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Introduction

Disinformation and social media manipulation
campaigns are a large and growing problem that
IS increasingly affecting national security[1], and
their effects are accelerated by the use of online
social media. Predictive algorithms, based on
artificial intelligence and machine learning (ML)
can provide a powerful tool to combat
disinformation through identification of false
information by content analysis, assessment of
the reach of disinformation, and identification of
ways to stop influence. These powerful methods
require enormous amounts of data to identify
patterns of behavior.

A fundamental assumption of the majority of
ML algorithms is that the data on which the
algorithm was trained has the same distribution
as the data on which it is applied. This
assumption, however, is violated often and
severely in practice, a problem which is called
“dataset shift’[2]. This is exacerbated in
disinformation campaigns by shifts in social
media algorithms, public attention, message
characteristics, and the amount of competition in
the information environment. It is thus unknown
how well different ML cascade prediction
methods perform in conditions where
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address this: using artificial social simulations to
generate data with varying underlying causal
mechanisms, which can be used to test ML
algorithms.

Agent-Based Models, where individuals,
organizations, or groups are represented as
autonomous entities, are a popular method for
capturing the emergent complexity of social
systems. Traditionally the use of social
simulation has been to explore phenomena and
test the impact of interventions. Our use of these
simulations is instead as a synthetic data
generator. By comparing ML model performance
between simulated datasets, we can ascertain
how adaptable the algorithm is to dataset shift.
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Agent-Based Model

Our goal for this simulation is to create a
simple, but adaptable framework for agent
interactions that can scale the amount and
complexity of features. N=1,000 agents are
placed into a network and some are randomly
seeded messages in their “inbox”. On each
model tick, agents interpret whether they will
place the message in their “outbox”. At the
conclusion of the tick, all outbox messages are
sent to the inbox of adjacent agents following the
directed edges in the network. Additional
messages are seeded by the model on
subsequent ticks and the model terminates at a
the conclusion of the 100 tick. The following
parameters were varied between runs:

* Network Type: one of Barabasi-Albert (Scale
-Free), Watts-Strogatz (Small-World), or
Erd6s—Rényi (random; “median” type)

* Edge Density: 0.6%, 1.0%, or 2.0%
connected

* Rewire Probability (SW): 0.1, 0.2, or 0.4
* Q:: agent i’s subjective resend probability

e Mean: 0.8, 1.0, 1.2; SD: 5%, 20%, or 50%
of mean

° ¢m: messages’ Vira“ty (presend = Qi*¢m)

 Random power distribution with a = 5, 10,
or 50

« Ki: agent i's attention limit (# to read from
iINbox)

* Mean: 1,5, 10;: SD: 5%, 20%, or 50% of
mean

 Message addition:

* Number: Mean: 100, 250, 500; SD: 20%
of mean

* Frequency after initialization: 1, 10, or
25 ticks

* Number of agents seeded each message:
1,10, or 25
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we evaluate model performance as the relative

prediction error (RMSE) of the model trained on
T, and tested on V. i.e.:

" RMSE(T},V})
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All simulations were randomly split on
messages into training (80%), testing (10%) and
validation (10%) sets. Independent features
iInclude the mean global centrality, in-, and out-
degree of agents that had resent the message at
tick 1. The dependent variable is the number of
agents that resend the message by tick 5. The
data analytic methods tested are Linear
Regression and Decision Trees.
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Discussion

Machine learning models are able to form out-of-
sample predictions about the spread of information
over a social network, but the degree of accuracy is
context- and model-dependent: In general, the
decision tree out-performed linear regression under
conditions of dataset shift by a factor of ~4. However,
when the validation set came from the same
simulation as the training set, the linear regression
model performed slightly better.

Model performance decreases when the training
set comes from a small world network — particularly
low density. Conversely, both high-density networks
and high message frequency (i.e., greater information
competition) are particularly difficult scenarios to
predict the spread of information. Decision trees tend
to form better predictions when agent vary in their
resending rates (Q,), while linear regression formed
better predictions in low-attention scenarios (K.).

More research is needed to better understand
how machine learning algorithms operate on varying
social data. While the simulation technique applied
here offers valuable insight into the complexities of
prediction in different contexts, the generalizability of
these results to real-world disinformation cascade
datasets is so far unknown.
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