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The full 3D3V Vlasov-Maxwell equations take the form:
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These are our ultimate target. For this talk, we simplify by using an

electrostatic assumption, yielding the Vlasov-Poisson equations.

July 12, 2022 SIAM Annual



Sandia
National
Laboratories

The 3D3V Vlasov-Poisson equations take the form:

of of q_ of
v E._“de%» (8)
€0
E+Vd = 9)

Here, we have introduced a potential ¢ such that E = -V ¢
(convenient for BCs). We simplify further by restricting to 1D1V:
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High-Level Introduction to DPG e

Suppose you have a bilinear form b( -, -) with load 1(-), and (group)
trial variable u € UM, test v € V:

b(u,v) =1(v)

U, V Hilbert; V endowed with inner product (-, - )yv.



High-Level Introduction to DPG () i,

Suppose you have a bilinear form b( -, -) with load 1(-), and (group)
trial variable u € UM, test v € V:

b(u,v) =1(v)

U, V Hilbert; V endowed with inner product (-, - )y.
For each trial basis function e € U™, we define v°pt €V by

(VY w)y =ble,w) ¥YweV;

that, is V2" € V is the Riesz representative of b(e, -). Using these
optimal test functions as our test space, we immediately see that a
stiffness matrix Kyij = b(el,vzﬁ’ ) is symmetric (Hermitian) positive

definite:

t t t
Kij = blei, voP) = (V&' V&), = (vel' vel)v) = blej, vel')

K.
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High-Level Introduction to DPG s

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.



High-Level Introduction to DPG ()

Laboratories

Using infinite-dimensional V is called the ideal DPG method; the

practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.
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Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.
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High-Level Introduction to DPG () i,

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).

= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.

= Method minimizes the error in an energy norm determined by test
inner product (user choice).
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High-Level Introduction to DPG () i,

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) C V(K).
= We express the polynomial order of the test space as p + Ap,
where p is the (H!) order of the trial space.

= polynomial enrichment of the test space = inherently
high-order method.

= We solve (dense) element-local problems to determine optimal
test functions.

= Method minimizes the error in an energy norm determined by test
inner product (user choice).

= Natural error indicator: Riesz representative of residual
b(up, -)—1(-) = can use to drive (robust) AMR.
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Vision for DPG Vlasov Solver () e

The goal: flexible, robust, accurate plasma physics solver for regimes
that PIC does not address well.

Our approach: DPG for Vlasov.

DPG has many attractive features:
= discrete stability is automatic
= almost total flexibility in solution basis (can go high-order)

= “minimum-residual method”: solution error is minimized in an
energy norm

= comes with a built-in error indicator: AMR is natural and robust
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Vlasov in Camellia

Camellia is my Trilinos-based FEM library, with support for DPG +
AMR.
= For Vlasov, we need hyper-dimensional meshes, up to 7D total.
= Key feature: allow orthogonal extrusion of any mesh in new

dimensions.
= Assume orthogonal: simplifies Jacobian computations, etc.

= Do not assume uniform divisions: allow AMR in the new

dimensions.
[omere T Tttt mrIIraErA
IR PR .- |
L2 .- by
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Challenges: Computational Cost and the Curse () =,

The curse of dimensionality looms. We have three key mitigations:
Adaptive Mesh Refinement

= Full support for isotropic h-adaptivity.
= Anisotropic adaptivity: necessary for performance in high
dimensions.

Underway: Hyperdimensional Serendipity bases?

Smart Assembly
= Structure of Vlasov allows most terms to be integrated in lower
dimensions, and multiplied by a pre-computed integral
corresponding to remaining dimensions.
= Not yet implemented.

1Serendipity basis support in Intrepid2; Trilinos master SHA1 22d0482, 7/7/22.
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Temporal Discretization () %,
Two basic approaches:

= time-marching

= space-time
We are pursuing both of these. Concerns for time-marching:

= Theory suggests we can accumulate error; in practice we may
observe this when under-resolved.

= Very little theory for standard schemes beyond backward Euler;
experiments for other PDEs suggest any implicit scheme is
reasonable, though.

= For Vlasov, we have only implemented backward Euler so far.

= Best refinement strategy isn't as clear; may depend on the
problem.

In favor of time-marching:
= High-order RK schemes can be pretty efficient/effective.
= Toolset (ParaView, etc.) is set up for time-marching.
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Temporal Discretization () %,

Concerns for space-time:
= Adds another (curséd) dimension to the mesh.
= Harder to visualize.
In favor of space-time:
= DPG theory supports it very well.
= Can do localized adaptivity in temporal dimension.
= Refinement strategy is clear(er).
= Can run parallel-in-time.

= Strategies, optimizations we develop for velocity dimensions are
likely to carry over to time dimension as well: it's another
orthogonal extrusion.
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Space-Time Formulation: Vlasov e s
We may write the 1D1V Vlasov equation as:

Vy f
Vv - f =0.
AEf

Multiplying by test w € H! and integrating by parts:

Vi
(tn,w) — f | Vxoww | =0,
dE f
where formally
Vi f Ty
th =tr f -t
dEf n,

We use the graph norm on the test space.
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Space-Time Formulation: Poisson () %,

Our space-time Poisson Formulation:
<\A/Ev TnX> - (VEI aXT) + (EXIT) = 0

(Bx, d 1) — (Ex, 0xq) = (e"o q> |

Note that the traces Vg, E are only defined at the spatial interfaces
(those for which ny # 0). Note also that p is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on Ve at the left and right boundaries; for the cold diode, we
impose Ve =0 at each.

We use the graph norm on the test space.
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Solution Strategy: Fixed Point Iteration () i,

We use a fixed-point iteration with a set maximum number of
iterations:

= up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10~°).

= Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10~7 and 10~°.
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The Cold Diode Problem () e

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.

10 kEV beam
—_—
a:':() ;E:r'l:.Olm
$(0) =0 ¢(d) =0

= We have an exact solution due to Jaffé.
= EMPIRE-PIC has very accurate results for this problem.

= Tom Smith provided me the Python scripts used in EMPIRE's
analysis; I've adapted these.

July 12, 2022 SIAM Annual 20



The Cold Diode Problem and Vlasov () e

Some notes on our approach:
= We nondimensionalize for computations, such that v{_, =1 and
* —
Hinal = 1.
= We rescale on output for comparison to exact solution.

= Inflow BC: approximated with a Maxwellian with thermal velocity
0 = 0.025Vpeam.

= 0 >0 = solving a slightly different problem; can expect some
error due to that difference.

= |Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.
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The Cold Diode Problem and Vlasov flre

For space-time, there is a corner discontinuity in the BCs: the initial
condition disagrees with the injection BC at x = 0.

= QOur approach can handle this, but it costs us in the test space
degree.

= We therefore use a linear temporal ramp Wramp(t) to weight the
inflow BC; Wyramp(0) = 0, Wyamp(0.25) = 1.



Space-Time Results: Uniform Refinement Studies

Table: Relative L? errors
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f order Mesh Size E err. ¢ err. e err. vy err.
0 4 x 40 x 40 2.458E-01 | 2.228E-01 | 2.276E-02 | 2.386E-02
0 8 x 80 x 80 1.228E-01 | 1.133E-01 | 1.130E-02 | 1.198E-02
0 16 x 160 x 160 | 6.137E-02 | 5.690E-02 | 5.630E-03 | 5.998E-03
1 4 x 20 x 40 2.481E-03 | 2.505E-02 | 2.446E-03 | 2.200E-03
1 8 x 40 x 80 7.065E-04 | 6.266E-03 | 6.660E-04 | 6.212E-04
1 16 x 80 x 160 3.924E-04 | 1.605E-03 | 3.641E-04 | 3.399E-04
2 4 x 10 x 40 5.021E-04 | 4.206E-04 | 2.586E-03 | 6.109E-04
2 8 x 20 x 80 3.660E-04 | 3.673E-04 | 4.753E-04 | 3.365E-04
2 16 x 40 x 160 3.618E-04 | 3.635E-04 | 4.016E-04 | 3.138E-04
3 4 x5 x40 6.151E-03 | 2.189E-03 | 2.614E-02 | 3.178E-03
3 8 x 10 x 80 3.624E-04 | 3.632E-04 | 4.126E-04 | 3.133E-04
3 16 x 20 x 160 3.619E-04 | 3.637E-04 | 3.353E-04 | 3.126E-04

Uniform refinement study for space-time, for poly orders from 0 to 3. As with our finest
time-marching solves, we see error of roughly 3 X 10™* in each variable, due to the nonzero
value for 0. Note that the second dimension is time; we use coarser discretizations in time
for higher polynomial orders so that we have roughly the same number of temporal nodes

as in the time-marching scheme.
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Adaptive Space-Time Results () =,

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L? norm on the boundary. In this
run, we use the following setup:

= coarse mesh: 2 x 4 x 10 elements
= 0 =0.025

BC tol: 107°

quadratic field variables

= test space enrichment Ap =4

= greedy refinement parameter 6 = 0.2
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Adaptive Space-Time Results: Vlasov Lo

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.
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Further Cost Mitigation: Serendipity Basis s

Table: Number of dofs/element for full tensor H! basis.

p 1 2 3 4 5 6 7
Dim.

2 4 9 16 25 36 49 64
3 8 27 64 125 216 343 512
4 16 81 256 625 1296 2401 4096
5 32 243 1024 3125 7776 16807 32768
6 64 729 4096 15625 46656 117649 262144
7 128 2187 16384 78125 279936 823543 2097152

Table: Number of dofs/element for Serendipity basis.

b 1 2 3 7z 5 6 7
Dim.

2 4 8 12 17 23 30 38
3 8 20 32 50 74 105 144
4 16 48 80 136 216 328 480
5 32 112 192 352 592 952 1472
6 64 | 256 448 880 1552 | 2624 4256
7 128 | 576 1024 | 2144 | 3936 | 6960 11776

Questions:
B Can we use Serendipity for test as well as trial?
B How well can we approximate optimal test functions with Serendipity basis?
¥ How well can we approximate (typical) solutions?




Further Cost Mitigation: Smart Assembly () &=,
We can take advantage of the structure of Vlasov to perform assembly
more efficiently. The simplest terms in our formulation take the form

(Chi, by)x = (COF b7, b5 V5,
:JK CoT, &7, b5 by, 0xov

where ¢; is the trial function and 1 is the test function, and C some
constant. Each velocity dimension is an orthogonal extrusion —
ref.-to-physical Jacobians diagonal, so we may write:

<JKX Cd)}i(xlpiax) (JKV b, Lav) -

The velocity-space integral itself decomposes into a product of
integrals along each velocity-space dimension; these integrals may be
performed in reference space and multiplied by the cell measure in the
corresponding velocity dimension to obtain a physical integral.

Similar tricks can be performed for most terms in our formulation.
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Conclusion () e

In Intrepid2, we have some pretty good building blocks for
structure-dependent algorithms.

In Vlasov, we have a highly structured problem — especially so
for a space-time 3D3V discretization!
Still to do:

= Use Serendipity bases (recently added to Intrepid?2)

= Smart Assembly
= Anisotropic adaptivity: vital for higher dimensions

We do not have a robust, local anisotropic error indicator. An
area for future research!
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Time-Marching Results: Uniform Refinement Study ) &,

Table: Quadratic f, Time-Marching, Relative L? errors

Mesh Size | Num Time Steps E err. ¢ err. T err. Vy err.
4x40 20 3.951E-04 | 3.715E-04 | 1.206E-03 | 5.041E-04
8x80 25 3.620E-04 | 3.638E-04 | 3.361E-04 | 3.133E-04

16x160 50 3.616E-04 | 3.634E-04 | 3.350E-04 | 3.126E-04
32x320 100 3.322E-04 | 3.333E-04 | 3.117E-04 | 3.069E-04




Sandia

Adaptive Solve e

To give just one adaptive solve example:

= start with a fine mesh identical to the finest fixed-size quadratic
solution, 32 x 320 elements

= each time step, refine according to energy error, and unrefine an
equal number of elements

= test space enrichment Ap = 5.
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Adaptive Solve e

Time step 1.
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Adaptive Solve e

Time step 5.
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Adaptive Solve e

Time step 10.
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Adaptive Solve e

Time step 20.
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Adaptive Solve e

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).
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Motivation: Sum Factorization () e

For hexahedral elements in 3D:
= standard assembly: O(p?) flops
= sum factorization: O(p’) flops in general; O(p®) flops for
constant-Jacobian case.
Savings increase for higher dimensions. ..
Basic idea: save flops by factoring sums.

Adds | Multiplies | Total Ops
Z]i\l:1 Z;\lzl aib; | N2—1 N2 | 2N?2-—-1
Y ai Yy by | 2N-2 N| 3N-2
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Intrepid2’s Basis Class () =,

= Principal method: getValues () — arguments: points,
operator, Kokkos View for values
= Fills the View with basis values at each ref. space quadrature
point.
Structure has been lost:
= points: flat container discards tensor structure of points.

= values: each basis value is the product of tensorial component
bases; we lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than
a structure-preserving data structure would allow.

But our main interest is in the impediment to algorithms that take
advantage of the structure.
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Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.
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Structure-Preserving Data Classes in Intrepid2 s

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.



Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.
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Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.
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Structure-Preserving Data Classes in Intrepid2 () i,

® CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

® Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

= TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

= VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

= TensorPoints: tensor point container defined in terms of component
points.
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Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.
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Structure-Preserving Data Classes in Intrepid2 () i,

CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H! value basis
evaluation.

VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

TensorPoints: tensor point container defined in terms of component
points.

BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.
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Two Sum Factorization Approaches () =,

In N-dimensional hypercube integration, we can have N + 2 nested
summations; we want to compute and store these in an efficient
manner.
We implement two sum factorization algorithms:
Basis-indexed:
= standard approach (see e.g. Mora & Demkowicz)
= |oop nesting structure: point loops contain basis loops
= intermediates are indexed by basis ordinals, with implicit reference
to quadrature indices
H Point-indexed:
= our design, based on Intrepid2 data layout: we attempt to improve
data locality.
= |oop nesting: basis loops contain point loops

= intermediates are indexed by point ordinals, with implicit reference
to basis ordinals
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Estimated Flops for Each Algorithm

Sandia
National
Laboratories

We use Poisson assembly on a 162 grid, with elementwise integrals of
the form

Kij = L Vi Vo 3K,

as our test problem. We implement a flop estimator (counting each
add or multiply as one flop), with results:

~No ok wWw NN R T

8

Standard
1.6e+07
5.3e+08
6.7e+09
4.9e+10
2.5e+11
1.0e+12
3.3e+12
9.6e+12

Basis-Indexed
2.7e+07
3.6e+08
2.4e+09
1.1e+10
3.7e+10
1.1e+11
2.7e+11
6.0e+11

Speedup
0.60x
1.5x
2.8x
4.5x
6.8x
9.1x
12x

16x

Point-Indexed
2.9e+07
3.8e+08
2.5e+09
1.1e+10
3.9e+10
1.1e+11
2.7e+11
6.1le+11

Speedup
0.55x
1.4x
2.7x
4.5x
6.4x
9.1x

12x

16x

(Speedup values here are theoretical, based only on flop counts.)
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Poisson Results: Serial flre
Integration Time (Serial CPU) Actual Speedup (Serial CPU) Estimated Throughput
—e—Standard Intrepid2 . —e— Point-Indexed
6,000 1 o Point-Indexed /1 20 1 7 2 1
§4.000 T 8 < 15 8
B ‘ E
, : E
2 / & w0 18, 1
2,000 //‘ 1 £
/” 5 n| k7
5001 — 1 w05 1
| | | | 1P | | | |
2 4 6 8 2 4 6 8 2 4 6 8
P P P

Figure: Serial (Intel Xeon W, 2.3 GHz) timing comparison for 3D Poisson
integration, 4096 elements. (Optimal workset sizes for each case determined
experimentally.)
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Poisson Results: OpenMP s
Integration Time (OpenMP CPU) Speedup on Xeon W (16 threads) Estimated Throughput
| |
7
1 & 30 1
‘ 2
—_ / 4 o
§' 400 - ‘s‘“ 1 é_ I
= 200 A e =
N =
/ " | |
4 4 4
O e—o—+—o—4 o—2—2 |

Figure: OpenMP (Intel Xeon W, 2.3 GHz, 16 threads) timing comparison for
3D Poisson integration, 4096 elements. (Optimal workset sizes for each case
determined experimentally.)




Poisson Results: CUDA P100 () e

Integration Time (CUDA P100) Speedup on CUDA Estimated Throughput
—»—Standard Intrepid2 . P 200 - ]
800 1| —o— ndexed 1 /
e~ Point-Indexed sl /] ol |
600 |- 8 /

15| .

speedup

400 §

Time (sec.)

10} .

@
3

200 |- 1

Est. Throughput (GFlops)
=3
S

T 2 3 4 5 6 7 8 T 2 3 4 5 6 1 2 4 6 8
P P P

Figure: CUDA (P100) timing comparison for 3D Poisson integration, 4096
elements. (Optimal workset sizes for each case determined experimentally.)

Note: The p = 8 case has a dramatic slowdown for standard (for this case, the only
workset size that ran to completion was 1); we exclude it from the speedup plot so

as to not to throw off the scaling.
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