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The Context

Stochastic Inversion with RLC Circuits
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Typical Inverse Problem

What is the parameter for this component

Goal of a TYDICB' Inverse Problem: given uncertain measurements (epistemicy?

Given a model Q(1) and data {g;}, One Componen
1. Find the best estimate of 1 @

2. Quantify uncertainty in estimate

Inverse

' ictri ' RS rob/em Model
(e.g., using prob. distributions) prc_,?gm pri d/ QCE;[{)E
Typical Solution: Bayesian posterior! Parameters
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Stochastic Inverse Problem

What is the uncertainty in the parameter due

Goal of a Stochastic Inverse Problem: to variability between components (gleatoric)?

Given a model Q(1) and data {g;}, S
easurements
1. Characterize the variability of 4 \

2. Quantify uncertainty of A using
prob. distributions

Inverse Prob/em.} Mode|

1 B Problem
H - I A
i 0-1(2) ll-posed Q(A)

. : : : Parameters
Alt. Solution: Data-consistent inversion! \
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Stochastic Inverse Problem: RLC Circuits Example

Parameters
A= (R,L,C)

Quantity of Interest
Q(A) = (I1(¢), I2())

Time series of current with
freq. = (w,, w2)
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What is the uncertainty in the parameter due
to variability between components (gleatoric)?

Inverse

Problem

I-posed! Q(4)

Problem. J Model

Q')

/\/J |

Alt. Solution: Data-consistent inversion (DCI)!




The Method

Using Data-consistent Inversion to Solve Stochastic Inverse Problems
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Data-consistent Inversion: What is the method?

A measure-theoretic approach... gu)=1
N

Tops(Q(4))

Mypdate (A) = Tipnic (1)

npredict(Q ('1))

Assumption: Predictability assumption

« Given initial assumptions about A, model
Q(A) can predict the data

l[dea of Method: Update initial assumptions by

« Re-weighting initial with ratio of predicted
(push-forward) to observed density
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Data-consistent Inversion: A Consistent Solution

How does it work? Consider RLC Example...

Observed KDE
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Tupdate (A) IS @ consistent solution to the stochastic inverse problem!
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Data-consistent Inversion: Benefits and Drawbacks

Other benefits:

« Generally requires less model evaluations than hier. bayes

* Provides sanity check of predictability assumption (E(r) = 1)

« Density estimation in data space rather than parameter space

Some drawbacks:
« Density estimation in data space difficult when dim(D) is large
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The Approach

Utilizing Nonlinear Dimension Reduction (e.g., Manifold Learning)
To Enable Density Estimation for Data-consistent Inversion



Is the data high-dimensional?

The manifold hypothesis states that the dimension of “high-
dimensional” data is only superficially large...

« Data lie on a low dimensional manifold embedded in data space D

In many cases of interest, a reasonable assumption!

«  Multiple measurements made on physical systems likely to have
structured correlation determined by physics laws...
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Manifold Hypothesis: Consequences for DCI

Suppose there exists a manifold described by z € R™, m « dim(D) ,
Let f:Z - D with f(z) = q,
f(2) is injective (man. hyp.) =  mp(q) =mz(f~1(q)) - det|JT]|~1/2

5 (@A) ng(f1e Q@)

update () — pinit j
T (A) =" (1) - n_gred(f_l 5 Q(/'{))

n.init (ﬂ.) .

pred ( (}l))

Can we find a transformation of f~1:D - Z?
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Manifold Hypothesis: Observations about f~!

Goal: find a transformation f~%:D - Z... pupdate () = inic (). "2 " 2 QD)
* dimZ K dimD

» Density estimation in Z is easier...
« Leverage predicted samples to learn manifold (n obs. can be small!)
« Computation of determinant-Jacobian of f~1 is not necessary!

Lots of Options: (dimension reduction + density estimation)
» Linear PCA + KDE
* Isomap (nonlinear) + Normalizing Flows
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RLC Example: Time Series Data

Observe the current of a n = 350 different simulated RLC Circuits...
At 2 different forcing frequencies Time Series Data
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General Idea with Linear PCA + KDE

1. Sample initial distributions of RLC

Compute predicted time series data

Perform Linear PCA on predicted data

Transform observed data to PC-space

i s N

Compute KDEs on both observed and
predicted PCA data

6. Apply DCI to obtain solution
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Problems: KDE in Linear PCA space

0100 ¢
75

050

Data-consistent solution looks nice but... |3
*  GKDE violates predictability assumption! = siil._ -

(though the assump. not violated by data) s

ISsues:
«  GKDE struggles with this problem

» (Choosing a bandwidth challenging
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Isomap + Normalizing Flow

Isomap: nonlinear dimension reduction
technigue to find low-dim. embedding...

Normalizing Flow: neural network approach to
density estimation

Isomap (k=2), =0.95 of Var(q)

Similar qualitative results with only two components (95% of Var)!

Predicted Density
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Problems: Isomap + Normalizing Flows

Obtaining reliable density estimates using these ML techniques...
» Requires parameter tuning

» Dependent on the network architecture

» Stochastic optimizers stuck in local minima

Takeaway:

» In theory, any (dimension reduction + density estimation) can be used in
conjunction with data-consistent inversion to find a solution

» In practice, finding a f~* such that the density estimation problem is
consistently tractable is difficult
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Some Reflections

Future Work and Analysis
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Conclusions

1. Data-consistent Inversion can efficiently solve stochastic inverse
problems with high-dimensional data (dim(D) large)...
a) When there exists low-dimensional manifold...
b) When we can find a reasonable manifold (dimension reduction)...
c) When we can approximate the density (density estimation) on the manifold...

2. Many new cutting-edge techniques for tackling b) and ¢), which
should we choose and when?
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