Thislpaperldescribeslobiectiveftechnicallresultsland analy5|s Anvisubijectivelviewsloropinionsithatimight’belexpressed in|
hefpaperfdojnotinecessarilyfrepresentlth heJu.S | f kUnitedgStatesgG §

Exceptional service in the national interest National

Laboratories

July 12, 2022 SIAM Annual

Nathan V. Roberts, Stephen D. Bond, and Eric C. Cyr
nvrober@sandia.gov
Sandia National Laboratories

.S. DEPARTMENT OF "l
@EREDEY MNA Y S e
boratories®is a’multimission laboratory‘managed-and operated by-Nationai+Technoloay-& ngineering:Solutions*ofSandia, L
HoneywellgInternationalyinc.,sforythe;U.S.jDepartmentjofEnergy'syNationalyNuclear;SecuritygyAdministrationgundercontractyDE

Sandia

Outline e

Vlasov-Poisson Problem

Vlasov + DPG: The Vision
Space-Time DPG Formulation

I3 Cold Diode: Problem and Approach
Cold Diode: Results (Space-Time)
@ Further Cost Mitigation Strategies

Conclusion

The full 3D3V Vlasov-Maxwell equations take the form:

of q of
a—i—va— (E+ x B) - av—O
J qufd:“
v.E=" -4 de%
€0 €0
V-B=0
0B
E=—""—
V x m
OE
B = J
V x po< +€06t>

Sandia
National
Laboratories

These are our ultimate target. For this talk, we simplify by using an

electrostatic assumption, yielding the Vlasov-Poisson equations.

July 12, 2022 SIAM Annual

Sandia
National
Laboratories

The 3D3V Vlasov-Poisson equations take the form:

of of q_ of
v E._“de%» (8)
€0
E+Vd = 9)

Here, we have introduced a potential ¢ such that E = -V ¢
(convenient for BCs). We simplify further by restricting to 1D1V:

of of q_ Of

—_ — A E. = 1
at+vxax+m Ovy 0 (10)
oE ¢

— = | fdvy 11

0x eoj v (11)
¢
E4+—— = 12
t35,=0 (12)

July 12, 2022 SIAM Annual 4

Sandia

High-Level Introduction to DPG e

Suppose you have a bilinear form b(-, -) with load 1(-), and (group)
trial variable u € UM, test v € V:

b(u,v) =1(v)

U, V Hilbert; V endowed with inner product (-, -)yv.

High-Level Introduction to DPG () i,

Suppose you have a bilinear form b(-, -) with load 1(-), and (group)
trial variable u € UM, test v € V:

b(u,v) =1(v)

U, V Hilbert; V endowed with inner product (-, -)y.
For each trial basis function e € U™, we define v°pt €V by

(VY w)y =ble,w) ¥YweV;

that, is V2" € V is the Riesz representative of b(e, -). Using these
optimal test functions as our test space, we immediately see that a
stiffness matrix Kyij = b(el,vzﬁ’) is symmetric (Hermitian) positive

definite:

t t t
Kij = blei, voP) = (V&' V&), = (vel' vel)v) = blej, vel')

K.

July 12, 2022 SIAM Annual 6

Sandia

High-Level Introduction to DPG s

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

High-Level Introduction to DPG ()

Laboratories

Using infinite-dimensional V is called the ideal DPG method; the

practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

July 12, 2022 SIAM Annual

High-Level Introduction to DPG () i,

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.

July 12, 2022 SIAM Annual 9

Sandia

High-Level Introduction to DPG () i,

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).

= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.

= Method minimizes the error in an energy norm determined by test
inner product (user choice).

July 12, 2022 SIAM Annual 10

High-Level Introduction to DPG () i,

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.

= Method minimizes the error in an energy norm determined by test
inner product (user choice).

= Natural error indicator: Riesz representative of residual
b(up, -)—1(-) = can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 11

Vision for DPG Vlasov Solver () e

The goal: flexible, robust, accurate plasma physics solver for regimes
that PIC does not address well.

Our approach: DPG for Vlasov.

DPG has many attractive features:
= discrete stability is automatic
= almost total flexibility in solution basis (can go high-order)

= “minimum-residual method”: solution error is minimized in an
energy norm

= comes with a built-in error indicator: AMR is natural and robust

July 12, 2022 SIAM Annual 12

Sandia
National
Laboratories

Vlasov in Camellia

Camellia is my Trilinos-based FEM library, with support for DPG +
AMR.
= For Vlasov, we need hyper-dimensional meshes, up to 7D total.
= Key feature: allow orthogonal extrusion of any mesh in new

dimensions.
= Assume orthogonal: simplifies Jacobian computations, etc.

= Do not assume uniform divisions: allow AMR in the new

dimensions.
[omere T Tttt mrIIraErA
IR PR .- |
L2 .- by

July 12, 2022 SIAM Annual 13

Challenges: Computational Cost and the Curse () =,

The curse of dimensionality looms. We have three key mitigations:
Adaptive Mesh Refinement

= Full support for isotropic h-adaptivity.
= Anisotropic adaptivity: necessary for performance in high
dimensions.

Underway: Hyperdimensional Serendipity bases?

Smart Assembly
= Structure of Vlasov allows most terms to be integrated in lower
dimensions, and multiplied by a pre-computed integral
corresponding to remaining dimensions.
= Not yet implemented.

1Serendipity basis support in Intrepid2; Trilinos master SHA1 22d0482, 7/7/22.

July 12, 2022 SIAM Annual 14

Temporal Discretization () %,
Two basic approaches:

= time-marching

= space-time
We are pursuing both of these. Concerns for time-marching:

= Theory suggests we can accumulate error; in practice we may
observe this when under-resolved.

= Very little theory for standard schemes beyond backward Euler;
experiments for other PDEs suggest any implicit scheme is
reasonable, though.

= For Vlasov, we have only implemented backward Euler so far.

= Best refinement strategy isn't as clear; may depend on the
problem.

In favor of time-marching:
= High-order RK schemes can be pretty efficient/effective.
= Toolset (ParaView, etc.) is set up for time-marching.

July 12, 2022 SIAM Annual 15

Sandia
Temporal Discretization () %,

Concerns for space-time:
= Adds another (curséd) dimension to the mesh.
= Harder to visualize.
In favor of space-time:
= DPG theory supports it very well.
= Can do localized adaptivity in temporal dimension.
= Refinement strategy is clear(er).
= Can run parallel-in-time.

= Strategies, optimizations we develop for velocity dimensions are
likely to carry over to time dimension as well: it's another
orthogonal extrusion.

July 12, 2022 SIAM Annual 16

Sandia

Space-Time Formulation: Vlasov e s
We may write the 1D1V Vlasov equation as:

Vy f
Vv - f =0.
AEf

Multiplying by test w € H! and integrating by parts:

Vi
(tn,w) — f | Vxoww | =0,
dE f
where formally
Vi f Ty
th =tr f -t
dEf n,

We use the graph norm on the test space.

National

Sandia
Space-Time Formulation: Poisson () %,

Our space-time Poisson Formulation:
<\A/Ev TnX> - (VEI aXT) + (EXIT) = 0

(Bx, d 1) — (Ex, 0xq) = (e"o q> |

Note that the traces Vg, E are only defined at the spatial interfaces
(those for which ny # 0). Note also that p is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on Ve at the left and right boundaries; for the cold diode, we
impose Ve =0 at each.

We use the graph norm on the test space.

July 12, 2022 SIAM Annual 18

Solution Strategy: Fixed Point Iteration () i,

We use a fixed-point iteration with a set maximum number of
iterations:

= up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10~°).

= Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10~7 and 10~°.

July 12, 2022 SIAM Annual 19

The Cold Diode Problem () e

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.

10 kEV beam
—_—
a:':() ;E:r'l:.Olm
$(0) =0 ¢(d) =0

= We have an exact solution due to Jaffé.
= EMPIRE-PIC has very accurate results for this problem.

= Tom Smith provided me the Python scripts used in EMPIRE's
analysis; I've adapted these.

July 12, 2022 SIAM Annual 20

The Cold Diode Problem and Vlasov () e

Some notes on our approach:
= We nondimensionalize for computations, such that v{_, =1 and
* —
Hinal = 1.
= We rescale on output for comparison to exact solution.

= Inflow BC: approximated with a Maxwellian with thermal velocity
0 = 0.025Vpeam.

= 0 >0 = solving a slightly different problem; can expect some
error due to that difference.

= |Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

July 12, 2022 SIAM Annual 21

Sandia

The Cold Diode Problem and Vlasov flre

For space-time, there is a corner discontinuity in the BCs: the initial
condition disagrees with the injection BC at x = 0.

= QOur approach can handle this, but it costs us in the test space
degree.

= We therefore use a linear temporal ramp Wramp(t) to weight the
inflow BC; Wyramp(0) = 0, Wyamp(0.25) = 1.

Space-Time Results: Uniform Refinement Studies

Table: Relative L? errors

Sandia
National
Laboratories

f order Mesh Size E err. ¢ err. e err. vy err.
0 4 x 40 x 40 2.458E-01 | 2.228E-01 | 2.276E-02 | 2.386E-02
0 8 x 80 x 80 1.228E-01 | 1.133E-01 | 1.130E-02 | 1.198E-02
0 16 x 160 x 160 | 6.137E-02 | 5.690E-02 | 5.630E-03 | 5.998E-03
1 4 x 20 x 40 2.481E-03 | 2.505E-02 | 2.446E-03 | 2.200E-03
1 8 x 40 x 80 7.065E-04 | 6.266E-03 | 6.660E-04 | 6.212E-04
1 16 x 80 x 160 3.924E-04 | 1.605E-03 | 3.641E-04 | 3.399E-04
2 4 x 10 x 40 5.021E-04 | 4.206E-04 | 2.586E-03 | 6.109E-04
2 8 x 20 x 80 3.660E-04 | 3.673E-04 | 4.753E-04 | 3.365E-04
2 16 x 40 x 160 3.618E-04 | 3.635E-04 | 4.016E-04 | 3.138E-04
3 4 x5 x40 6.151E-03 | 2.189E-03 | 2.614E-02 | 3.178E-03
3 8 x 10 x 80 3.624E-04 | 3.632E-04 | 4.126E-04 | 3.133E-04
3 16 x 20 x 160 3.619E-04 | 3.637E-04 | 3.353E-04 | 3.126E-04

Uniform refinement study for space-time, for poly orders from 0 to 3. As with our finest
time-marching solves, we see error of roughly 3 X 10™* in each variable, due to the nonzero
value for 0. Note that the second dimension is time; we use coarser discretizations in time
for higher polynomial orders so that we have roughly the same number of temporal nodes

as in the time-marching scheme.

July 12, 2022 SIAM Annual

23

Adaptive Space-Time Results () =,

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L? norm on the boundary. In this
run, we use the following setup:

= coarse mesh: 2 x 4 x 10 elements
= 0 =0.025

BC tol: 107°

quadratic field variables

= test space enrichment Ap =4

= greedy refinement parameter 6 = 0.2

July 12, 2022 SIAM Annual 24

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

Sandia

Further Cost Mitigation: Serendipity Basis s

Table: Number of dofs/element for full tensor H! basis.

p 1 2 3 4 5 6 7
Dim.

2 4 9 16 25 36 49 64
3 8 27 64 125 216 343 512
4 16 81 256 625 1296 2401 4096
5 32 243 1024 3125 7776 16807 32768
6 64 729 4096 15625 46656 117649 262144
7 128 2187 16384 78125 279936 823543 2097152

Table: Number of dofs/element for Serendipity basis.

b 1 2 3 7z 5 6 7
Dim.

2 4 8 12 17 23 30 38
3 8 20 32 50 74 105 144
4 16 48 80 136 216 328 480
5 32 112 192 352 592 952 1472
6 64 | 256 448 880 1552 | 2624 4256
7 128 | 576 1024 | 2144 | 3936 | 6960 11776

Questions:
B Can we use Serendipity for test as well as trial?
B How well can we approximate optimal test functions with Serendipity basis?
¥ How well can we approximate (typical) solutions?

Further Cost Mitigation: Smart Assembly () &=,
We can take advantage of the structure of Vlasov to perform assembly
more efficiently. The simplest terms in our formulation take the form

(Chi, by)x = (COF b7, b5 V5,
:JK CoT, &7, b5 by, 0xov

where ¢; is the trial function and 1 is the test function, and C some
constant. Each velocity dimension is an orthogonal extrusion —
ref.-to-physical Jacobians diagonal, so we may write:

<JKX Cd)}i(xlpiax) (JKV b, Lav) -

The velocity-space integral itself decomposes into a product of
integrals along each velocity-space dimension; these integrals may be
performed in reference space and multiplied by the cell measure in the
corresponding velocity dimension to obtain a physical integral.

Similar tricks can be performed for most terms in our formulation.

July 12, 2022 SIAM Annual 35

Sandia
Conclusion () e

In Intrepid2, we have some pretty good building blocks for
structure-dependent algorithms.

In Vlasov, we have a highly structured problem — especially so
for a space-time 3D3V discretization!
Still to do:

= Use Serendipity bases (recently added to Intrepid?2)

= Smart Assembly
= Anisotropic adaptivity: vital for higher dimensions

We do not have a robust, local anisotropic error indicator. An
area for future research!

July 12, 2022 SIAM Annual 36

Sandia

Time-Marching Results: Uniform Refinement Study) &,

Table: Quadratic f, Time-Marching, Relative L? errors

Mesh Size | Num Time Steps E err. ¢ err. T err. Vy err.
4x40 20 3.951E-04 | 3.715E-04 | 1.206E-03 | 5.041E-04
8x80 25 3.620E-04 | 3.638E-04 | 3.361E-04 | 3.133E-04

16x160 50 3.616E-04 | 3.634E-04 | 3.350E-04 | 3.126E-04
32x320 100 3.322E-04 | 3.333E-04 | 3.117E-04 | 3.069E-04

Sandia

Adaptive Solve e

To give just one adaptive solve example:

= start with a fine mesh identical to the finest fixed-size quadratic
solution, 32 x 320 elements

= each time step, refine according to energy error, and unrefine an
equal number of elements

= test space enrichment Ap = 5.

Sandia

Adaptive Solve e

Time step 1.

Sandia

Adaptive Solve e

Time step 5.

Sandia

Adaptive Solve e

Time step 10.

Sandia

Adaptive Solve e

Time step 20.

Sandia

Adaptive Solve e

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).

Sandia
Motivation: Sum Factorization () e

For hexahedral elements in 3D:
= standard assembly: O(p?) flops
= sum factorization: O(p’) flops in general; O(p®) flops for
constant-Jacobian case.
Savings increase for higher dimensions. ..
Basic idea: save flops by factoring sums.

Adds | Multiplies | Total Ops
Z]i\l:1 Z;\lzl aib; | N2—1 N2 | 2N?2-—-1
Y ai Yy by | 2N-2 N| 3N-2

July 12, 2022 SIAM Annual 44

Intrepid2’s Basis Class () =,

= Principal method: getValues () — arguments: points,
operator, Kokkos View for values
= Fills the View with basis values at each ref. space quadrature
point.
Structure has been lost:
= points: flat container discards tensor structure of points.

= values: each basis value is the product of tensorial component
bases; we lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than
a structure-preserving data structure would allow.

But our main interest is in the impediment to algorithms that take
advantage of the structure.

July 12, 2022 SIAM Annual 45

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Sandia

Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

July 12, 2022 SIAM Annual 48

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

July 12, 2022 SIAM Annual 49

Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

= TensorPoints: tensor point container defined in terms of component
points.

July 12, 2022 SIAM Annual 50

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

July 12, 2022 SIAM Annual 51

Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 52

Two Sum Factorization Approaches () =,

In N-dimensional hypercube integration, we can have N + 2 nested
summations; we want to compute and store these in an efficient
manner.
We implement two sum factorization algorithms:
Basis-indexed:
= standard approach (see e.g. Mora & Demkowicz)
= |oop nesting structure: point loops contain basis loops
= intermediates are indexed by basis ordinals, with implicit reference
to quadrature indices
H Point-indexed:
= our design, based on Intrepid2 data layout: we attempt to improve
data locality.
= |oop nesting: basis loops contain point loops

= intermediates are indexed by point ordinals, with implicit reference
to basis ordinals

July 12, 2022 SIAM Annual 53

Estimated Flops for Each Algorithm

Sandia
National
Laboratories

We use Poisson assembly on a 162 grid, with elementwise integrals of
the form

Kij = L Vi Vo 3K,

as our test problem. We implement a flop estimator (counting each
add or multiply as one flop), with results:

~No ok wWw NN R T

8

Standard
1.6e+07
5.3e+08
6.7e+09
4.9e+10
2.5e+11
1.0e+12
3.3e+12
9.6e+12

Basis-Indexed
2.7e+07
3.6e+08
2.4e+09
1.1e+10
3.7e+10
1.1e+11
2.7e+11
6.0e+11

Speedup
0.60x
1.5x
2.8x
4.5x
6.8x
9.1x
12x

16x

Point-Indexed
2.9e+07
3.8e+08
2.5e+09
1.1e+10
3.9e+10
1.1e+11
2.7e+11
6.1le+11

Speedup
0.55x
1.4x
2.7x
4.5x
6.4x
9.1x

12x

16x

(Speedup values here are theoretical, based only on flop counts.)

July 12, 2022 SIAM Annual

54

Sandia
H - National
- .
Poisson Results: Serial flre
Integration Time (Serial CPU) Actual Speedup (Serial CPU) Estimated Throughput
—e—Standard Intrepid2 . —e— Point-Indexed
6,000 1 o Point-Indexed /1 20 1 7 2 1
§4.000 T 8 < 15 8
B ‘ E
, : E
2 / & w0 18, 1
2,000 //‘ 1 £
/” 5 n| k7
5001 — 1 w05 1
| | | | 1P | | | |
2 4 6 8 2 4 6 8 2 4 6 8
P P P

Figure: Serial (Intel Xeon W, 2.3 GHz) timing comparison for 3D Poisson
integration, 4096 elements. (Optimal workset sizes for each case determined
experimentally.)

Sandia

H National
Poisson Results: OpenMP s
Integration Time (OpenMP CPU) Speedup on Xeon W (16 threads) Estimated Throughput
| |
7
1 & 30 1
‘ 2
—_ / 4 o
§' 400 - ‘s‘“ 1 é_ I
= 200 A e =
N =
/ " | |
4 4 4
O e—o—+—o—4 o—2—2 |

Figure: OpenMP (Intel Xeon W, 2.3 GHz, 16 threads) timing comparison for
3D Poisson integration, 4096 elements. (Optimal workset sizes for each case
determined experimentally.)

Poisson Results: CUDA P100 () e

Integration Time (CUDA P100) Speedup on CUDA Estimated Throughput
—»—Standard Intrepid2 . P 200 -]
800 1| —o— ndexed 1 /
e~ Point-Indexed sl /] ol |
600 |- 8 /

15| .

speedup

400 §

Time (sec.)

10} .

@
3

200 |- 1

Est. Throughput (GFlops)
=3
S

T 2 3 4 5 6 7 8 T 2 3 4 5 6 1 2 4 6 8
P P P

Figure: CUDA (P100) timing comparison for 3D Poisson integration, 4096
elements. (Optimal workset sizes for each case determined experimentally.)

Note: The p = 8 case has a dramatic slowdown for standard (for this case, the only
workset size that ran to completion was 1); we exclude it from the speedup plot so

as to not to throw off the scaling.

July 12, 2022 SIAM Annual 57

	Vlasov-Poisson Problem
	Vlasov + DPG: The Vision
	Space-Time DPG Formulation
	Cold Diode: Problem and Approach
	Cold Diode: Results (Space-Time)
	Further Cost Mitigation Strategies
	Conclusion

