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Atmospheric Source Inversion

Inferring sources from impacts S S
is ill-posed.
Spatially localized sources , D
create global impacts.
Climate model complexity Dad
prohibits direct inversion. \ Aerosal D
SO - i:l:::l edimentation NHl{l}

Production == Cloud
Operator surrogates may Brighness
enable inversion.
Spatiotemporal data improves Radiation Q
information content. o Productiy

Atmospheric Circulation

What precipitates the impact?




3 | Goals and Tiered Verification

« Infer operators for tracer evolution generated by E3SM.

« Energy Exascale Earth System Model (E3SM) is developed by US DOE.

» Use operator surrogate to enable inversion.

« End goal: source inversion for Mount Pinatubo eruption.

« Question about data, dimension reduction, operator architecture, etc.

« Start with a synthetic SO,transport model infer a volcanic source.
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Simulation Data Generation

« Choose M possible sources over N time steps, Z
« sources z™ € RNare functions of time, X

« corresponding to the states ul*, uf*, ..., uj} € R?, X

e for simulationrunsm =1,2,..., M, X

« where M is typically small.
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Operator Approximation: Learning Formulation

Time = 15.0

Input the initial condition u, and source z,

to predict time snapshots uy, uy, ...,uy € R%,

Approximate the flow map o

— Time = 30.0
Upiq = F(uy, z,)
and compose it to predict the time history :

s 50 TS o0 133 150

Upt1 = :F(:F("':F(:F(uﬂrzﬂ):zl) ---,zn_l),zn)

Time = 45.0

Given data pairs {(z7*, ult, ul, 1)}, approximate F. . I

s 50 TS o0 133 150
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9 Operator Approximation: Dimension Reduction

* Principal component analysis (PCA) to compress the spatial dimension.
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10 Operator Approximation: Reduced Operator @i
]
PCA Projection WZ PCA Reconstruction W.,. |

F 1l (an n)

Cn > Cn+1

« The flow map F(u,, z,) is defined in d = 0(10°) dimensions.
« Learn areduced operator F,,;(c,,z,) inr = 0(10) dimensions.

« Approximate F,.,(c,, z,) via a Neural Network trained on time step pairs.



1 Operator Approximation: Network Architecture

Cn+1 = Fred(Cn,zn) = €n + At NN (€, 21,€)

« Impose structure through PCA modes and time discretization.
« NN (c, z,¢)is a dense 2 layer feed forward network with parameters ¢.

« Many hyperparameters:
Number of PCA modes

Network depth
Activation function

Learning rate
Loss function

etc

‘® TensorFlow




12 | Operator Approximation: Prediction, Loss, and Training

« Training data is all time steps {(z*, ¢', ¢l 1)}

» Training loss is prediction error for p time steps:

M N-1 P

Loss@) = » Y |lemy —F2lemz o) ||

m=1n=0 p=1

. ?rﬂ(c;’{‘, z, &) denotes p compositions of F,..,4.
« Guild enables efficient experiment tracking.

+ Use validation set error to determine
hyperparameters.

Loss

1011] m

1DE|- i

]DE i

1D4 i

— Train
— \al

——=- 5Selected Model Weights

0

20000

40000

60000
Epochs

80000

100000

120000




|
Operator Approximation: Experiment Tracker m
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15 Prior and Likelihood

« Assume Gaussian prior and noise models:

Mprior (z) x EX]J(—%”Z - i”?-;rliw) Mike (z! D) X EXp(—%M(Z, I)))

« the misfit M depends on data D = [d4, d,, ...,dy] as

S02 concentration at time = 60.0

N 230

M@zD) =) [[oW,Fi(coz.6) —d H - g N
n=1 Choise >0 150

« with observation operator 0O illustrated by the x's, 0 i::
. and model prediction W, %™ (c,,z¢). 5.0 :
.| .
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16 Maximum A Posteriori Probability (MAP) Point

« Bayes rule gives the posterior distribution, 04r

= Prior
— |ikelihood
—— Posterior

o
w
T

OCT[piO' T[lile

 to characterize the probability of the possible sources.

Probability
o
N

« Determine the maximum probability point, 01y

Zpyap = argmax (z) 5
Z

« or equivalently minimize the negative log of the posterior

.1 1 _
Zyap = argmin-M(z) + = ||z — Z||%-,
7 2 . rpriar



17 Maximum A Posteriori Probability (MAP) Point

.1 1 —112
Zrgap = argmm;M(z) +2 |z — Z||5-1

7 prior

* Minimization using a Newton-CG Trust Region algorithm.

+ Evaluate Neural Network Jacobian using algorithmic differentiation.

« Solve discretized adjoint equations to compute the exact gradient and Gauss-Newton Hessian.

« Cost per optimization iterate is one NN (c,, z,,,¢) evaluation plus Jacobian for each time step.

Sandia
m National
RAPID OPTIMIZATION LIBRARY Laboratories
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Posterior Sampling

OCT[pi(r Tl,'li]e

Laplace approximation: assume is Gaussian.

Mean is computed via optimization: z,, 4p.

Covariance is the inverse Hessian of —log( )
evaluated at z,,4p.

Leverage data sparsity for low rank approximation.
Laplace approximation is an efficient first step.

Markov Chain Monte Carlo methods are alternatives.

0.4r

= Prior
— |ikelihood
—— Posterior

o
w

Probability
o
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Overview of the Workflow

Unobserved
Source
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20 | S50, Plume Model Problem

Change in SO2
concentration with

respect to time \ Diffusion Wind Gravity =~ Chemistry  Volcano
/ / source
——1<.:V2c+'v Ve—Se,-Ve=R(c)+ f on 2 x [0, 7]
Vc-n:O on 02 x [0,T]
/ | _
No c=10 on € x {0}

outflow \

Zero initial SO2
concentration




Data Generation

%_H/v2c_|_rv.vC_Sey.vC:R(C)—|—f OHQX()?T
Ve-n =0 OH@QX:OjT:
c =0 OHQX{O}

3000 - —— Training Data 1
—— Training Data 2
—— Training Data 3
—— Training Data 4

—— Testing Data

Training data from 3 different source terms.
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Testing data from a 5" source term.
Train flow map approximation to infer 17501
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Relative 12 error

« Compress 0(10°) nodes to 0(10%) PCA
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Operator Approximation
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Black curve is the testing data.

Blue curve is the MAP point.

Grey curves are approximate posterior
samples.

Capture source well.

Overestimates uncertainty later in time. I



Conclusions and Ongoing Work

Next Steps
Maturing hyperparameter optimization.
Transitioning toward climate models and data.

Advanced samplers for non-Gaussian posteriors.

End Goals
Capturing spatial structure to better inform inversion.

|dentification of pathways to identify a reduced climate system.

Final demonstration to characterize Mount Pinatubo eruption.




