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The full 3D3V Vlasov-Maxwell equations take the form:
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These are our ultimate target. For this talk, we simplify by using an
electrostatic assumption, yielding the Vlasov-Poisson equations.
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The 3D3V Vlasov-Poisson equations take the form:
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E+∇ϕ = 0 (9)

Here, we have introduced a potential ϕ such that E = −∇ϕ
(convenient for BCs). We simplify further by restricting to 1D1V:
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High-Level Introduction to DPG

Suppose you have a bilinear form b( · , · ) with load l( · ), and (group)
trial variable u ∈ Uh, test v ∈ V:

b(u, v) = l(v)

U,V Hilbert; V endowed with inner product ( · , · )V .

For each trial basis function e ∈ Uh, we define vopte ∈ V by

(vopte ,w)V = b(e,w) ∀w ∈ V;

that, is vopte ∈ V is the Riesz representative of b(e, · ). Using these
optimal test functions as our test space, we immediately see that a
stiffness matrix Kij = b(ei, v

opt
ej

) is symmetric (Hermitian) positive
definite:

Kij = b(ei, v
opt
ej

) =
(
voptei

, voptei

�
V
=

(
v
opt
ej

, voptei
)V

�
= b(ej, v

opt
ei

) = Kij.
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High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, · ) − l( · ) =⇒ can use to drive (robust) AMR.
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Vision for DPG Vlasov Solver

The goal: flexible, robust, accurate plasma physics solver for regimes
that PIC does not address well.

Our approach: DPG for Vlasov.

DPG has many attractive features:

■ discrete stability is automatic

■ almost total flexibility in solution basis (can go high-order)

■ “minimum-residual method”: solution error is minimized in an
energy norm

■ comes with a built-in error indicator: AMR is natural and robust
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Vlasov in Camellia

Camellia is my Trilinos-based FEM library, with support for DPG +
AMR.

■ For Vlasov, we need hyper-dimensional meshes, up to 7D total.
■ Key feature: allow orthogonal extrusion of any mesh in new
dimensions.

■ Assume orthogonal: simplifies Jacobian computations, etc.
■ Do not assume uniform divisions: allow AMR in the new
dimensions.

July 12, 2022 SIAM Annual 13



Challenges: Computational Cost and the Curse

The curse of dimensionality looms. We have three key mitigations:

1 Adaptive Mesh Refinement
■ Full support for isotropic h-adaptivity.
■ Anisotropic adaptivity: necessary for performance in high
dimensions.

2 Underway: Hyperdimensional Serendipity bases1

3 Smart Assembly
■ Structure of Vlasov allows most terms to be integrated in lower
dimensions, and multiplied by a pre-computed integral
corresponding to remaining dimensions.

■ Not yet implemented.

1Serendipity basis support in Intrepid2; Trilinos master SHA1 22d0482, 7/7/22.
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Temporal Discretization

Two basic approaches:

■ time-marching

■ space-time

We are pursuing both of these. Concerns for time-marching:

■ Theory suggests we can accumulate error; in practice we may
observe this when under-resolved.

■ Very little theory for standard schemes beyond backward Euler;
experiments for other PDEs suggest any implicit scheme is
reasonable, though.

■ For Vlasov, we have only implemented backward Euler so far.

■ Best refinement strategy isn’t as clear; may depend on the
problem.

In favor of time-marching:

■ High-order RK schemes can be pretty efficient/effective.

■ Toolset (ParaView, etc.) is set up for time-marching.
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Temporal Discretization

Concerns for space-time:

■ Adds another (curséd) dimension to the mesh.

■ Harder to visualize.

In favor of space-time:

■ DPG theory supports it very well.

■ Can do localized adaptivity in temporal dimension.

■ Refinement strategy is clear(er).

■ Can run parallel-in-time.

■ Strategies, optimizations we develop for velocity dimensions are
likely to carry over to time dimension as well: it’s another
orthogonal extrusion.
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Space-Time Formulation: Vlasov

We may write the 1D1V Vlasov equation as:

∇xtv ·

 vxf

f
q
mExf

 = 0.

Multiplying by test w ∈ H1 and integrating by parts:

⟨t̂n,w⟩−

 vxf

f
q
mExf

 ,∇xtvw

 = 0,

where formally

t̂n = tr

 vxf

f
q
mExf

 ·

nx

nt

nv

 .

We use the graph norm on the test space.
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Space-Time Formulation: Poisson

Our space-time Poisson Formulation:

⟨V̂E, τnx⟩− (VE,∂xτ) + (Ex, τ) = 0

⟨Êx,qnx⟩− (Ex,∂xq) =

�
ρ

ϵ0
,q

�
.

Note that the traces V̂E, Êx are only defined at the spatial interfaces
(those for which nx ̸= 0). Note also that ρ is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on V̂E at the left and right boundaries; for the cold diode, we
impose V̂E = 0 at each.

We use the graph norm on the test space.
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Solution Strategy: Fixed Point Iteration

We use a fixed-point iteration with a set maximum number of
iterations:

■ up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10−6).

■ Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10−7 and 10−9.

July 12, 2022 SIAM Annual 19



The Cold Diode Problem

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.
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x = d = .01 m

■ We have an exact solution due to Jaffé.

■ EMPIRE-PIC has very accurate results for this problem.

■ Tom Smith provided me the Python scripts used in EMPIRE’s
analysis; I’ve adapted these.
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The Cold Diode Problem and Vlasov

Some notes on our approach:

■ We nondimensionalize for computations, such that v∗beam = 1 and
t∗final = 1.

■ We rescale on output for comparison to exact solution.

■ Inflow BC: approximated with a Maxwellian with thermal velocity
σ = 0.025 vbeam.

■ σ > 0 =⇒ solving a slightly different problem; can expect some
error due to that difference.

■ Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

July 12, 2022 SIAM Annual 21



The Cold Diode Problem and Vlasov

For space-time, there is a corner discontinuity in the BCs: the initial
condition disagrees with the injection BC at x = 0.

■ Our approach can handle this, but it costs us in the test space
degree.

■ We therefore use a linear temporal ramp wramp(t) to weight the
inflow BC; wramp(0) = 0,wramp(0.25) = 1.
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Space-Time Results: Uniform Refinement Studies

Table: Relative L2 errors

f order Mesh Size E err. ϕ err. ne err. vx err.
0 4× 40× 40 2.458E-01 2.228E-01 2.276E-02 2.386E-02
0 8× 80× 80 1.228E-01 1.133E-01 1.130E-02 1.198E-02
0 16× 160× 160 6.137E-02 5.690E-02 5.630E-03 5.998E-03
1 4× 20× 40 2.481E-03 2.505E-02 2.446E-03 2.200E-03
1 8× 40× 80 7.065E-04 6.266E-03 6.660E-04 6.212E-04
1 16× 80× 160 3.924E-04 1.605E-03 3.641E-04 3.399E-04
2 4× 10× 40 5.021E-04 4.206E-04 2.586E-03 6.109E-04
2 8× 20× 80 3.660E-04 3.673E-04 4.753E-04 3.365E-04
2 16× 40× 160 3.618E-04 3.635E-04 4.016E-04 3.138E-04
3 4× 5× 40 6.151E-03 2.189E-03 2.614E-02 3.178E-03
3 8× 10× 80 3.624E-04 3.632E-04 4.126E-04 3.133E-04
3 16× 20× 160 3.619E-04 3.637E-04 3.353E-04 3.126E-04

Uniform refinement study for space-time, for poly orders from 0 to 3. As with our finest
time-marching solves, we see error of roughly 3× 10−4 in each variable, due to the nonzero
value for σ. Note that the second dimension is time; we use coarser discretizations in time
for higher polynomial orders so that we have roughly the same number of temporal nodes
as in the time-marching scheme.
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Adaptive Space-Time Results

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L2 norm on the boundary. In this
run, we use the following setup:

■ coarse mesh: 2× 4× 10 elements

■ σ = 0.025

■ BC tol: 10−5

■ quadratic field variables

■ test space enrichment ∆p = 4

■ greedy refinement parameter θ = 0.2
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 28



Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Further Cost Mitigation: Serendipity Basis

Table: Number of dofs/element for full tensor H1 basis.

p 1 2 3 4 5 6 7
Dim.
2 4 9 16 25 36 49 64
3 8 27 64 125 216 343 512
4 16 81 256 625 1296 2401 4096
5 32 243 1024 3125 7776 16807 32768
6 64 729 4096 15625 46656 117649 262144
7 128 2187 16384 78125 279936 823543 2097152

Table: Number of dofs/element for Serendipity basis.

p 1 2 3 4 5 6 7
Dim.
2 4 8 12 17 23 30 38
3 8 20 32 50 74 105 144
4 16 48 80 136 216 328 480
5 32 112 192 352 592 952 1472
6 64 256 448 880 1552 2624 4256
7 128 576 1024 2144 3936 6960 11776

Questions:
■ Can we use Serendipity for test as well as trial?
■ How well can we approximate optimal test functions with Serendipity basis?
■ How well can we approximate (typical) solutions?
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Further Cost Mitigation: Smart Assembly

We can take advantage of the structure of Vlasov to perform assembly
more efficiently. The simplest terms in our formulation take the form

(Cϕi,ψj)K = (Cϕx
ix
ϕv
iv
,ψx

jx
ψv

jv
)

=

Z
K

Cϕx
ix
ϕv
iv
ψx

jx
ψv

jv
∂x∂v

where ϕi is the trial function and ψj is the test function, and C some
constant. Each velocity dimension is an orthogonal extrusion =⇒
ref.-to-physical Jacobians diagonal, so we may write:�Z

Kx

Cϕx
ix
ψx

jx
∂x

��Z
Kv

ϕv
iv
ψv

jv
∂v

�
.

The velocity-space integral itself decomposes into a product of
integrals along each velocity-space dimension; these integrals may be
performed in reference space and multiplied by the cell measure in the
corresponding velocity dimension to obtain a physical integral.
Similar tricks can be performed for most terms in our formulation.
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Conclusion

■ In Intrepid2, we have some pretty good building blocks for
structure-dependent algorithms.

■ In Vlasov, we have a highly structured problem — especially so
for a space-time 3D3V discretization!

■ Still to do:
■ Use Serendipity bases (recently added to Intrepid2)
■ Smart Assembly
■ Anisotropic adaptivity: vital for higher dimensions

■ We do not have a robust, local anisotropic error indicator. An
area for future research!
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Time-Marching Results: Uniform Refinement Study

Table: Quadratic f, Time-Marching, Relative L2 errors

Mesh Size Num Time Steps E err. ϕ err. ne err. vx err.
4x40 20 3.951E-04 3.715E-04 1.206E-03 5.041E-04
8x80 25 3.620E-04 3.638E-04 3.361E-04 3.133E-04

16x160 50 3.616E-04 3.634E-04 3.350E-04 3.126E-04
32x320 100 3.322E-04 3.333E-04 3.117E-04 3.069E-04
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Adaptive Solve

To give just one adaptive solve example:

■ start with a fine mesh identical to the finest fixed-size quadratic
solution, 32× 320 elements

■ each time step, refine according to energy error, and unrefine an
equal number of elements

■ test space enrichment ∆p = 5.
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Adaptive Solve

Time step 1.
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Adaptive Solve

Time step 5.

July 12, 2022 SIAM Annual 40



Adaptive Solve

Time step 10.
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Adaptive Solve

Time step 20.
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Adaptive Solve

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).
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Motivation: Sum Factorization

For hexahedral elements in 3D:

■ standard assembly: O(p9) flops

■ sum factorization: O(p7) flops in general; O(p6) flops for
constant-Jacobian case.

Savings increase for higher dimensions. . .
Basic idea: save flops by factoring sums.

Adds Multiplies Total OpsPN
i=1

PN
j=1 aibj N2 − 1 N2 2N2 − 1PN

i=1 ai
PN

j=1 bj 2N− 2 N 3N− 2

July 12, 2022 SIAM Annual 44



Intrepid2’s Basis Class

■ Principal method: getValues() — arguments: points,
operator, Kokkos View for values

■ Fills the View with basis values at each ref. space quadrature
point.

Structure has been lost:

■ points: flat container discards tensor structure of points.

■ values: each basis value is the product of tensorial component
bases; we lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than
a structure-preserving data structure would allow.
But our main interest is in the impediment to algorithms that take
advantage of the structure.
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Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.
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Two Sum Factorization Approaches

In N-dimensional hypercube integration, we can have N+ 2 nested
summations; we want to compute and store these in an efficient
manner.
We implement two sum factorization algorithms:

1 Basis-indexed:
■ standard approach (see e.g. Mora & Demkowicz)
■ loop nesting structure: point loops contain basis loops
■ intermediates are indexed by basis ordinals, with implicit reference
to quadrature indices

2 Point-indexed:
■ our design, based on Intrepid2 data layout: we attempt to improve
data locality.

■ loop nesting: basis loops contain point loops
■ intermediates are indexed by point ordinals, with implicit reference
to basis ordinals
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Estimated Flops for Each Algorithm

We use Poisson assembly on a 163 grid, with elementwise integrals of
the form

Kij =

Z
K

∇ϕi ·∇ϕj ∂K,

as our test problem. We implement a flop estimator (counting each
add or multiply as one flop), with results:

p Standard Basis-Indexed Speedup Point-Indexed Speedup
1 1.6e+07 2.7e+07 0.60x 2.9e+07 0.55x
2 5.3e+08 3.6e+08 1.5x 3.8e+08 1.4x
3 6.7e+09 2.4e+09 2.8x 2.5e+09 2.7x
4 4.9e+10 1.1e+10 4.5x 1.1e+10 4.5x
5 2.5e+11 3.7e+10 6.8x 3.9e+10 6.4x
6 1.0e+12 1.1e+11 9.1x 1.1e+11 9.1x
7 3.3e+12 2.7e+11 12x 2.7e+11 12x
8 9.6e+12 6.0e+11 16x 6.1e+11 16x

(Speedup values here are theoretical, based only on flop counts.)
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Poisson Results: Serial
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Figure: Serial (Intel Xeon W, 2.3 GHz) timing comparison for 3D Poisson
integration, 4096 elements. (Optimal workset sizes for each case determined
experimentally.)
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Poisson Results: OpenMP
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Figure: OpenMP (Intel Xeon W, 2.3 GHz, 16 threads) timing comparison for
3D Poisson integration, 4096 elements. (Optimal workset sizes for each case
determined experimentally.)
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Poisson Results: CUDA P100
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Figure: CUDA (P100) timing comparison for 3D Poisson integration, 4096
elements. (Optimal workset sizes for each case determined experimentally.)

Note: The p = 8 case has a dramatic slowdown for standard (for this case, the only

workset size that ran to completion was 1); we exclude it from the speedup plot so

as to not to throw off the scaling.
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