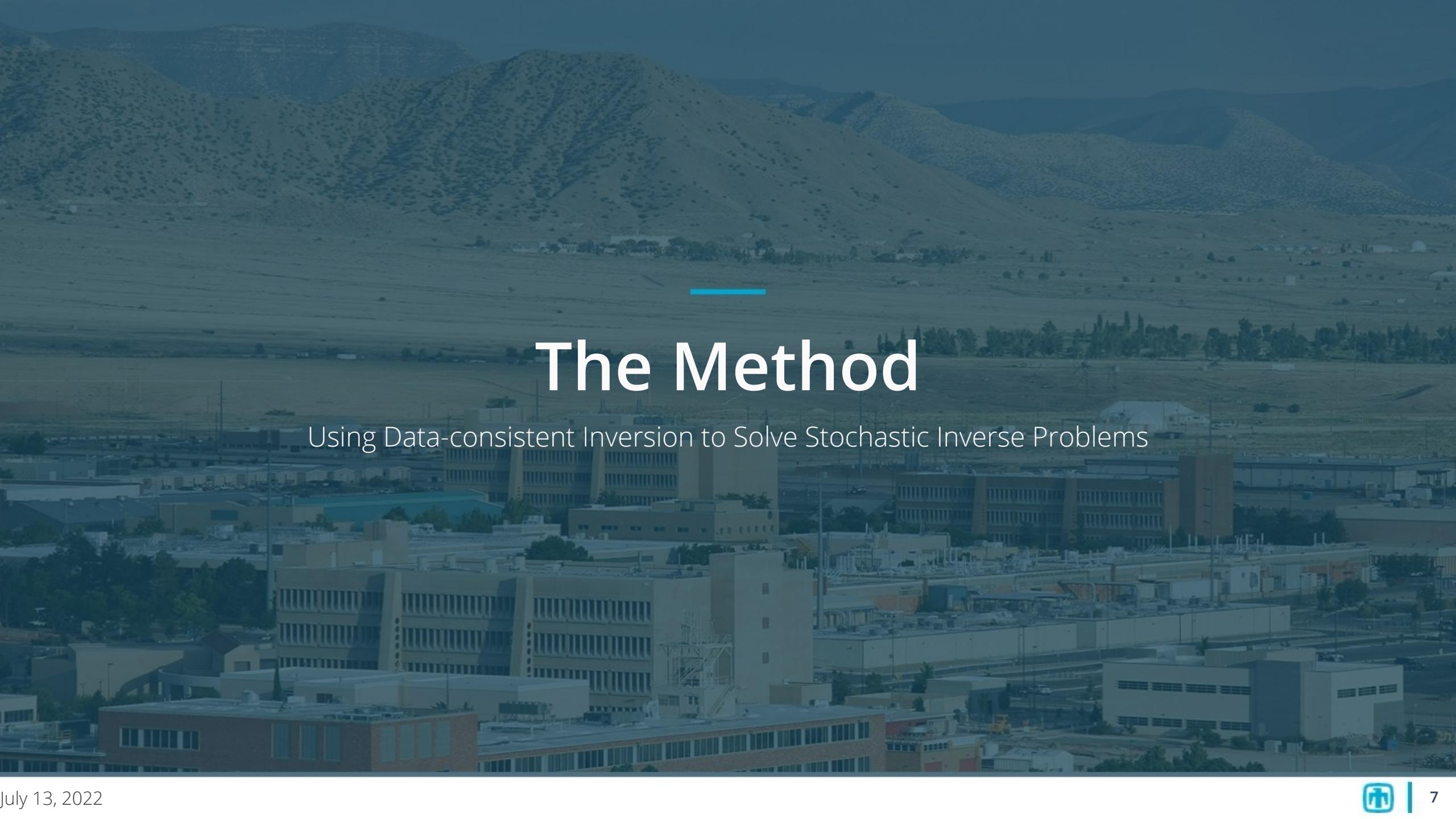
*Problem:
Ill-posed!*

Measure

Model
 $Q(\lambda)$

Parameters

Alt. Solution: Data-consistent inversion (DCI)!



The Method

Using Data-consistent Inversion to Solve Stochastic Inverse Problems

Data-consistent Inversion: What is the method?

A measure-theoretic approach...

$$E(r) = 1$$

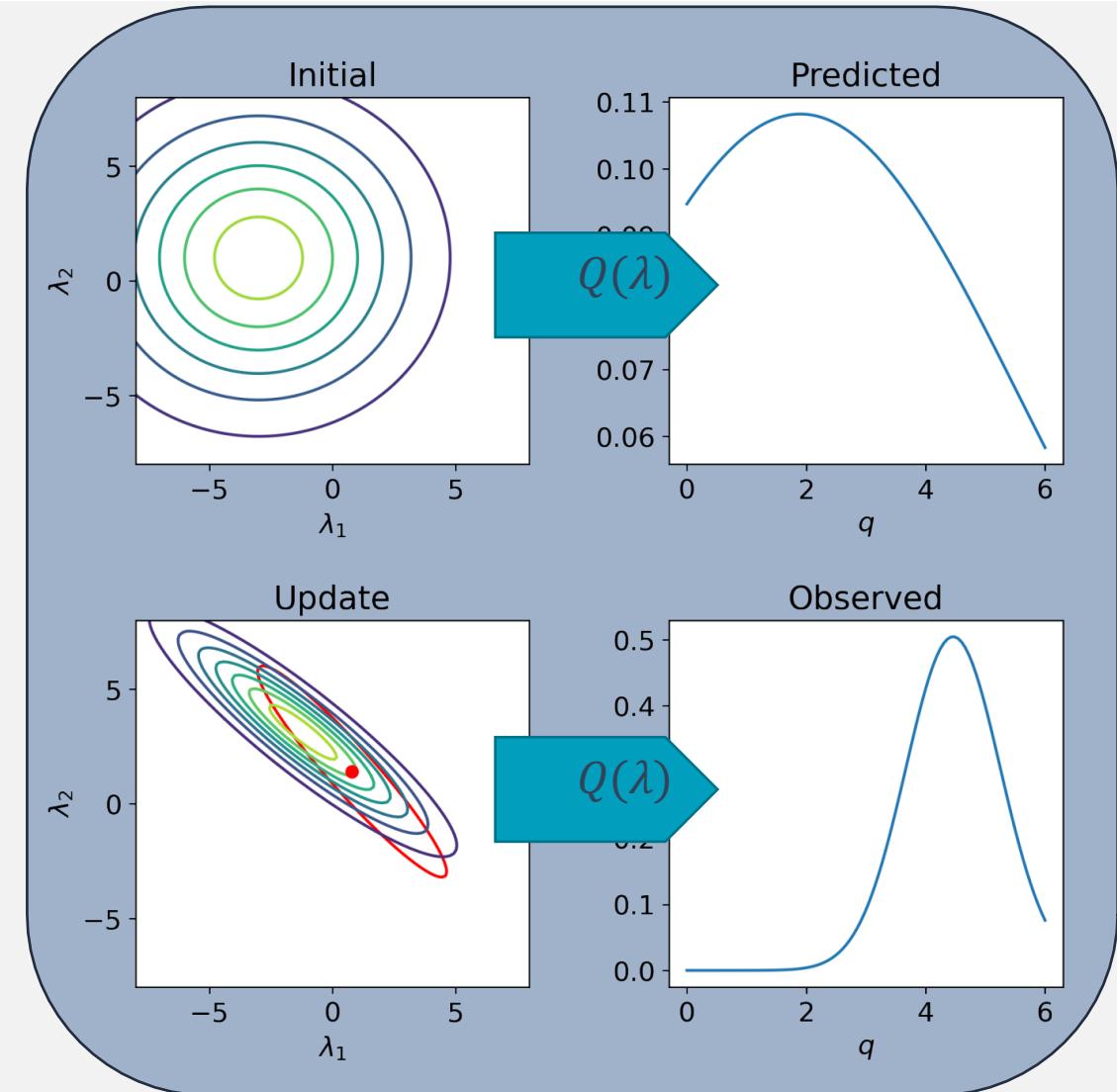
$$\pi_{update}(\lambda) = \pi_{init}(\lambda) \frac{\pi_{obs}(Q(\lambda))}{\pi_{predict}(Q(\lambda))}$$

Assumption: *Predictability assumption*

- Given initial assumptions about λ , model $Q(\lambda)$ can predict the data

Idea of Method: *Update initial assumptions by*

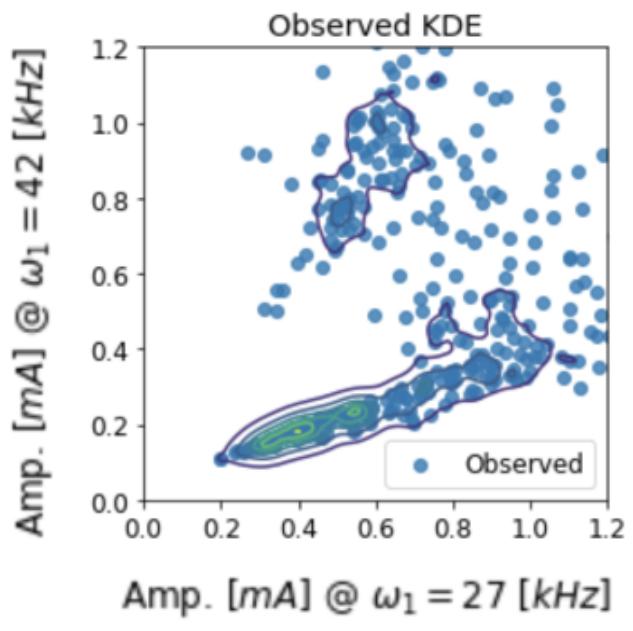
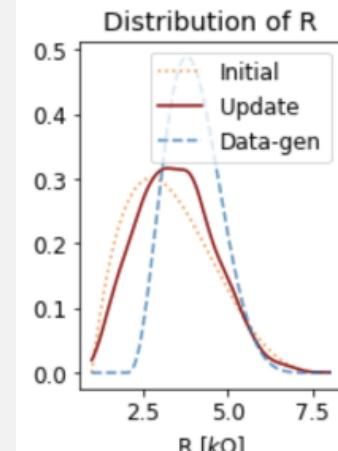
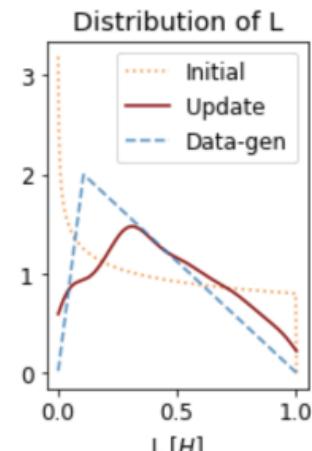
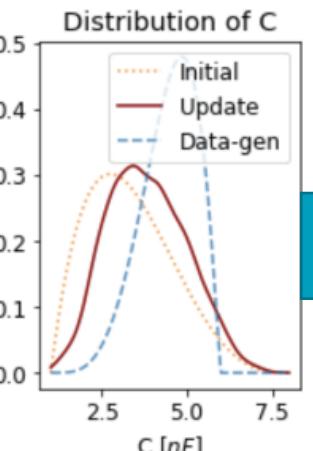
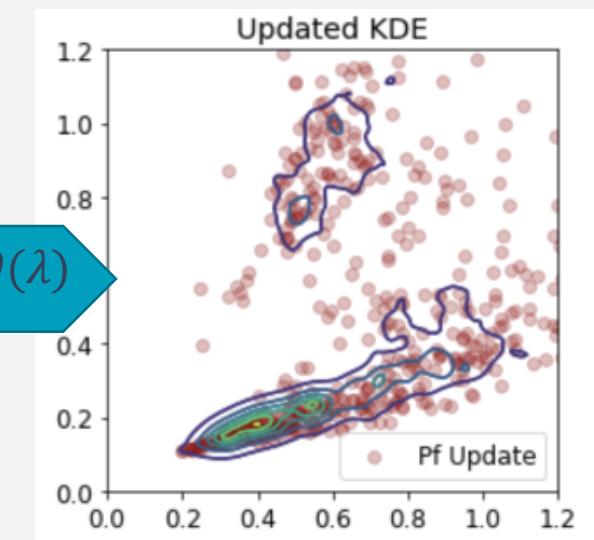
- Re-weighting initial with ratio of predicted (push-forward) to observed density



Data-consistent Inversion: A Consistent Solution

How does it work? Consider RLC Example...

$$\pi_{update}(\lambda) = \pi_{init}(\lambda) \frac{\pi_{obs}(Q(\lambda))}{\pi_{predict}(Q(\lambda))}$$



$\pi_{update}(\lambda)$ is a consistent solution to the stochastic inverse problem!

Data-consistent Inversion: Benefits and Drawbacks

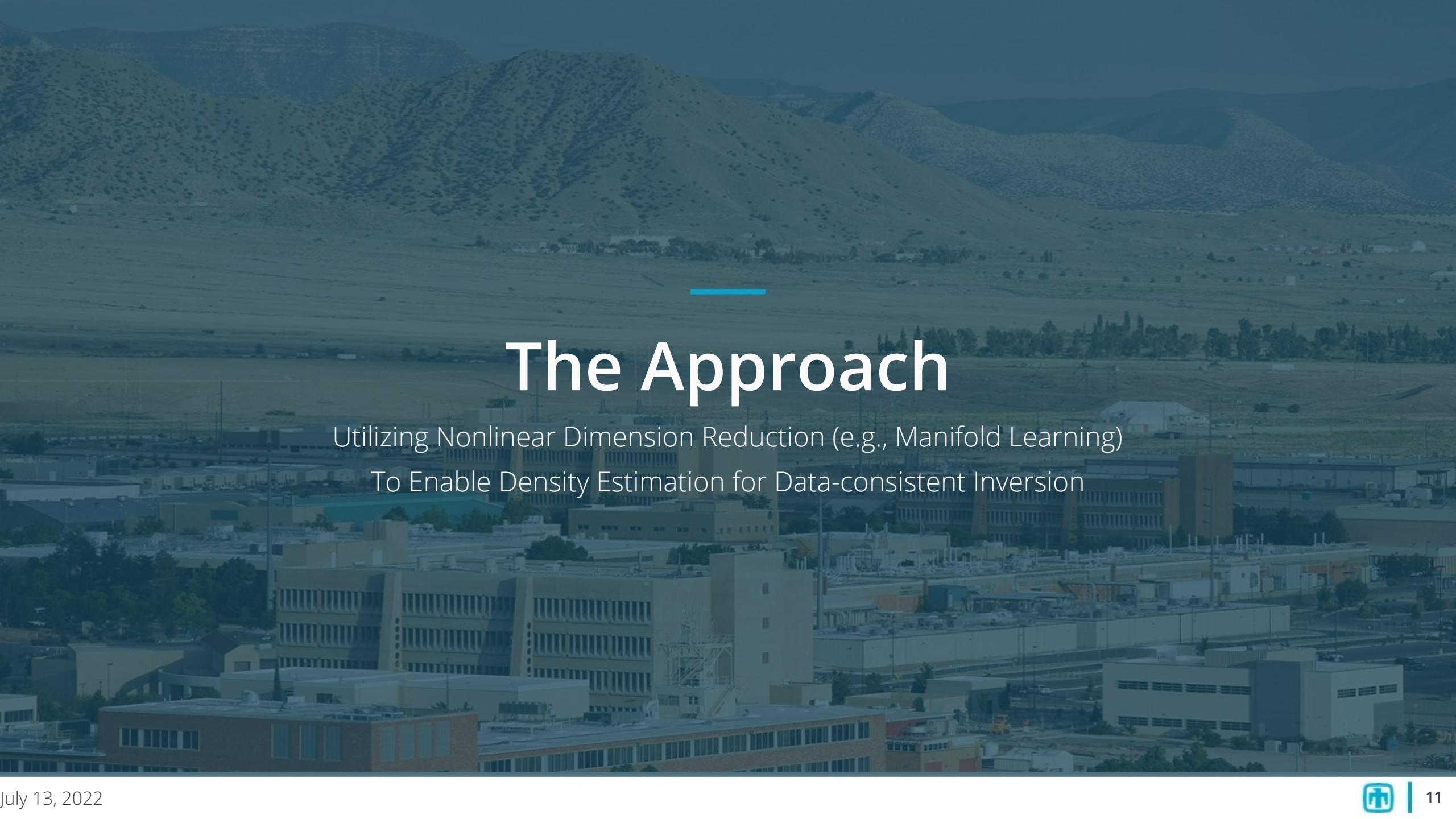
Other benefits:

- Generally requires less model evaluations than hier. bayes
- Provides sanity check of predictability assumption ($E(r) = 1$)
- Density estimation in data space rather than parameter space

Some drawbacks:

- Density estimation in data space difficult when $\dim(D)$ is large

The Approach

A landscape photograph showing a valley with mountains in the background. In the foreground, there is a city with various buildings and industrial structures. The sky is clear and blue.

Utilizing Nonlinear Dimension Reduction (e.g., Manifold Learning)
To Enable Density Estimation for Data-consistent Inversion

Is the data high-dimensional?

The manifold hypothesis states that the dimension of “high-dimensional” data is only superficially large...

- Data lie on a low dimensional manifold embedded in data space D

In many cases of interest, a reasonable assumption!

- Multiple measurements made on physical systems likely to have structured correlation determined by physics laws...

Manifold Hypothesis: Consequences for DCI

Suppose there exists a manifold described by $z \in \mathbb{R}^m, m \ll \dim(D)$,

Let $f: Z \rightarrow D$ with $f(z) = q$,

$f(z)$ is injective (man. hyp.) $\Rightarrow \pi_D(q) = \pi_Z(f^{-1}(q)) \cdot \det|J^T J|^{-1/2}$

$$\pi^{update}(\lambda) = \pi^{init}(\lambda) \cdot \frac{\pi_D^{obs}(Q(\lambda))}{\pi_D^{pred}(Q(\lambda))} = \pi^{init}(\lambda) \cdot \frac{\pi_Z^{obs}(f^{-1} \circ Q(\lambda))}{\pi_Z^{pred}(f^{-1} \circ Q(\lambda))}$$

Can we find a transformation of $f^{-1}: D \rightarrow Z$?

Manifold Hypothesis: Observations about f^{-1}

Goal: find a transformation $f^{-1}: D \rightarrow Z \dots$

- $\dim Z \ll \dim D$
- Density estimation in Z is easier...
- Leverage *predicted* samples to learn manifold (n obs. can be small!)
- Computation of determinant-Jacobian of f^{-1} is not necessary!

$$\pi^{update}(\lambda) = \pi^{init}(\lambda) \cdot \frac{\pi_Z^{obs}(f^{-1} \circ Q(\lambda))}{\pi_Z^{pred}(f^{-1} \circ Q(\lambda))}$$

Lots of Options: (*dimension reduction + density estimation*)

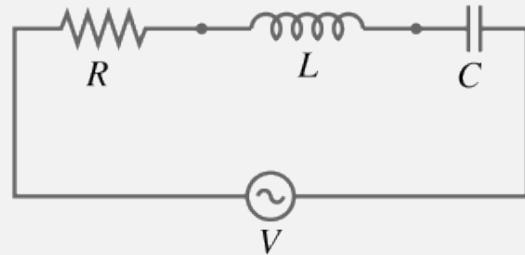
- Linear PCA + KDE
- Isomap (nonlinear) + Normalizing Flows

RLC Example: Time Series Data

Observe the current of a $n = 350$ different *simulated* RLC Circuits...

- At 2 different forcing frequencies
- 50 fixed time points

Parameters
 $\lambda = (R, L, C)$

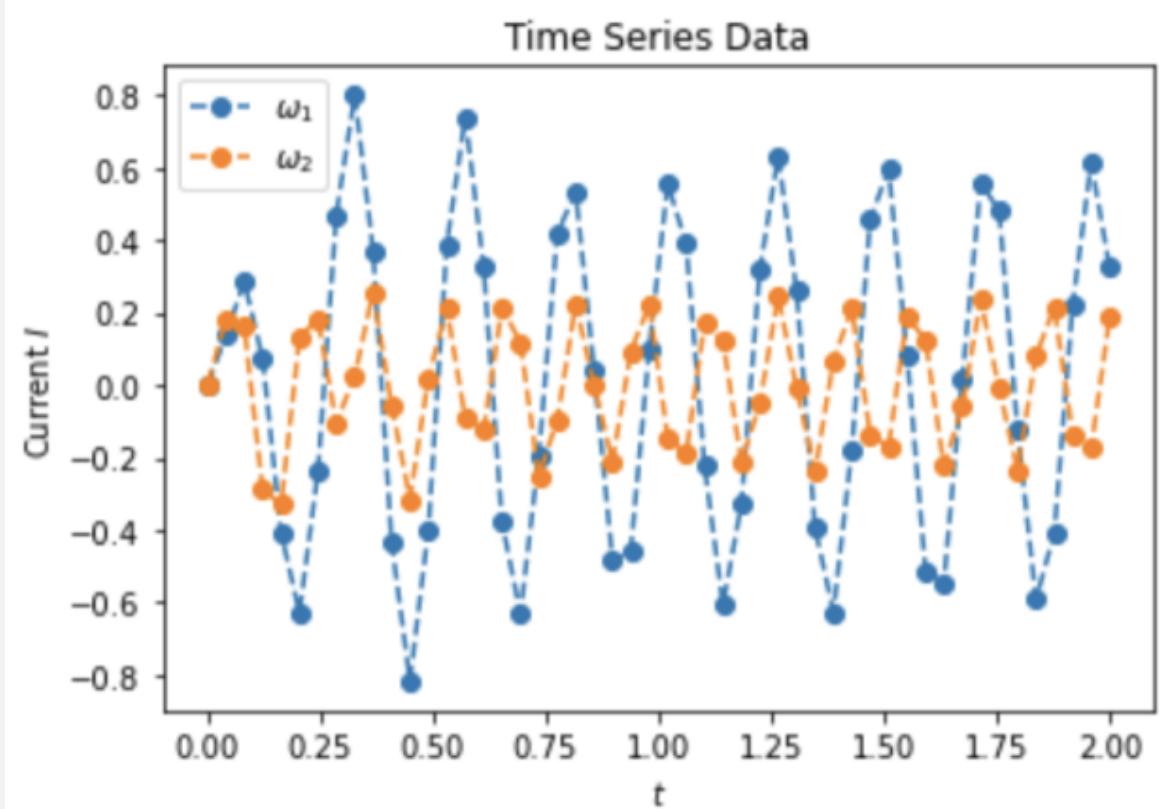


Model

$$L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{1}{C}q = f(t)$$

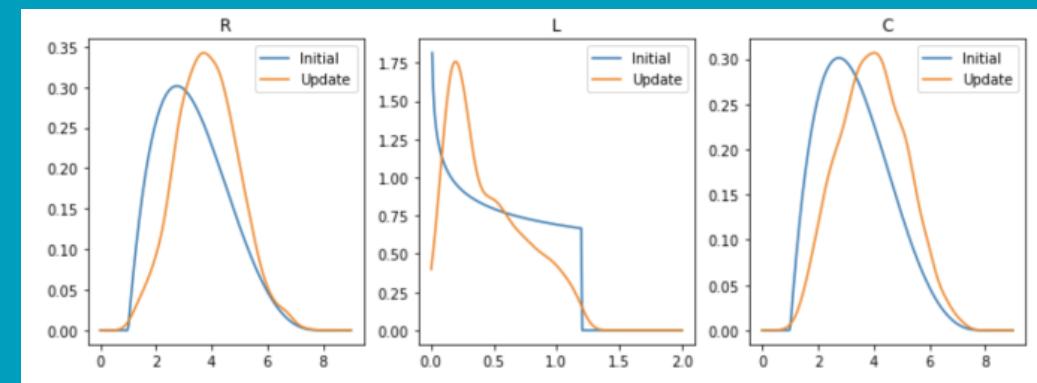
Quantity of Interest
 $Q(\lambda) = (I_1(t), I_2(t))$

Time series of current with
freq. = (ω_1, ω_2)



General Idea with Linear PCA + KDE

1. Sample initial distributions of RLC
2. Compute predicted time series data
3. Perform Linear PCA on predicted data
4. Transform observed data to PC-space
5. Compute KDEs on both observed and predicted PCA data
6. Apply DCI to obtain solution



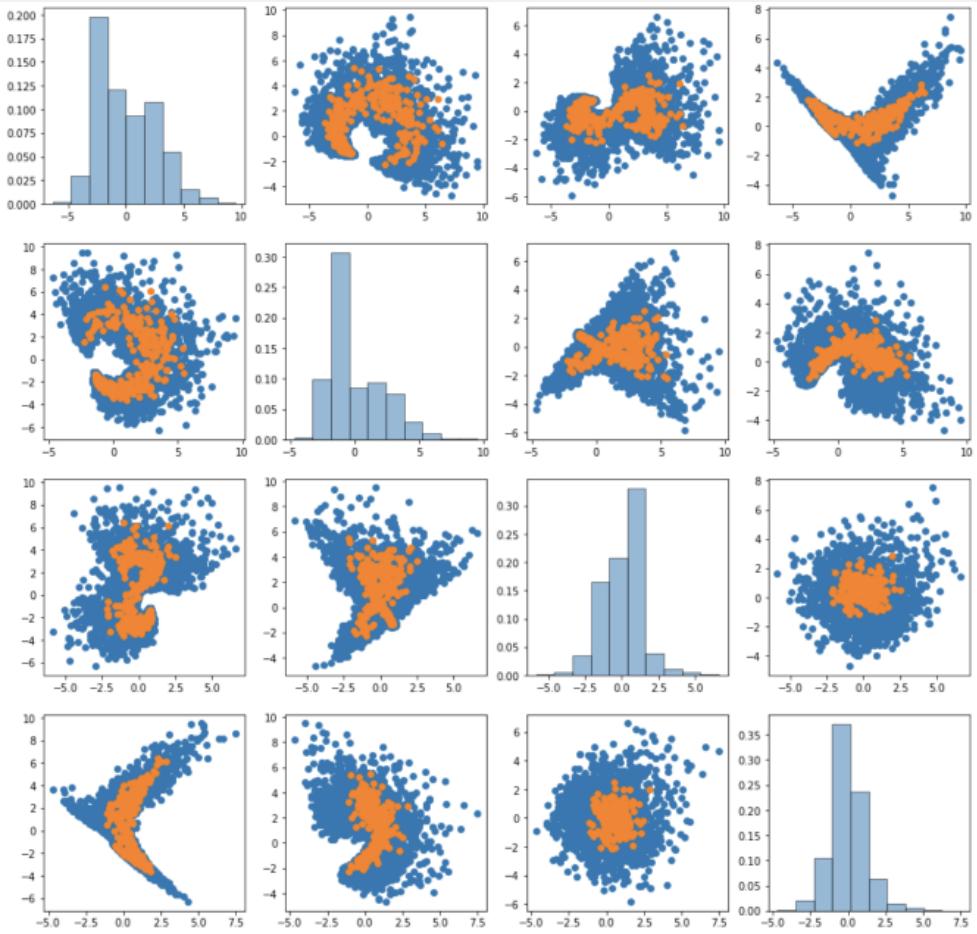
Problems: KDE in Linear PCA space

Data-consistent solution looks nice but...

- *GKDE violates predictability assumption!*
(though the assump. not violated by data)

Issues:

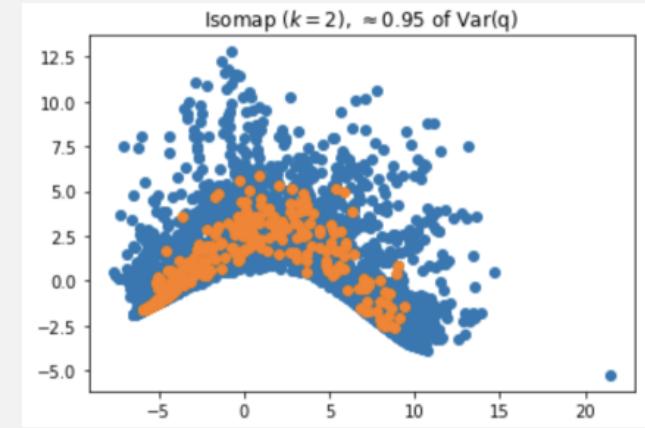
- GKDE struggles with this problem
- Choosing a bandwidth challenging



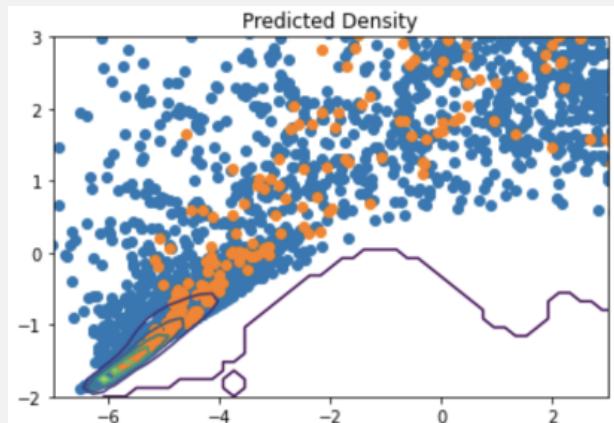
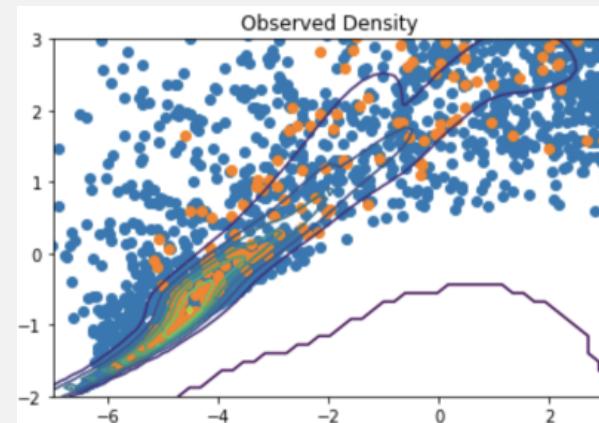
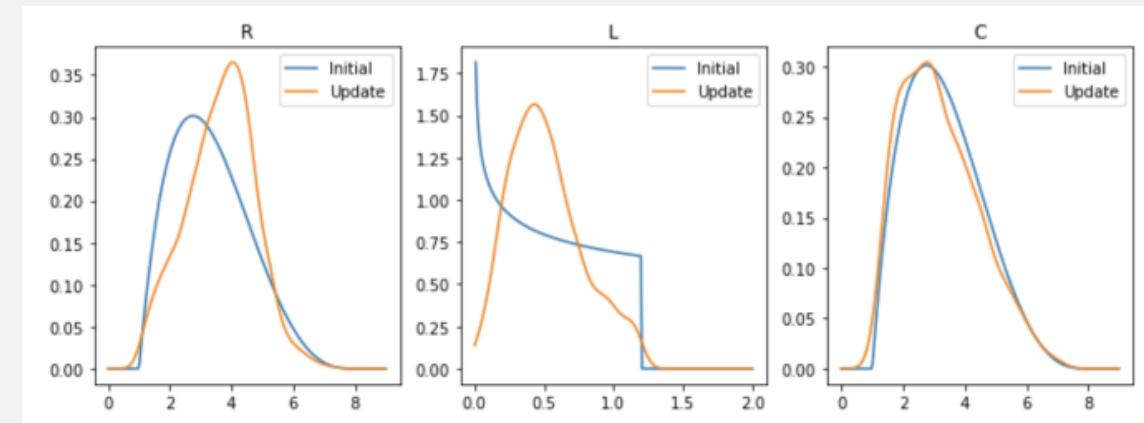
Isomap + Normalizing Flow

Isomap: nonlinear dimension reduction technique to find low-dim. embedding...

Normalizing Flow: neural network approach to density estimation



Similar qualitative results with only two components (95% of Var)!



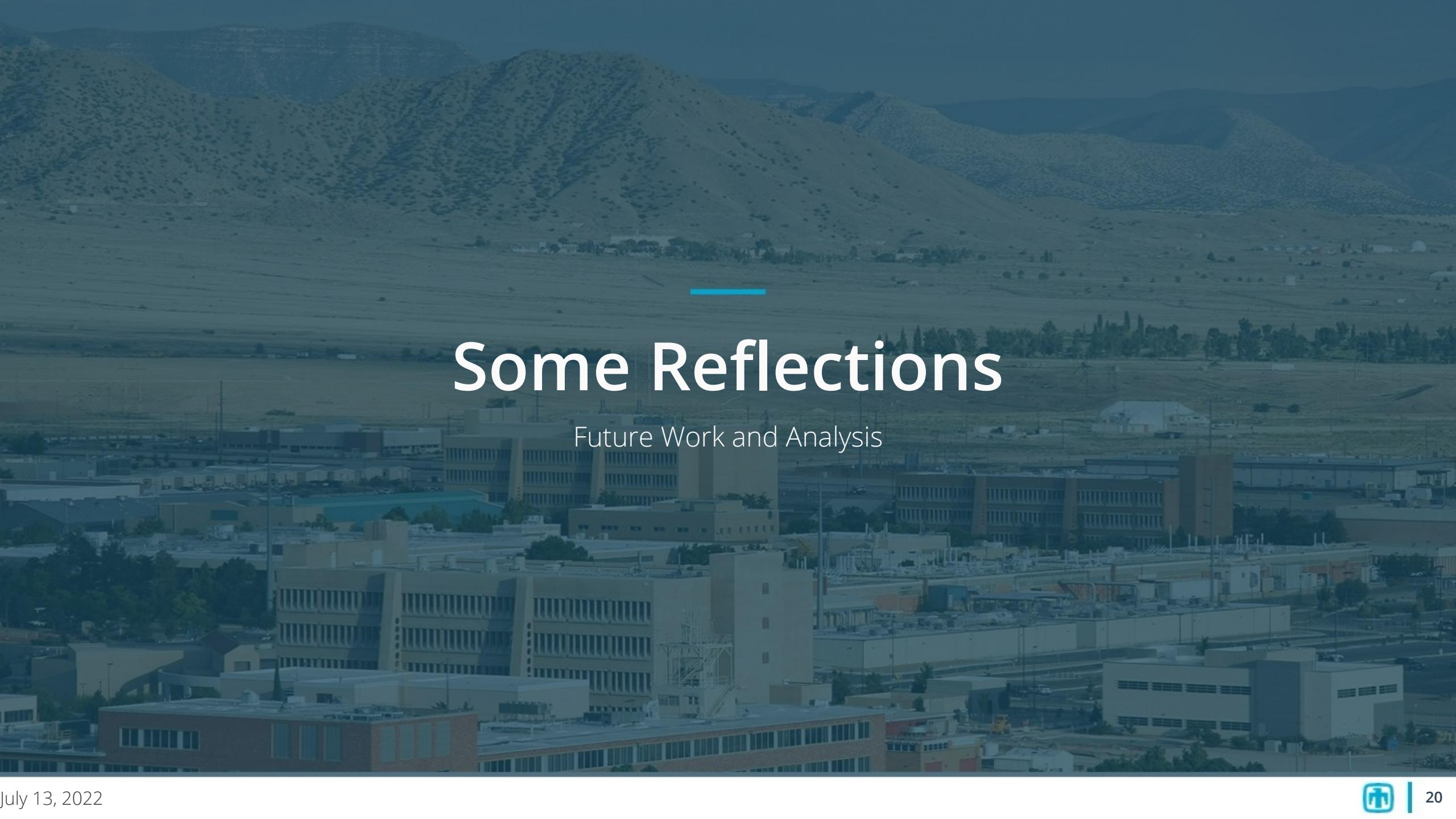
Problems: Isomap + Normalizing Flows

Obtaining reliable density estimates using these ML techniques...

- Requires parameter tuning
- Dependent on the network architecture
- Stochastic optimizers stuck in local minima

Takeaway:

- In theory, any (*dimension reduction + density estimation*) can be used in conjunction with data-consistent inversion to find a solution
- In practice, finding a f^{-1} such that the density estimation problem is consistently tractable is difficult



Some Reflections

Future Work and Analysis

Conclusions

1. Data-consistent Inversion can *efficiently* solve stochastic inverse problems with high-dimensional data ($\text{dim}(D)$ large)...
 - a) *When there exists low-dimensional manifold...*
 - b) *When we can find a reasonable manifold (dimension reduction)...*
 - c) *When we can approximate the density (density estimation) on the manifold...*
2. Many new cutting-edge techniques for tackling b) and c), which should we choose and when?