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Abstract—The accurate evaluation of performance loss rate
(PLR) of photovoltaic (PV) systems is crucial to reduce
investment risks and to further increase the bankability of the
technology. Until recently, the PLR of fielded PV systems was
mainly estimated through the statistical extraction of a linear
trend (de-trending) from a time series of performance
indicators. However, in real operating systems a lot of
performance outliers (reflecting to PV module failures, initial
degradation, shading and soiling) cause variability in the
performance and may bias the PLR results obtained from linear
trend techniques. Change-point (CP) methods were thus
introduced to identify nonlinear trend changes and behaviour.
The scope of this work is to perform a comparative analysis
among different CP techniques for estimating the annual PLR
of eleven different grid-connected PV systems installed in
Cyprus. Outdoor field measurements over an 8-year period
(June 2006—June 2014) were used for the analysis. The obtained
results when applying different CP algorithms to the monthly
performance ratio time series demonstrated that the extracted
trend may not always be linear but sometimes can exhibit
nonlinearities. The application of different CP methods resulted
to PLR values that differ by up to 0.85% per year (for the same
number of CPs/segments).

Keywords—performance loss rate, change-point methods,
Photovoltaics

1. INTRODUCTION

The accurate estimation of the performance loss rate
(PLR), defined as the decrease of system performance over
time, of photovoltaic (PV) systems is crucial for assessing the
lifetime output performance, reducing financial risks and
further increasing the bankability of the technology [1]. PV
degradation is evidenced at all levels (cell, module, array and
system) and is attributed to many environmental factors, such
as temperature, module soiling, humidity, snow, precipitation,
solar irradiation and to parameters relating to their constituent
instruments [2]. The various degradation mechanisms impose
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significant stress over the lifetime of a PV system, resulting in
the reduction of durability and output power production [3].

Over the years, various statistical and comparative trend
extraction methods have been proposed in the literature for
estimating the PLR (or the degradation rate, Rp) of fielded PV
systems [2], [4]. Such trend extraction methods include the
ordinary least squares (OLS) method, the classical seasonal
decomposition (CSD), the Holt-Winters (HW) exponential
smoothing, the non-parametric filtering method of LOcally
wEighted Scatterplot Smoothing (LOESS), the year-on-year
(YoY) comparative technique, the autoregressive integrated
moving average (ARIMA) and the principal component
analysis (PCA) [5]. A review paper conducted by Phinikarides
et al. [2] showed that the PLR estimation was mainly
influenced by data integrity, PV module technology and the
applied methodology.

Another important underlying assumption been made in
most published studies in the PV reliability field was that the
consequent trend was linear. However, during actual field
exposure and operation of PV systems, many performance
variations (module failures, initial degradation as in the case
of thin-film technologies, shading and soiling) were observed
causing nonlinearities that bias the performance loss (or the
degradation) rate estimation. Recently, change-point (CP)
algorithms (e.g., Facebook Prophet) were used to identify
changes in PV performance time series and profiles [1], [6]-
[8]. Such CP methods can identify the nonlinear power losses,
mitigate the effect of abrupt changes that bias the results and
finally estimate both the linear and nonlinear PLR (or Rp). In
these cases, the effectiveness of the selected technique
strongly depends on the modelling capabilities of the method
for decomposing and modelling the given time series of
performance indicators and detecting abrupt changes.

The aim of this work is to perform a comparative analysis
among common CP techniques for PLR estimation of PV
systems. The PLR evaluation was performed using different
nonlinear trend extraction methods applied on the monthly
performance ratio (PR) time series of eleven fielded PV
systems in Nicosia, Cyprus. The outdoor field measurements
were obtained over an 8-year evaluation period (June 2006—
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June 2014). The linear and nonlinear PR trend was extracted
by detecting and quantifying changes in the variability of time
series, which, in turn, results in defining different segments of
the extracted trend. Each segment is then analysed to compute
the corresponding PLR.

II. EXPERIMENTAL SETUP

Field data from eleven grid-connected PV systems of
approximately 1 kW, capacity each were used for this
investigation. The systems are installed at a fixed-tilt angle of
27.5° facing due South in Nicosia, Cyprus. Modules of the test
PV systems include monocrystalline silicon (mono-c Si),
multi-crystalline  silicon (multi-c Si), and thin-film
technologies. Table I lists the main technical characteristics of
each PV system under investigation.

The performance of each PV system and the prevailing
meteorological conditions are recorded according to
requirements set by the IEC 61724-1 [9] and stored with the
use of a measurement monitoring platform. The monitoring
platform comprises of solar irradiance, wind, temperature and
electrical operation sensors. It records data at every second
and stores them as 1-, 15-, 30- and 60-minute average
measurements. The recorded meteorological measurements
include in-plane irradiance (Gj), ambient temperature (Typp),
module temperature (Tyy,,4), Wind speed (S,,) and direction
(ay,)- The PV electrical data include the array DC current (1),
voltage (V4), and power (P4), and AC power to the utility grid.
Additional yields and performance metrics such as the final
PV system yield (Y;), the reference yield (¥;.) and the PR were
also calculated [10].

The PV systems and pyranometers were cleaned on a
seasonal basis and after dust events to minimize soiling
effects. Systematic recalibration of the sensors was performed
as specified by the manufacturers. Periodic cross-checks
against closed by sensors were also conducted to identify
sensor drifts.

Over the 8-year evaluation period (June 2006—June 2014),
different failures and degradation mechanisms occurred
during the service operation of PV systems. More specifically,
the BP Solar and Solon PV systems suffered from partial
shading during the 2", 3 and 4" year of operation [11]. The
incident logs of Sanyo and Suntechnics PV systems reported
a failure occurrence due to water ingress in March 2009 and

TABLE 1. MAIN TECHNICAL CHARACTERISTICS OF THE PV SYSTEMS
UNDER INVESTIGATION
Manufacturer Technology lil\lp Sf:iii; Rat(e]iivgj)wer
Mono-crystalline silicon (mono-c Si)
Atersa mono-c Si 6x1 1.02
BP Solar mono-c Si (Saturn) 6x1 1.11
mono-c Si
Sanyo (HIT cell) Sx1 1.03
. mono-c Si
Suntechnics (back-contact cell) 5x1 1.00
Multi-cry silicon (multi-c Si)
Schott Solar m““l‘ccse‘”)(MAIN 6x1 1.02
Schott Solar multi-c Si (EFG) 4x1 1.00
SolarWorld multi-c Si 6x1 0.99
Solon multi-c Si 7 x1 1.54
Thin-film
Wiirth Solar CIGS 6x2 0.90
First Solar CdTe 3x6 1.08
MHI a-Si (single cell) 2x5 1.00

June of 2009, respectively. Finally, results obtained from
performance time series analysis of the investigated PV
systems showed a pronounced loss of performance (i.e., high
initial degradation) for the First Solar (CdTe) and MHI (a-Si)
thin-film systems due to the stabilization processes attributed
to the Staebler-Wronski effect (SWE) [12], [13].

III. METHODOLOGY

The data quality processing methodology was initially
applied on the acquired 15-minute average field
measurements to ensure data validity and filter out invalid
measurements [14]. To avoid introducing bias, a maximum
threshold of 5% of missing data rate was set. Irradiance
filtering conditions were then applied to the measurements to
include only irradiance values between 0 W/m? and 1300
W/m? [15]. The data quality process did not include the
application of data inference techniques and neither
temperature/spectral corrections were applied to the data.

The second step taken was to create the PV datasets of
each system by aggregating the data into monthly blocks [15].
Daily aggregation was not preferred due to larger fluctuations.
Then, the DC PR time series of the systems under study were
created from the acquired G; and P, measurements [10]. The
PR at the AC side was not chosen as it would represent PV
system degradation which is not the objective of this analysis.
Following the creation of the monthly PR time series, an
outlier filter was applied to remove values outside the three
standard deviations using the Sigma (o) rule method [16].

The final step was to estimate the PLR of the investigated
systems using different statistical techniques.

A. Statistical Method and PLR Estimation

The PLR values were obtained by analysing each PR time
series using the LOESS method and CP detection techniques.
The LOESS method extracts the trend from locally weighted
polynomial fitting [17]. It decomposes the time series into
seasonal, trend and remainder components by applying a
LOESS smoother. To estimate the PLR, the OLS method is
then applied on the smoothed time series. LOESS advantages
include the robust estimation of the trend and seasonal
components that are not distorted by outliers and missing
values, while also the extracted trend shows the trend of
changes beyond the seasonality [2].

The LOESS method can also be used for estimating
nonlinear relationships [17]. In this work, the trend extracted
by the LOESS method was used as an initial screening for
identifying CPs within the given time series through visual
inspection.

Four different CP approaches were then used to detect
changes in the slopes of PV trends and estimate the
linear/nonlinear PLR. In particular, the pruned exact linear
time (PELT), the Breakpoints (BCP), the Facebook prophet
(FBP) and the Bayesian estimation of abrupt change,
seasonality, and trend (BEAST) algorithms were used.

The PELT algorithm was used to detect multiple CPs in
the mean of the PR time series [18]. The PELT is based on an
algorithm for optimal partitioning of data and CPs are detected
by minimizing the sum of a penalized cost function [19]. The
PELT algorithm requires an input features the penalty values
to avoid overfitting (e.g., identifying noise as CPs). In this
work, the CPs for a range of penalties (CROPS) was selected.
The minimum and maximum penalty values were set to 0.001



and logio(n) — where n is the number of months in the PR time
series. To estimate the significance of the detected CPs found
using PELT, the small sample hypothesis t-test was used [20].

The BCP algorithm detects multiple changes within linear
regression models [21]. It computes the number and location
of CPs in regression relationships by minimizing the residual
sum of squares (RSS) [22]. The approach used in this study
comprises of an algorithm that tests for simultaneous
estimation of multiple CPs in time series regression models
based on the Bellman principle [22]. It is a dynamic
programming approach, and the main computational effort is
to compute a triangular RSS matrix with the corresponding
residual sum of squares for each segment. To determine the
optimal number of breaks, the Bayesian information criterion
(BIC) estimator of the number of CPs was used. By post-
processing the BIC estimates for different numbers of CPs, we
can determine the optimal number of segmentations and hence
the optimal number of CPs within the time series (which is the
one with the lowest BIC).

The BEAST algorithm decomposes the time series into
three components: abrupt changes, periodic/seasonal changes
and trends [23]. The BEAST is an ensemble algorithm that
enables the detection of CPs and nonlinear trend analysis. The
trend is modeled as a piecewise model, while the seasonal
signal is approximated as a piecewise harmonic model. Then
posterior inference of CPs, seasonality and trends is
performed by using the Bayes theorem assuming an empirical
distribution for k CPs [23]. In this work, the BEAST
algorithm was provided only with the period of the cyclic
component - an integer number that indicates the number of
observations per cycle (e.g., for complete and monthly
sampled annual time series, the period of the cyclic/seasonal
component is set to 12) and the maximum number of allowed
trend CPs in the time series (which was set to 3). Further
information about the BEAST calibration process can be
found in [7].

The FBP algorithm is an additive decomposition model,
which decomposes the time series into trend, seasonality, and
holidays [24]. A piecewise linear model is by default applied
for modeling the trend component, while the seasonality is
modeled as an additive component (like the exponential
smoothing of HW). The algorithm distributes 25 CPs
uniformly placed in the first 80% of the time series. Then it
compares the slopes against a set threshold level to decide
whether there is a significant CP or not (by capturing
statistical changes in slopes of the time series). The FBP
tuning was performed as reported by Theristis et al. [1] to
optimally capture the behavior of the PV systems under
study. Since the investigated PV systems exhibited similar
seasonal behavior, the FBP seasonality settings (i.e., daily,
weekly, yearly, custom) were set as “TRUE”, to fit daily,
weekly and yearly seasonality.

After the CP algorithms application, the trend was divided
into different segments (depending on the number of the
detected CPs) and the OLS method was finally applied to
estimate the PLR of each segment.

IV. RESULTS

A. PLR Using the LOESS Method

The non-parametric filtering method of the LOESS was
applied on the constructed monthly PR time series (see Fig. 1)
to extract the trend of each PV system and estimate the annual

PLR. By visually inspecting the extracted trend by the LOESS
method, obvious trend changes can be seen at least for the BP
Solar and thin-film PV systems. This initial screening
indicates the presence of nonlinear power loss and the
existence of CP(s) within the given PR time series. Since the
extracted trend can exhibit nonlinearities, the application of
CP algorithms is required for more accurate PLR estimations.
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Fig. 1. Monthly PR time series and extracted trend (coloured in maroon)
using the LOESS method for the investigated PV systems over the period
June 2006-June 2014. The purple, black and red lines indicate the mono-c
Si, multi-c Si and thin-film PV module technology systems, respectively.

The PLR results from the LOESS application are
summarised in Table II. The average PLR for the mono-c Si,
multi-c Si and thin-film PV systems was -0.72%/year, -
0.93%/year and -2.01%/year, respectively. The PLR
estimations ranged from -0.60 to -0.78%/year and -0.68 to -
1.09%/year for the mono-c Si and multi-c Si PV technologies,
respectively. All crystalline Silicon PV systems exhibited



TABLE II. ANNUAL PERFORMANCE LOSS RATE OF PV SYSTEMS

EVALUATED BY APPLYING THE LOESS METHOD
Annual PLR (%/year
System + Standard( Erilor )

Atersa mono-c Si -0.78 £ 0.00
BP Solar mono-c¢ Si -0.60 +0.01
Sanyo mono-c Si -0.74 +£0.00
Suntechnics mono-c Si -0.75 +0.00
Schott Solar multi-c Si (MAIN) -0.84 +0.00
Schott Solar multi-c Si (EFG) -0.68 + 0.00
SolarWorld multi-c Si -1.09 +0.00
Solon multi-c Si -1.09 + 0.00
Wiirth Solar CIGS -2.52+0.03
First Solar CdTe -2.04 +0.00
MHI a-Si -1.46 £0.00

annual PLR lower than 1%/year. In contrast, the thin-film
technologies showed higher annual PLR compared to the
crystalline silicon systems, ranging from -1.46 to -
2.52%/year.

Since the seasonal component was extracted from the de-
trended time series, the remainder component was then
checked for Gaussian white noise (GWN) properties using
the remainder autocorrelation (ACF) and partial
autocorrelation function (PACF) plots [13]. The remainder
ACF and PACF plots of the thin-film technologies' models
and Atersa mono-c Si have shown evidence that the
remainder of LOESS exhibited GWN properties because all
autocorrelation coefficients were within the 95% confidence
interval bounds. On the other hand, the rest of the systems'
model remainders failed to reject the null hypothesis of no
autocorrelation in the model remainders, because one or more
autocorrelation coefficients (apart from lag 0 which is always
unity) exceeded the 95% confidence interval bounds. It was
also evident from the remainder ACF and PACF plots that
most  systems' model remainder had significant
autocorrelation at the seasonal frequency (lag 12), signifying
the need for better seasonal adjustment.

B. PLR Using CP Techniques

CP algorithms were then applied on the PR time series to
extract the nonlinear trend (by detecting changes in the slopes
of PV trends) and estimate the PLR of the test PV arrays.

The PELT algorithm detected at least one CP for all the
investigated PV arrays (see Table III). The Sanyo,
Suntechnics, Schott Solar (MAIN), SolarWorld and Solon
PV systems exhibited two segments, whereas the Atersa,
Schott Solar (EFG), Wiirth Solar, First Solar and MHI
systems exhibited three segments. The CP that was detected
after 2 years of operation for the Wiirth Solar, First Solar and

TABLE IIIL CHANGE-POINTS DETECTED BY THE PELT ALGORITHM
System Number of Location of
CPs CPs
Atersa mono-c Si 2 04/2011, 10/2013
BP Solar mono-c Si 3 03/2008, 12/2009, 04/2012
Sanyo mono-c Si 1 04/2008
Suntechnics mono-c Si 1 04/2008
Schott Solar multi-c Si
(MAIN) 1 02/2011
Schott Solar multi-c Si
(EFG) 2 05/2012, 09/2012
SolarWorld multi-c Si 1 03/2009
Solon multi-¢ Si 1 02/2009
Wiirth Solar CIGS 2 04/2008, 03/2012
First Solar CdTe 2 04/2008, 04/2011
MHI a-Si 2 11/2008, 12/2011

MHI systems may be caused due to the initial degradation
affecting thin-film technologies. Finally, the BP Solar system
exhibited four segments. For the BP Solar mono-c Si system
the CPs that were detected during the 2" and 3™ year may be
caused due to the partial shading affecting the system during
the respective years. Similarly, the CP detected during the
year 2009 for the Solon multi-c Si system may be attributed
to partial shading affecting the performance of the system.
Information extracted from the maintenance logs, did not
report any major issue for the remaining PV systems and
therefore, the detected CPs may be attributed to an actual
degradation mechanism (i.e., change in degradation rate).

The CP results demonstrated that the extracted trend may
not always be linear but can exhibit nonlinearities. For
visualisation purposes, the detected CPs by the PELT
technique for the BP Solar (mono-c Si) and MHI (a-Si) PV
systems are shown in Fig. 2. The PELT results indicated the
presence of nonlinear power loss and the existence of CPs in
the PR time series of these two PV systems, confirming the
suspicions generated by the initial screening of the LOESS
trend for trend changes.
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Fig. 2. Monthly PR time series for the a) BP Solar (mono-c Si) and b) MHI
(a-Si) PV systems. The solid maroon line indicates the extracted trend by the
LOESS method, while the detected CPs are depicted by red dashed vertical
lines.

The BCP algorithm detected one CP for all the ¢ Si PV
systems, except for the BP Solar system (see Table IV). Two
CPs were detected for the BP Solar PV system during the 2™
and 3" year (the respective years that the system suffered from
partial shading). For the thin-film PV systems (Wiirth Solar,
First Solar and MHI), three CPs were detected. For the MHI
thin-film system, the first two detected CPs (during the years
2007 and 2008) may indicate the initial degradation of the
technology.

The PLR results from the BEAST algorithm application
are summarised in Table V. A linear power loss was detected

TABLE IV. CHANGE-POINTS DETECTED BY THE BCP ALGORITHM
Svstem Number of Location of
Y CPs CPs
Atersa mono-¢ Si 1 04/2011
BP Solar mono-c Si 03/2008, 08/2009
Sanyo mono-c Si 1 04/2008
Suntechnics mono-c Si 1 04/2008
Schott Solar multi-c Si
(MAIN) 1 02/2011
Schott Solar multi-c Si
(EFG) 1 03/2012
SolarWorld multi-c Si 1 03/2009
Solon multi-¢ Si 1 02/2009
Wiirth Solar CIGS 3 04/2008, 04/2010, 04/2012
First Solar CdTe 3 03/2008, 02/2010, 01/2012
MHI a-Si 3 10/2007, 12/2008, 12/2011




TABLE V. CHANGE-POINTS DETECTED BY THE BEAST ALGORITHM
System Number of Location of
CPs CPs
Atersa mono-c Si 2 09/2011, 10/2013
BP Solar mono-c Si 2 09/2008, 03/2010
Sanyo mono-c Si 1 09/2010
Suntechnics mono-c Si 1 08/2009
Schott Solar multi-c Si
(MAIN) 0 NA
Schott Solar multi-c Si
(EFG) 2 01/2009, 02/2012
SolarWorld multi-c Si 0 NA
Solon multi-c Si 2 02/2009, 02/2012
Wiirth Solar CIGS 1 07/2012
First Solar CdTe 1 06/2012
MHI a-Si 3 09/2008, 11/2009, 12/2011

for the Schott Solar (MAIN) and SolarWorld PV systems. The
Sanyo and Suntechnics PV systems once again exhibited two
segments along with the Wiirth Solar and First Solar systems.
For the Suntechnics mono-c Si system, the detected CP
(during August 2009) may be due to the failure occurrence
affecting the system during June 2009. For the MHI thin-film
system, three CPs were detected. The detected points after 2
and 3 years of operation may be attributed to early degradation
of the thin-film PV technology. For the remaining PV systems
(Atersa, BP Solar, Schott Solar EFG and Solon) two CPs were
detected. The maintenance logs reported performance issues
only for the BP Solar and Solon PV systems.

The FBP analysis demonstrated a linear trend for the
Atersa, Schott Solar (MAIN and EFG) and SolarWorld
systems, while eight CPs were detected for the remaining PV
systems (see Table VI). A CP in the trends of the Sanyo and
Suntechnics systems was detected by the FBP due to a
maintenance event as reported by the maintenance logs. A CP
was also detected for the thin-film PV systems that may be
due to an actual degradation mechanism, since the
maintenance logs did not report any major issues/failures.
Finally, for the PV systems affected by failures, the FBP
detected two CPs for the BP Solar mono-c Si system, while a
CP was detected for the Solon multi-c Si PV system.

Since the FBP algorithm has already been validated
against synthetic PV performance datasets and proved to be a
robust algorithm for estimating the Rp of PV systems [1],
[25], we proceed the analysis with estimating the
linear/nonlinear PLR by applying the FBP algorithm on the
given time series data. The annual PLR results from the FBP
application are summarized in Table VII. By comparing the
linear PLR estimates of LOESS with FBP, differences of up
to 0.14% were observed.

TABLE VI CHANGE-POINTS DETECTED BY THE FBP ALGORITHM
System Number of Location of
CPs CPs
Atersa mono-c Si 0 NA
BP Solar mono-c Si 12/2008, 05/2011
Sanyo mono-c Si 1 07/2009
Suntechnics mono-c Si 1 04/2009
Schott Solar multi-c Si
(MAIN) 0 NA
Schott Solar multi-c Si
(EFG) 0 NA
SolarWorld multi-c Si 0 NA
Solon multi-¢ Si 1 05/2011
Wiirth Solar CIGS 1 06/2011
First Solar CdTe 1 08/2009
MHI a-Si 1 04/2010

TABLE VII.  ANNUAL PERFORMANCE LOSS RATE (%/YEAR) OF PV
SYSTEMS EVALUATED BY APPLYING THE FBP ALGORITHM WITH 95%
CONFIDENCE INTERVALS

System Linear FPB FPB PLR, FPB PLR:
Atersa mono-c Si -0.83 +£0.01 NA NA
Sanyo mono-c Si NA -1.35+0.01 -0.45+0.01
Suntechnics mono-c Si NA -1.07 £ 0.00 -0.61 +£0.00
Schott Solar multi-c Si
(MAIN) -0.96 +0.00 NA NA
Schott Solar multi-c Si
(EFG) -0.80+0.00 NA NA
SolarWorld multi-¢ Si -1.23+0.00 NA NA
Solon multi-c Si NA -1.21+0.01 -0.90 +£0.01
Wiirth Solar CIGS NA -2.52+£0.00 -2.66+0.01
First Solar CdTe NA -2.80 = 0.00 -1.99 +£0.04
MHI a-Si NA -1.78 £0.01 -1.48 +£0.00

Finally, the PLR of each PV system was estimated using
the other CP methods. The estimated PLR values differ by up
to 0.85% per year (for the same number of segments/CPs)
depending on the selection of the applied method. The results
indicate that by applying CP algorithms to the monthly PR
time series, the extracted trend may not always be linear but
can exhibit nonlinearities that need to be accounted, especially
for thin-film technologies. Furthermore, different number and
location of CPs were detected depending on the applied
technique, indicating that the nonlinear PLR estimation is
methodology dependent. A comparative analysis is thus
required using synthetic PV performance datasets with known
degradation behaviour and emulated fault conditions to derive
the most accurate method for degradation studies.

It is worth noting here that the linear/nonlinear PLR
estimated value directly affects the project’s economics. Thus,
the development of more sophisticated models to estimate the
PLR of fielded PV systems is required to reduce financial
risks. As recently stated in [26], the PLR is the third most
important factor influencing the levelized cost of energy
(LCOE), after the discount rate and capital cost.

V. CONCLUSIONS

In this paper, the performance loss rates of different
technology PV systems were estimated using the LOESS and
CP methods, after 8 years of outdoor operation. The
application of LOESS resulted in an average PLR of -
0.72%/year, -0.93%/year and -2.01%/year for the mono-c Si,
multi-c Si and thin-film PV systems, respectively. Visual
inspection of the trend extracted by the LOESS method
provided initial insights for the potential presence of CPs
within the investigated time series.

The application of CP algorithms proved to be an effective
statistical technique for identifying nonlinear power loss in PV
systems. The different CP algorithms could detect changes in
the slopes of PV trends. However, different number and
location of CPs were detected depending on the applied
technique. The detected CPs may be attributed to failures
affecting the PV systems, maintenance events or actual
degradation mechanisms. The PLR values obtained over the
8-year period differ by up to 0.85% per year (for the same
number of segments/CPs) depending on the applied method.
This indicates the methodology dependency of the nonlinear
PLR estimates and the need for more sophisticated models to
estimate accurately the PLR of fielded PV systems, thus
reducing financial risks. Future work will focus on comparing
the CP algorithms for PLR estimates using synthetic PV
performance datasets with known degradation behaviour and



emulated fault conditions. Furthermore, future investigation
will focus on extracting the PV performance trend and
combining the seasonal trend decomposition with LOESS for
estimating nonlinear relationships and PLR.
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