This paper describes objective technical results and analysis. Any subjective views or opinions that might be .expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

os Resilience

Nicolas Movales Elisabeth Giem Matthew Whitlock Keita Teranishi

PRESENTED BY

Nicolas Morales

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering |Solutions of Sandia, LLC, a\wholly.owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration'under/contract DE-NA0003525.

SAND2022-9347C

ENERGY AWNSA

Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary of

Honeywell International Inc., for the U.S. Department of

Energy’s National Nuclear Security Administration under

contract DE-NA0003525. SAND NO. XXXX-XXXX X

1

Hardware Heterogeneity, Resilience, and the Exascale Era

o Recent years have shown a drive towards increased hardware heterogeneity in computing clusters
o Computational heterogeneity (many-core, GPUs, other accelerators)

o I/O heterogeneity (deep memory heirarchies, local persistent storage, external parallel file systems,
key-value stores, etc)

0 Mean time between failure (M TBF) is decreasing (errors occur more often!) as systems become more
complex

o How can software leverage the diversity of hardware in both computation and I/O while remaining
resilient and performant?

2

Performance Portability and Resilience

o Performance pormbz'lz'ty is a property of software where the software can be written once and re-used
without performance degredation on heterogeneous hardware

o Usually enabled by a programming model or library
o Libraries include Kokkos, RAJA, DPC++, and others
0 Main resilience strategy for a lot of hardware is checkpoint/restart

o Can we exploit the ubiquity of programming models such as Kokkos to provide resilience for
Exascale applications?

3 | Kokkos-Resilience

o We introduce Kokkos-Resilience, an extension of Kokkos for adding resilience to performance-portable
applications

o Allow user to define checkpoint regions for resilient code where Kokkos: : Views are captured
o Introduces Resilient Execution spaces for detecting and rectifying soft errors

o Interoperates with data checkpointing frameworks such as VELOC and process-level recovery
frameworks

O https://github.com/kokkos/kokkos-resilience

https://github.com/kokkos/kokkos-resilience

+ | Kokkos Background

@)

@)

@)

@)

@)

Programming model for performance portable C+
https://github.com/kokkos/kokkos
Data abstraction: Kokkos: :View<>

Execution abstraction: Kokkos: :parallel_for(), Kokkos: :parallel_reduce(),
Kokkos: :parallel_scan()

Common use patterns:
o View creation at program initialization

o Iterations reading and writing to Views via parallel dispatch

https://github.com/kokkos/kokkos

5 ‘ Our Starting Code

1 auto view = Kokkos::View< double *x >(/* ... %/);

3 for (int iter = 0; iter < max_iter; ++iter) {

4 Kokkos::parallel_for(/* ... */, KOKKOS_LAMBDA(int i) {
5 do_calculation(view);

6 // More operations on view...

7 })i

8 }

o How would an application author typically add checkpoint/restart?
0 Usually would want to checkpoint view every few iterations
o Would need to write I/O code and check for restart

o Custom logic for restart to ensure restart correctness

6

Resilient Abstractions - Scoped Resilient Execution Contexts

1 auto view = KR::View< double ** >(/* ... %/);

3 for (int iter = 0; iter < max_iter; ++iter) {

4 KR::checkpoint(plugin, "test_checkpoint", iter, [=1() {

5 Kokkos::parallel_for(/+ ... %/, KOKKOS_LAMBDA(int i) {
6 do_calculation(view);

7 // More operations on view...

8 o)

9)

10 }

0 Define a scope in which any operations on Kokkos views are made resilient
o Resilience is enabled by checkpoint/restart

o Can include multiple parallel dispatch operations

o Implicit checkpointing of views used inside of the scope

o Checkpoint regions can be defined by lambdas (preferred) but any functor will do

Morales, Nicolas, Keita Teranishi, Bogdan Nicolae, Christian Trott, and Franck Cappello. "Towards High Performance Resilience Using Performance Portable Abstractions.” In European Conference on Parallel

Processing, pp. 451-465. Springer, Cham, 2021.

7

Resilient Abstractions - Scoped Resilient Execution Contexts

0 Automatic recovery
0 Check if restart conditions are met (existence of a checkpoint, restart flag, etc.)
o The lambda 7s nor executed
o Stored checkpoints written to the captured views
o Execution proceeeds as 7f the lambda was executed

0 Before someone asks — this does mean the lambdas generally should be pu#re and avoid writing to global
entities (output should be done by writing to views)

Resilient Abstractions - Optimized View Tracking

KR::View< double * > ping(/*...%/), pong(/*...%/);

for (int 1 = 0; i < max_ts; ++i) {

1.2 =

10

11

12

13

14

KR::View< const double * > read;

KR::View< double * > write; =
if (i%2) E o == Without Optimization
. . = B . T
read = pong; write = ping; = F— WlthConstOptlmlzatlon
else B
}) 0.9 -
read = ping; write = pong;
KokkosResilience::checkpoint(ctx, "iterate", i, [=]() { -
. . 0.8 =] t i | t | t |
Kokkos::parallel_for(/#...*/, KOKKOS_LAMBDA(int j) { 2 4 6 8 10 12 14 16
write(j) = do_calculation(read); Number of Ranks
)
)
Figure: Weak scaling of the ping-pong microbenchmark.

—
—

0 More complex applications or poorly served by naively checkpoint every view

0 The example above shows a simple ping-pong bufter sample where the read and write views alternate

9

Resilient Abstractions - Optimized View Tracking

o Deduplication:

o Hash views by label (to account for user intent in case a view is reallocated)

o Provide functions to declare alzases in the rare circumstance that the same view has a different label
o Read-only views:

o Views that are declared as const can only be read from

o We can use this type information to avoid checkpointing these views

o Similar techniques can be applied to views that are “transient”, i.e. are only used as scratch space
inside an iteration (needs manual tagging)

10 ‘ Soft Errors

Fail-Stop Error! Soft Error!

Execution Execution

Segmentation fault

(core dumped)

o Fail-stop errors are easy to detect, the program crashes
o How can we detect fail-continue (soft) errors with Kokkos Resilience?

o Example errors: lock semantics, encryption/decryption, database index corruption, and more

1+1=3

11

Resilient Execution Spaces

1 auto view = Kokkos::View< double *x, KR::ResHostSpace >(/* ... */);
> auto range_policy = Kokkos::RangePolicy< KR::ResOpenMP >()/* ... %/);

+ for (int iter = 0; iter < max_iter; ++iter) {

5 Kokkos::parallel_for(range_policy, KOKKOS_LAMBDA(int i) {
6 do_calculation(view);

7 // More operations on view...

)i

9 }

oo

o Views are replicated, and then the kernel is executed concurrently on the replicated views
o Double and Triple Modular Redundancy supported

o Voting step proceeds in parallel after triplicate execution completed

12 | Interopability

o We interop cleanly with non-resilient Kokkos code

O Kokkos-Resilience provides an abstraction layer for user applications for tracking execution regions that
should be checkpointed or restarted

o Actual checkpointing deferred to the resilience backend

o VELOC - Multi-level asynchronous checkpoint/restart
https://github.com/ECP-VeloC/VELOC

o Used for low-overhead efficient asynchronous checkpointing
o Designed specifically for high performance HPC machines
o stdfile — Standard 10 binary blob

o Synchronous, Primarily used for testing purposes

https://github.com/ECP-VeloC/VELOC

13 | Process Recovery

0 There are many aspects of recovery — data recovery, control-flow recovery, and process recovery
o Kokkos-Resilience provides control flow recovery

o Also uses, backends like VELOC for data recovery

o Integrating this with process recovery is challenging particularly since we depend on MPI
communicators when interfacing with MPI+Kokkos programs

o We have done recent work on interopability and integration with Fenix on top of ULFM for
process recovery

o Adapts to changes in the communicator, recovery status, failure states

14 | Ongoing Work

The framework is still experimental, we need your feedback to improve it.

o We are working on adding more resilient execution spaces, checkpointing backends, and parallel
constructs.

o There are also several collaboration efforts:

Galech Supplement Kokkos resilience with a Clang-based tool and runtime checkpoint manager
o More robust compile-time information for the runtime manager
UTK Pattern aware checkpoints for improving checkpoint performance of Kokkos applications

UofU Data staging interface for Kokkos: : View

15 | Kokkos Resilience

o We’ve introduced a new resilience capability to Kokkos applications: Kokkos Resilience
o Automatic View checkpointing
o Resilient execution spaces
o Interopability with data level and process level recovery frameworks

O https://github.com/kokkos/kokkos-resilience

o Please feel free to contact us on the #resilience channel on the Kokkos Slack.

https://github.com/kokkos/kokkos-resilience

16 | Additional Acknowledgements

o Bogdan Nicolae (ANL)

o Franck Cappello (ANL)

o Akihiro Hayashi (Galech)

o Vivek Sarkar (GaTech)

o Christian Trott (SNL)

o Nigel Tan (UTK/ANL)

o George Bosilca (UTK)

o Aurelien Bouteiller (UTK)
Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell

International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

