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Abstract—The accurate evaluation of performance loss rate 

(PLR) of photovoltaic (PV) systems is crucial to reduce 

investment risks and to further increase the bankability of the 

technology. Until recently, the PLR of fielded PV systems was 

mainly estimated through the statistical extraction of a linear 

trend (de-trending) from a time series of performance 

indicators. However, in real operating systems a lot of 

performance outliers (reflecting to PV module failures, initial 

degradation, shading and soiling) cause variability in the 

performance and may bias the PLR results obtained from linear 

trend techniques. Change-point (CP) methods were thus 

introduced to identify nonlinear trend changes and behaviour. 

The scope of this work is to perform a comparative analysis 

among different CP techniques for estimating the annual PLR 

of eleven different grid-connected PV systems installed in 

Cyprus. Outdoor field measurements over an 8-year period 

(June 2006–June 2014) were used for the analysis. The obtained 

results when applying different CP algorithms to the monthly 

performance ratio time series demonstrated that the extracted 

trend may not always be linear but sometimes can exhibit 

nonlinearities. The application of different CP methods resulted 

to PLR values that differ by up to 0.85% per year (for the same 

number of CPs/segments).   

Keywords—performance loss rate, change-point methods, 

photovoltaics 

I. INTRODUCTION 

The accurate estimation of the performance loss rate 
(PLR), defined as the decrease of system performance over 
time, of photovoltaic (PV) systems is crucial for assessing the 
lifetime output performance, reducing financial risks and 
further increasing the bankability of the technology [1]. PV 
degradation is evidenced at all levels (cell, module, array and 
system) and is attributed to many environmental factors, such 
as temperature, module soiling, humidity, snow, precipitation, 
solar irradiation and to parameters relating to their constituent 
instruments [2]. The various degradation mechanisms impose 

significant stress over the lifetime of a PV system, resulting in 
the reduction of durability and output power production [3]. 

Over the years, various statistical and comparative trend 
extraction methods have been proposed in the literature for 
estimating the PLR (or the degradation rate, RD) of fielded PV 
systems [2], [4]. Such trend extraction methods include the 
ordinary least squares (OLS) method, the classical seasonal 
decomposition (CSD), the Holt-Winters (HW) exponential 
smoothing, the non-parametric filtering method of LOcally 
wEighted Scatterplot Smoothing (LOESS), the year-on-year 
(YoY) comparative technique, the autoregressive integrated 
moving average (ARIMA) and the principal component 
analysis (PCA) [5]. A review paper conducted by Phinikarides 
et al. [2] showed that the PLR estimation was mainly 
influenced by data integrity, PV module technology and the 
applied methodology.   

Another important underlying assumption been made in 
most published studies in the PV reliability field was that the 
consequent trend was linear. However, during actual field 
exposure and operation of PV systems, many performance 
variations (module failures, initial degradation as in the case 
of thin-film technologies, shading and soiling) were observed 
causing nonlinearities that bias the performance loss (or the 
degradation) rate estimation. Recently, change-point (CP) 
algorithms (e.g., Facebook Prophet) were used to identify 
changes in PV performance time series and profiles [1], [6]–
[8]. Such CP methods can identify the nonlinear power losses, 
mitigate the effect of abrupt changes that bias the results and 
finally estimate both the linear and nonlinear PLR (or RD). In 
these cases, the effectiveness of the selected technique 
strongly depends on the modelling capabilities of the method 
for decomposing and modelling the given time series of 
performance indicators and detecting abrupt changes.  

The aim of this work is to perform a comparative analysis 
among common CP techniques for PLR estimation of PV 
systems. The PLR evaluation was performed using different 
nonlinear trend extraction methods applied on the monthly 
performance ratio (PR) time series of eleven fielded PV 
systems in Nicosia, Cyprus. The outdoor field measurements 
were obtained over an 8-year evaluation period (June 2006–
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June 2014). The linear and nonlinear PR trend was extracted 
by detecting and quantifying changes in the variability of time 
series, which, in turn, results in defining different segments of 
the extracted trend. Each segment is then analysed to compute 
the corresponding PLR. 

II. EXPERIMENTAL SETUP 

Field data from eleven grid-connected PV systems of 
approximately 1 𝑘𝑊𝑝  capacity each were used for this 

investigation. The systems are installed at a fixed-tilt angle of 
27.5° facing due South in Nicosia, Cyprus. Modules of the test 
PV systems include monocrystalline silicon (mono-c Si), 
multi-crystalline silicon (multi-c Si), and thin-film 
technologies. Table I lists the main technical characteristics of 
each PV system under investigation. 

The performance of each PV system and the prevailing 
meteorological conditions are recorded according to 
requirements set by the IEC 61724-1 [9] and stored with the 
use of a measurement monitoring platform. The monitoring 
platform comprises of solar irradiance, wind, temperature and 
electrical operation sensors. It records data at every second 
and stores them as 1-, 15-, 30- and 60-minute average 
measurements. The recorded meteorological measurements 
include in-plane irradiance (𝐺I), ambient temperature (𝑇𝑎𝑚𝑏), 
module temperature (𝑇𝑚𝑜𝑑 ), wind speed (𝑆w) and direction 
(𝑎𝑤). The PV electrical data include the array DC current (𝐼𝐴), 
voltage (𝑉𝐴), and power (𝑃𝐴), and AC power to the utility grid. 
Additional yields and performance metrics such as the final 
PV system yield (𝑌𝑓), the reference yield (𝑌𝑟) and the PR were 

also calculated [10]. 

The PV systems and pyranometers were cleaned on a 
seasonal basis and after dust events to minimize soiling 
effects. Systematic recalibration of the sensors was performed 
as specified by the manufacturers. Periodic cross-checks 
against closed by sensors were also conducted to identify 
sensor drifts. 

Over the 8-year evaluation period (June 2006–June 2014), 
different failures and degradation mechanisms occurred 
during the service operation of PV systems. More specifically, 
the BP Solar and Solon PV systems suffered from partial 
shading during the 2nd, 3rd and 4th year of operation [11]. The 
incident logs of Sanyo and Suntechnics PV systems reported 
a failure occurrence due to water ingress in March 2009 and  

TABLE I.  MAIN TECHNICAL CHARACTERISTICS OF THE PV SYSTEMS 

UNDER INVESTIGATION 

Manufacturer Technology 
NSERIES × 
NPARALLEL 

Rated Power 

(𝐤𝐖𝐩) 

Mono-crystalline silicon (mono-c Si) 

Atersa mono-c Si 6 × 1 1.02 

BP Solar mono-c Si (Saturn) 6 × 1 1.11 

Sanyo 
mono-c Si       
(HIT cell) 

5 × 1 1.03 

Suntechnics 
mono-c Si      

(back-contact cell) 
5 × 1 1.00 

Multi-crystalline silicon (multi-c Si) 

Schott Solar 
multi-c Si   (MAIN 

cell) 
6 × 1 1.02 

Schott Solar multi-c Si (EFG) 4 × 1 1.00 

SolarWorld multi-c Si 6 × 1 0.99 

Solon multi-c Si 7 × 1 1.54 

Thin-film 

Würth Solar CIGS 6 × 2 0.90 

First Solar CdTe 3 × 6 1.08 

MHI a-Si (single cell) 2 × 5 1.00 

June of 2009, respectively. Finally, results obtained from 

performance time series analysis of the investigated PV 

systems showed a pronounced loss of performance (i.e., high 

initial degradation) for the First Solar (CdTe) and MHI (a-Si) 

thin-film systems due to the stabilization processes attributed 

to the Staebler-Wronski effect (SWE) [12], [13]. 

III. METHODOLOGY 

The data quality processing methodology was initially 
applied on the acquired 15-minute average field 
measurements to ensure data validity and filter out invalid 
measurements [14]. To avoid introducing bias, a maximum 
threshold of 5% of missing data rate was set. Irradiance 
filtering conditions were then applied to the measurements to 
include only irradiance values between 0 W/m2 and 1300 
W/m2 [15]. The data quality process did not include the 
application of data inference techniques and neither 
temperature/spectral corrections were applied to the data.   

The second step taken was to create the PV datasets of 
each system by aggregating the data into monthly blocks [15]. 
Daily aggregation was not preferred due to larger fluctuations. 
Then, the DC PR time series of the systems under study were 
created from the acquired 𝐺𝐼 and 𝑃𝐴 measurements [10]. The 
PR at the AC side was not chosen as it would represent PV 
system degradation which is not the objective of this analysis. 
Following the creation of the monthly PR time series, an 
outlier filter was applied to remove values outside the three 
standard deviations using the Sigma (σ) rule method [16].  

The final step was to estimate the PLR of the investigated 
systems using different statistical techniques. 

A. Statistical Method and PLR Estimation 

The PLR values were obtained by analysing each PR time 
series using the LOESS method and CP detection techniques. 
The LOESS method extracts the trend from locally weighted 
polynomial fitting [17]. It decomposes the time series into 
seasonal, trend and remainder components by applying a 
LOESS smoother. To estimate the PLR, the OLS method is 
then applied on the smoothed time series. LOESS advantages 
include the robust estimation of the trend and seasonal 
components that are not distorted by outliers and missing 
values, while also the extracted trend shows the trend of 
changes beyond the seasonality [2].   

The LOESS method can also be used for estimating 
nonlinear relationships [17]. In this work, the trend extracted 
by the LOESS method was used as an initial screening for 
identifying CPs within the given time series through visual 
inspection.  

Four different CP approaches were then used to detect 
changes in the slopes of PV trends and estimate the 
linear/nonlinear PLR. In particular, the pruned exact linear 
time (PELT), the Breakpoints (BCP), the Facebook prophet 
(FBP) and the Bayesian estimation of abrupt change, 
seasonality, and trend (BEAST) algorithms were used.  

The PELT algorithm was used to detect multiple CPs in 
the mean of the PR time series [18]. The PELT is based on an 
algorithm for optimal partitioning of data and CPs are detected 
by minimizing the sum of a penalized cost function [19]. The 
PELT algorithm requires an input features the penalty values 
to avoid overfitting (e.g., identifying noise as CPs). In this 
work, the CPs for a range of penalties (CROPS) was selected. 
The minimum and maximum penalty values were set to 0.001 



and log10(n) – where n is the number of months in the PR time 
series. To estimate the significance of the detected CPs found 
using PELT, the small sample hypothesis t-test was used [20]. 

The BCP algorithm detects multiple changes within linear 
regression models [21]. It computes the number and location 
of CPs in regression relationships by minimizing the residual 
sum of squares (RSS) [22]. The approach used in this study 
comprises of an algorithm that tests for simultaneous 
estimation of multiple CPs in time series regression models 
based on the Bellman principle [22]. It is a dynamic 
programming approach, and the main computational effort is 
to compute a triangular RSS matrix with the corresponding 
residual sum of squares for each segment. To determine the 
optimal number of breaks, the Bayesian information criterion 
(BIC) estimator of the number of CPs was used. By post-
processing the BIC estimates for different numbers of CPs, we 
can determine the optimal number of segmentations and hence 
the optimal number of CPs within the time series (which is the 
one with the lowest BIC).  

The BEAST algorithm decomposes the time series into 
three components: abrupt changes, periodic/seasonal changes 
and trends [23]. The BEAST is an ensemble algorithm that 
enables the detection of CPs and nonlinear trend analysis. The 
trend is modeled as a piecewise model, while the seasonal 
signal is approximated as a piecewise harmonic model. Then 
posterior inference of CPs, seasonality and trends is 
performed by using the Bayes theorem assuming an empirical 
distribution for k CPs [23]. In this work, the BEAST 
algorithm was provided only with the period of the cyclic 
component - an integer number that indicates the number of 
observations per cycle (e.g., for complete and monthly 
sampled annual time series, the period of the cyclic/seasonal 
component is set to 12) and the maximum number of allowed 
trend CPs in the time series (which was set to 3). Further 
information about the BEAST calibration process can be 
found in [7]. 

The FBP algorithm is an additive decomposition model, 
which decomposes the time series into trend, seasonality, and 
holidays [24]. A piecewise linear model is by default applied 
for modeling the trend component, while the seasonality is 
modeled as an additive component (like the exponential 
smoothing of HW). The algorithm distributes 25 CPs 
uniformly placed in the first 80% of the time series. Then it 
compares the slopes against a set threshold level to decide 
whether there is a significant CP or not (by capturing 
statistical changes in slopes of the time series). The FBP 
tuning was performed as reported by Theristis et al.  [1] to 
optimally capture the behavior of the PV systems under 
study. Since the investigated PV systems exhibited similar 
seasonal behavior, the FBP seasonality settings (i.e., daily, 
weekly, yearly, custom) were set as “TRUE”, to fit daily, 
weekly and yearly seasonality.  

After the CP algorithms application, the trend was divided 
into different segments (depending on the number of the 
detected CPs) and the OLS method was finally applied to 
estimate the PLR of each segment. 

IV. RESULTS 

A. PLR Using the LOESS Method 

The non-parametric filtering method of the LOESS was 
applied on the constructed monthly PR time series (see Fig. 1) 
to extract the trend of each PV system and estimate the annual 

PLR. By visually inspecting the extracted trend by the LOESS 
method, obvious trend changes can be seen at least for the BP 
Solar and thin-film PV systems. This initial screening 
indicates the presence of nonlinear power loss and the 
existence of CP(s) within the given PR time series. Since the 
extracted trend can exhibit nonlinearities, the application of 
CP algorithms is required for more accurate PLR estimations. 

 

 

Fig. 1. Monthly PR time series and extracted trend (coloured in maroon) 

using the LOESS method for the investigated PV systems over the period 

June 2006-June 2014. The purple, black and red lines indicate the mono-c 

Si, multi-c Si and thin-film PV module technology systems, respectively. 

The PLR results from the LOESS application are 
summarised in Table II. The average PLR for the mono-c Si, 
multi-c Si and thin-film PV systems was -0.72%/year, -
0.93%/year and -2.01%/year, respectively. The PLR 
estimations ranged from -0.60 to -0.78%/year and -0.68 to - 
1.09%/year for the mono-c Si and multi-c Si PV technologies, 
respectively. All crystalline Silicon PV systems exhibited 



TABLE II.  ANNUAL PERFORMANCE LOSS RATE OF PV SYSTEMS 

EVALUATED BY APPLYING THE LOESS METHOD  

System 
Annual PLR (%/year) 

 ± Standard Error 

Atersa mono-c Si -0.78 ± 0.00 

BP Solar mono-c Si -0.60 ± 0.01 

Sanyo mono-c Si -0.74 ± 0.00 

Suntechnics mono-c Si -0.75 ± 0.00 

Schott Solar multi-c Si (MAIN) -0.84 ± 0.00 

Schott Solar multi-c Si (EFG) -0.68 ± 0.00 

SolarWorld multi-c Si  -1.09 ± 0.00 

Solon multi-c Si  -1.09 ± 0.00 

Würth Solar CIGS  -2.52 ± 0.03 

First Solar CdTe  -2.04 ± 0.00 

MHI a-Si -1.46 ± 0.00 

 

annual PLR lower than 1%/year. In contrast, the thin-film 
technologies showed higher annual PLR compared to the 
crystalline silicon systems, ranging from -1.46 to -
2.52%/year. 

Since the seasonal component was extracted from the de-
trended time series, the remainder component was then 
checked for Gaussian white noise (GWN) properties using 
the remainder autocorrelation (ACF) and partial 
autocorrelation function (PACF) plots [13]. The remainder 
ACF and PACF plots of the thin-film technologies' models 
and Atersa mono-c Si have shown evidence that the 
remainder of LOESS exhibited GWN properties because all 
autocorrelation coefficients were within the 95% confidence 
interval bounds. On the other hand, the rest of the systems' 
model remainders failed to reject the null hypothesis of no 
autocorrelation in the model remainders, because one or more 
autocorrelation coefficients (apart from lag 0 which is always 
unity) exceeded the 95% confidence interval bounds. It was 
also evident from the remainder ACF and PACF plots that 
most systems' model remainder had significant 
autocorrelation at the seasonal frequency (lag 12), signifying 
the need for better seasonal adjustment.    

B. PLR Using CP Techniques  

CP algorithms were then applied on the PR time series to 
extract the nonlinear trend (by detecting changes in the slopes 
of PV trends) and estimate the PLR of the test PV arrays.  

The PELT algorithm detected at least one CP for all the 
investigated PV arrays (see Table III). The Sanyo, 
Suntechnics, Schott Solar (MAIN), SolarWorld and Solon 
PV systems exhibited two segments, whereas the Atersa, 
Schott Solar (EFG), Würth Solar, First Solar and MHI 
systems exhibited three segments. The CP that was detected 
after 2 years of operation for the Würth Solar, First Solar and  

TABLE III.  CHANGE-POINTS DETECTED BY THE PELT ALGORITHM 

System 
Number of 

CPs 
Location of      

CPs 

Atersa mono-c Si 2 04/2011, 10/2013 

BP Solar mono-c Si 3 03/2008, 12/2009, 04/2012 

Sanyo mono-c Si 1 04/2008 

Suntechnics mono-c Si 1 04/2008 

Schott Solar multi-c Si 
(MAIN) 

1 02/2011 

Schott Solar multi-c Si 
(EFG) 

2 05/2012, 09/2012 

SolarWorld multi-c Si 1 03/2009 

Solon multi-c Si 1 02/2009 

Würth Solar CIGS 2 04/2008, 03/2012 

First Solar CdTe 2 04/2008, 04/2011 

MHI a-Si 2 11/2008, 12/2011 

MHI systems may be caused due to the initial degradation 

affecting thin-film technologies. Finally, the BP Solar system 

exhibited four segments. For the BP Solar mono-c Si system 

the CPs that were detected during the 2nd and 3rd year may be 

caused due to the partial shading affecting the system during 

the respective years. Similarly, the CP detected during the 

year 2009 for the Solon multi-c Si system may be attributed 

to partial shading affecting the performance of the system. 

Information extracted from the maintenance logs, did not 

report any major issue for the remaining PV systems and 

therefore, the detected CPs may be attributed to an actual 

degradation mechanism (i.e., change in degradation rate). 
The CP results demonstrated that the extracted trend may 

not always be linear but can exhibit nonlinearities. For 
visualisation purposes, the detected CPs by the PELT 
technique for the BP Solar (mono-c Si) and MHI (a-Si) PV 
systems are shown in Fig. 2. The PELT results indicated the 
presence of nonlinear power loss and the existence of CPs in 
the PR time series of these two PV systems, confirming the 
suspicions generated by the initial screening of the LOESS 
trend for trend changes.  

 

 

Fig. 2. Monthly PR time series for the a) BP Solar (mono-c Si) and b) MHI 
(a-Si) PV systems. The solid maroon line indicates the extracted trend by the 

LOESS method, while the detected CPs are depicted by red dashed vertical 

lines.  

The BCP algorithm detected one CP for all the c Si PV 
systems, except for the BP Solar system (see Table IV). Two 
CPs were detected for the BP Solar PV system during the 2nd 
and 3rd year (the respective years that the system suffered from 
partial shading). For the thin-film PV systems (Würth Solar, 
First Solar and MHI), three CPs were detected. For the MHI 
thin-film system, the first two detected CPs (during the years 
2007 and 2008) may indicate the initial degradation of the 
technology. 

The PLR results from the BEAST algorithm application 
are summarised in Table V. A linear power loss was detected  

TABLE IV.  CHANGE-POINTS DETECTED BY THE BCP ALGORITHM 

System 
Number of 

CPs 

Location of  

CPs 

Atersa mono-c Si 1 04/2011 

BP Solar mono-c Si 2 03/2008, 08/2009 

Sanyo mono-c Si 1 04/2008 

Suntechnics mono-c Si 1 04/2008 

Schott Solar multi-c Si 
(MAIN) 

1 02/2011 

Schott Solar multi-c Si 
(EFG) 

1 03/2012 

SolarWorld multi-c Si 1 03/2009 

Solon multi-c Si 1 02/2009 

Würth Solar CIGS 3 04/2008, 04/2010, 04/2012 

First Solar CdTe 3 03/2008, 02/2010, 01/2012  

MHI a-Si 3 10/2007, 12/2008, 12/2011 



TABLE V.  CHANGE-POINTS DETECTED BY THE BEAST ALGORITHM 

System 
Number of 

CPs 
Location of  

CPs 

Atersa mono-c Si 2 09/2011, 10/2013 

BP Solar mono-c Si 2 09/2008, 03/2010 

Sanyo mono-c Si 1 09/2010 

Suntechnics mono-c Si 1 08/2009 

Schott Solar multi-c Si 
(MAIN) 

0 NA 

Schott Solar multi-c Si 
(EFG) 

2 01/2009, 02/2012 

SolarWorld multi-c Si 0 NA 

Solon multi-c Si 2 02/2009, 02/2012 

Würth Solar CIGS 1 07/2012 

First Solar CdTe 1 06/2012 

MHI a-Si 3 09/2008, 11/2009, 12/2011  

 

for the Schott Solar (MAIN) and SolarWorld PV systems. The 
Sanyo and Suntechnics PV systems once again exhibited two 
segments along with the Würth Solar and First Solar systems. 
For the Suntechnics mono-c Si system, the detected CP 
(during August 2009) may be due to the failure occurrence 
affecting the system during June 2009. For the MHI thin-film 
system, three CPs were detected. The detected points after 2 
and 3 years of operation may be attributed to early degradation 
of the thin-film PV technology. For the remaining PV systems 
(Atersa, BP Solar, Schott Solar EFG and Solon) two CPs were 
detected. The maintenance logs reported performance issues 
only for the BP Solar and Solon PV systems. 

The FBP analysis demonstrated a linear trend for the 
Atersa, Schott Solar (MAIN and EFG) and SolarWorld 
systems, while eight CPs were detected for the remaining PV 
systems (see Table VI). A CP in the trends of the Sanyo and 
Suntechnics systems was detected by the FBP due to a 
maintenance event as reported by the maintenance logs. A CP 
was also detected for the thin-film PV systems that may be 
due to an actual degradation mechanism, since the 
maintenance logs did not report any major issues/failures. 
Finally, for the PV systems affected by failures, the FBP 
detected two CPs for the BP Solar mono-c Si system, while a 
CP was detected for the Solon multi-c Si PV system.  

Since the FBP algorithm has already been validated 
against synthetic PV performance datasets and proved to be a 
robust algorithm for estimating the RD of PV systems [1], 
[25], we proceed the analysis with estimating the 
linear/nonlinear PLR by applying the FBP algorithm on the 
given time series data. The annual PLR results from the FBP 
application are summarized in Table VII. By comparing the 
linear PLR estimates of LOESS with FBP, differences of up 
to 0.14% were observed.    

TABLE VI.  CHANGE-POINTS DETECTED BY THE FBP ALGORITHM 

System 
Number of 

CPs 
Location of 

CPs 

Atersa mono-c Si 0 NA 

BP Solar mono-c Si 2 12/2008, 05/2011 

Sanyo mono-c Si 1 07/2009 

Suntechnics mono-c Si 1 04/2009 

Schott Solar multi-c Si 
(MAIN) 

0 NA 

Schott Solar multi-c Si 
(EFG) 

0 NA 

SolarWorld multi-c Si 0 NA 

Solon multi-c Si 1 05/2011 

Würth Solar CIGS 1 06/2011 

First Solar CdTe 1 08/2009 

MHI a-Si 1 04/2010 

TABLE VII.  ANNUAL PERFORMANCE LOSS RATE (%/YEAR) OF PV 

SYSTEMS EVALUATED BY APPLYING THE FBP ALGORITHM WITH 95% 

CONFIDENCE INTERVALS 

System Linear FPB FPB PLR1 FPB PLR2 

Atersa mono-c Si -0.83 ± 0.01 NA NA 

Sanyo mono-c Si NA -1.35 ± 0.01 -0.45 ± 0.01 

Suntechnics mono-c Si NA -1.07 ± 0.00 -0.61 ± 0.00 

Schott Solar multi-c Si 
(MAIN) 

-0.96 ± 0.00 NA NA 

Schott Solar multi-c Si 
(EFG) 

-0.80 ± 0.00 NA NA 

SolarWorld multi-c Si -1.23 ± 0.00 NA NA 

Solon multi-c Si NA -1.21 ± 0.01 -0.90 ± 0.01 

Würth Solar CIGS NA -2.52 ± 0.00 -2.66 ± 0.01 

First Solar CdTe NA -2.80 ± 0.00 -1.99 ± 0.04 

MHI a-Si NA -1.78 ± 0.01 -1.48 ± 0.00 

 

Finally, the PLR of each PV system was estimated using 
the other CP methods. The estimated PLR values differ by up 
to 0.85% per year (for the same number of segments/CPs) 
depending on the selection of the applied method. The results 
indicate that by applying CP algorithms to the monthly PR 
time series, the extracted trend may not always be linear but 
can exhibit nonlinearities that need to be accounted, especially 
for thin-film technologies. Furthermore, different number and 
location of CPs were detected depending on the applied 
technique, indicating that the nonlinear PLR estimation is 
methodology dependent. A comparative analysis is thus 
required using synthetic PV performance datasets with known 
degradation behaviour and emulated fault conditions to derive 
the most accurate method for degradation studies.  

It is worth noting here that the linear/nonlinear PLR 
estimated value directly affects the project’s economics. Thus, 
the development of more sophisticated models to estimate the 
PLR of fielded PV systems is required to reduce financial 
risks. As recently stated in [26], the PLR is the third most 
important factor influencing the levelized cost of energy 
(LCOE), after the discount rate and capital cost. 

V. CONCLUSIONS 

In this paper, the performance loss rates of different 
technology PV systems were estimated using the LOESS and 
CP methods, after 8 years of outdoor operation. The 
application of LOESS resulted in an average PLR of -
0.72%/year, -0.93%/year and -2.01%/year for the mono-c Si, 
multi-c Si and thin-film PV systems, respectively. Visual 
inspection of the trend extracted by the LOESS method 
provided initial insights for the potential presence of CPs 
within the investigated time series.   

The application of CP algorithms proved to be an effective 
statistical technique for identifying nonlinear power loss in PV 
systems. The different CP algorithms could detect changes in 
the slopes of PV trends. However, different number and 
location of CPs were detected depending on the applied 
technique.   The detected CPs may be attributed to failures 
affecting the PV systems, maintenance events or actual 
degradation mechanisms. The PLR values obtained over the 
8-year period differ by up to 0.85% per year (for the same 
number of segments/CPs) depending on the applied method. 
This indicates the methodology dependency of the nonlinear 
PLR estimates and the need for more sophisticated models to 
estimate accurately the PLR of fielded PV systems, thus 
reducing financial risks. Future work will focus on comparing 
the CP algorithms for PLR estimates using synthetic PV 
performance datasets with known degradation behaviour and 



emulated fault conditions. Furthermore, future investigation 
will focus on extracting the PV performance trend and 
combining the seasonal trend decomposition with LOESS for 
estimating nonlinear relationships and PLR. 
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