
E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e re s t

July 12, 2022 SIAM Annual

A DPG Space-Time Vlasov-Poisson Discretization
with Adaptive Mesh Refinement

Nathan V. Roberts, Stephen D. Bond, and Eric C. Cyr
nvrober@sandia.gov

Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energyʼs National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2022-9334CThis paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in
the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

1 Vlasov-Poisson Problem

2 Vlasov + DPG: The Vision

3 Space-Time DPG Formulation

4 Cold Diode: Problem and Approach

5 Cold Diode: Results (Space-Time)

6 Further Cost Mitigation Strategies

7 Conclusion

July 12, 2022 SIAM Annual 2

The full 3D3V Vlasov-Maxwell equations take the form:

∂f

∂t
+ v ·

∂f

∂x
+
q

m
(E+ v × B) ·

∂f

∂v
= 0 (1)

J = q

Z
v fd3v (2)

∇ ·E =
ρ

ϵ0
=
q

ϵ0

Z
fd3v (3)

∇ ·B = 0 (4)

∇× E = −
∂B

∂t
(5)

∇× B = µ0

�
J+ ϵ0

∂E

∂t

�
(6)

These are our ultimate target. For this talk, we simplify by using an
electrostatic assumption, yielding the Vlasov-Poisson equations.

July 12, 2022 SIAM Annual 3

The 3D3V Vlasov-Poisson equations take the form:

∂f

∂t
+ v ·

∂f

∂x
+
q

m
E ·
∂f

∂v
= 0 (7)

∇ ·E =
q

ϵ0

Z
fd3v (8)

E+∇ϕ = 0 (9)

Here, we have introduced a potential ϕ such that E = −∇ϕ
(convenient for BCs). We simplify further by restricting to 1D1V:

∂f

∂t
+ vx

∂f

∂x
+
q

m
E ·

∂f

∂vx
= 0 (10)

∂E

∂x
=
q

ϵ0

Z
fdvx (11)

E+
∂ϕ

∂x
= 0 (12)

July 12, 2022 SIAM Annual 4

High-Level Introduction to DPG

Suppose you have a bilinear form b(· , ·) with load l(·), and (group)
trial variable u ∈ Uh, test v ∈ V:

b(u, v) = l(v)

U,V Hilbert; V endowed with inner product (· , ·)V .

For each trial basis function e ∈ Uh, we define vopte ∈ V by

(vopte ,w)V = b(e,w) ∀w ∈ V;

that, is vopte ∈ V is the Riesz representative of b(e, ·). Using these
optimal test functions as our test space, we immediately see that a
stiffness matrix Kij = b(ei, v

opt
ej

) is symmetric (Hermitian) positive
definite:

Kij = b(ei, v
opt
ej

) =
(
voptei

, voptei

�
V
=

(
v
opt
ej

, voptei
)V

�
= b(ej, v

opt
ei

) = Kij.

July 12, 2022 SIAM Annual 5

High-Level Introduction to DPG

Suppose you have a bilinear form b(· , ·) with load l(·), and (group)
trial variable u ∈ Uh, test v ∈ V:

b(u, v) = l(v)

U,V Hilbert; V endowed with inner product (· , ·)V .
For each trial basis function e ∈ Uh, we define vopte ∈ V by

(vopte ,w)V = b(e,w) ∀w ∈ V;

that, is vopte ∈ V is the Riesz representative of b(e, ·). Using these
optimal test functions as our test space, we immediately see that a
stiffness matrix Kij = b(ei, v

opt
ej

) is symmetric (Hermitian) positive
definite:

Kij = b(ei, v
opt
ej

) =
(
voptei

, voptei

�
V
=

(
v
opt
ej

, voptei
)V

�
= b(ej, v

opt
ei

) = Kij.

July 12, 2022 SIAM Annual 6

High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, ·) − l(·) =⇒ can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 7

High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, ·) − l(·) =⇒ can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 8

High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, ·) − l(·) =⇒ can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 9

High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, ·) − l(·) =⇒ can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 10

High-Level Introduction to DPG

Using infinite-dimensional V is called the ideal DPG method; the
practical DPG method breaks V element-wise and uses a high-order
Vh(K) ⊂ V(K).

■ We express the polynomial order of the test space as p+ ∆p,
where p is the (H1) order of the trial space.

■ polynomial enrichment of the test space =⇒ inherently
high-order method.

■ We solve (dense) element-local problems to determine optimal
test functions.

■ Method minimizes the error in an energy norm determined by test
inner product (user choice).

■ Natural error indicator: Riesz representative of residual
b(uh, ·) − l(·) =⇒ can use to drive (robust) AMR.

July 12, 2022 SIAM Annual 11

Vision for DPG Vlasov Solver

The goal: flexible, robust, accurate plasma physics solver for regimes
that PIC does not address well.

Our approach: DPG for Vlasov.

DPG has many attractive features:

■ discrete stability is automatic

■ almost total flexibility in solution basis (can go high-order)

■ “minimum-residual method”: solution error is minimized in an
energy norm

■ comes with a built-in error indicator: AMR is natural and robust

July 12, 2022 SIAM Annual 12

Vlasov in Camellia

Camellia is my Trilinos-based FEM library, with support for DPG +
AMR.

■ For Vlasov, we need hyper-dimensional meshes, up to 7D total.
■ Key feature: allow orthogonal extrusion of any mesh in new
dimensions.

■ Assume orthogonal: simplifies Jacobian computations, etc.
■ Do not assume uniform divisions: allow AMR in the new
dimensions.

July 12, 2022 SIAM Annual 13

Challenges: Computational Cost and the Curse

The curse of dimensionality looms. We have three key mitigations:

1 Adaptive Mesh Refinement
■ Full support for isotropic h-adaptivity.
■ Anisotropic adaptivity: necessary for performance in high
dimensions.

2 Underway: Hyperdimensional Serendipity bases1

3 Smart Assembly
■ Structure of Vlasov allows most terms to be integrated in lower
dimensions, and multiplied by a pre-computed integral
corresponding to remaining dimensions.

■ Not yet implemented.

1Serendipity basis support in Intrepid2; Trilinos master SHA1 22d0482, 7/7/22.

July 12, 2022 SIAM Annual 14

Temporal Discretization

Two basic approaches:

■ time-marching

■ space-time

We are pursuing both of these. Concerns for time-marching:

■ Theory suggests we can accumulate error; in practice we may
observe this when under-resolved.

■ Very little theory for standard schemes beyond backward Euler;
experiments for other PDEs suggest any implicit scheme is
reasonable, though.

■ For Vlasov, we have only implemented backward Euler so far.

■ Best refinement strategy isn’t as clear; may depend on the
problem.

In favor of time-marching:

■ High-order RK schemes can be pretty efficient/effective.

■ Toolset (ParaView, etc.) is set up for time-marching.

July 12, 2022 SIAM Annual 15

Temporal Discretization

Concerns for space-time:

■ Adds another (curséd) dimension to the mesh.

■ Harder to visualize.

In favor of space-time:

■ DPG theory supports it very well.

■ Can do localized adaptivity in temporal dimension.

■ Refinement strategy is clear(er).

■ Can run parallel-in-time.

■ Strategies, optimizations we develop for velocity dimensions are
likely to carry over to time dimension as well: it’s another
orthogonal extrusion.

July 12, 2022 SIAM Annual 16

Space-Time Formulation: Vlasov

We may write the 1D1V Vlasov equation as:

∇xtv ·

 vxf

f
q
mExf

 = 0.

Multiplying by test w ∈ H1 and integrating by parts:

⟨t̂n,w⟩−

 vxf

f
q
mExf

 ,∇xtvw

 = 0,

where formally

t̂n = tr

 vxf

f
q
mExf

 ·

nx

nt

nv

 .

We use the graph norm on the test space.

July 12, 2022 SIAM Annual 17

Space-Time Formulation: Poisson

Our space-time Poisson Formulation:

⟨V̂E, τnx⟩− (VE,∂xτ) + (Ex, τ) = 0

⟨Êx,qnx⟩− (Ex,∂xq) =

�
ρ

ϵ0
,q

�
.

Note that the traces V̂E, Êx are only defined at the spatial interfaces
(those for which nx ̸= 0). Note also that ρ is two-dimensional: it
varies in time as well as space. The usual situation is that BCs are
imposed on V̂E at the left and right boundaries; for the cold diode, we
impose V̂E = 0 at each.

We use the graph norm on the test space.

July 12, 2022 SIAM Annual 18

Solution Strategy: Fixed Point Iteration

We use a fixed-point iteration with a set maximum number of
iterations:

■ up to 15 fixed-point iterations per solve, with early exit if the
relative norm of the update falls below a tolerance (10−6).

■ Linear solves performed with Geometric-Multigrid-preconditioned
conjugate gradient solver, tolerance between 10−7 and 10−9.

July 12, 2022 SIAM Annual 19

The Cold Diode Problem

In the cold diode problem, a beam of electrons is emitted across a 1D
anode-cathode gap, with an applied voltage across the gap.

<latexit sha1_base64="iWd0NtqzyeVpFbpxrTmaNMfn5h4=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQLyUrol6EghePFewHbJeSTbNtaDZZklmhlP4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0qlsEDIt1dYW9/Y3Cpul3Z29/YPyodHLaszw3iTaalNJ6KWS6F4EwRI3kkNp0kkeTsa3c389hM3Vmj1COOUhwkdKBELRsFJQTcdiio5x7eY9MoVUiNz4FXi56SCcjR65a9uX7Ms4QqYpNYGPkkhnFADgkk+LXUzy1PKRnTAA0cVTbgNJ/OTp/jMKX0ca+NKAZ6rvycmNLF2nESuM6EwtMveTPzPCzKIb8KJUGkGXLHFojiTGDSe/Y/7wnAGcuwIZUa4WzEbUkMZuJRKLgR/+eVV0rqo+Vc1/+GyUid5HEV0gk5RFfnoGtXRPWqgJmJIo2f0it488F68d+9j0Vrw8plj9Afe5w/rRY+n</latexit>

�(0) = 0
<latexit sha1_base64="/gz0iyrCNRaKhkIjpjYnhP/vUuM=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBahXkoiol6EghePFewHpKFsNpt26WY37E6EEvozvHhQxKu/xpv/xm2bg7Y+GHi8N8PMvDAV3IDrfjultfWNza3ydmVnd2//oHp41DEq05S1qRJK90JimOCStYGDYL1UM5KEgnXD8d3M7z4xbbiSjzBJWZCQoeQxpwSs5PfTEa9H5/gWu4NqzW24c+BV4hWkhgq0BtWvfqRoljAJVBBjfM9NIciJBk4Fm1b6mWEpoWMyZL6lkiTMBPn85Ck+s0qEY6VtScBz9fdEThJjJkloOxMCI7PszcT/PD+D+CbIuUwzYJIuFsWZwKDw7H8ccc0oiIklhGpub8V0RDShYFOq2BC85ZdXSeei4V01vIfLWtMt4iijE3SK6shD16iJ7lELtRFFCj2jV/TmgPPivDsfi9aSU8wcoz9wPn8AOyiP2w==</latexit>

�(d) = 0

<latexit sha1_base64="kEpKJbRmoK2x8fS75GeUbiIMpIw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1ItQ8OKxov2ANpTNdtIu3WzC7kYsoT/BiwdFvPqLvPlv3LQ9aOuDgcd7M8zMCxLBtXHdb6ewsrq2vlHcLG1t7+zulfcPmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3eR+6xGV5rF8MOME/YgOJA85o8ZK90/Xbq9ccavuFGSZeHNSqcEM9V75q9uPWRqhNExQrTuemxg/o8pwJnBS6qYaE8pGdIAdSyWNUPvZ9NQJObFKn4SxsiUNmaq/JzIaaT2OAtsZUTPUi14u/ud1UhNe+RmXSWpQstmiMBXExCT/m/S5QmbE2BLKFLe3EjakijJj0ynZELzFl5dJ86zqXVS9u/NKzZ3HUYQjOIZT8OASanALdWgAgwE8wyu8OcJ5cd6dj1lrwZnPHMIfOJ8/KhCNsQ==</latexit>

x = 0

<latexit sha1_base64="440FS3M4RZ2tOb+ROLwQwbwHHv8=">AAACAHicbVDLSgMxFL3js9bXqAsXboJFcCFlRkRdFkRwWcE+oDOUTJq2oUlmSDJCGWbjr7hxoYhbP8Odf2Om7UJbDwQO59zDzT1Rwpk2nvftLC2vrK6tlzbKm1vbO7vu3n5Tx6kitEFiHqt2hDXlTNKGYYbTdqIoFhGnrWh0U/itR6o0i+WDGSc0FHggWZ8RbKzUdQ99DwVnaHTbRFmgRMEjG8+7bsWrehOgReLPSKUGU9S77lfQi0kqqDSEY607vpeYMMPKMMJpXg5STRNMRnhAO5ZKLKgOs8kBOTqxSg/1Y2WfNGii/k5kWGg9FpGdFNgM9bxXiP95ndT0r8OMySQ1VJLpon7KkYlR0QbqMUWJ4WNLMFHM/hWRIVaYGNtZ2Zbgz5+8SJrnVf+y6t9fVGrerI4SHMExnIIPV1CDO6hDAwjk8Ayv8OY8OS/Ou/MxHV1yZpkD+APn8wfXnJSk</latexit>

10 kEV beam

<latexit sha1_base64="E5OSVxSuGEamOt3wKY3VuA1fi/w=">AAAB83icbVDLSsNAFL3xWeur6tLNYBFcSEhE1E2h4MZlBfuAJpTJZNIOnZmEmYlYQn/DjQtF3Poz7vwbp4+Fth64cDjnXu69J8o408bzvp2V1bX1jc3SVnl7Z3dvv3Jw2NJprghtkpSnqhNhTTmTtGmY4bSTKYpFxGk7Gt5O/PYjVZql8sGMMhoK3JcsYQQbKwVPtbjmej4KzpHoVaqe602Blok/J9U6zNDoVb6COCW5oNIQjrXu+l5mwgIrwwin43KQa5phMsR92rVUYkF1WExvHqNTq8QoSZUtadBU/T1RYKH1SES2U2Az0IveRPzP6+YmuQkLJrPcUElmi5KcI5OiSQAoZooSw0eWYKKYvRWRAVaYGBtT2YbgL768TFoXrn/l+veX1bo3j6MEx3ACZ+DDNdThDhrQBAIZPMMrvDm58+K8Ox+z1hVnPnMEf+B8/gDgPJBA</latexit>

x = d = .01 m

■ We have an exact solution due to Jaffé.

■ EMPIRE-PIC has very accurate results for this problem.

■ Tom Smith provided me the Python scripts used in EMPIRE’s
analysis; I’ve adapted these.

July 12, 2022 SIAM Annual 20

The Cold Diode Problem and Vlasov

Some notes on our approach:

■ We nondimensionalize for computations, such that v∗beam = 1 and
t∗final = 1.

■ We rescale on output for comparison to exact solution.

■ Inflow BC: approximated with a Maxwellian with thermal velocity
σ = 0.025 vbeam.

■ σ > 0 =⇒ solving a slightly different problem; can expect some
error due to that difference.

■ Important to resolve the BC; we perform initial refinements to
resolve to a given tolerance.

July 12, 2022 SIAM Annual 21

The Cold Diode Problem and Vlasov

For space-time, there is a corner discontinuity in the BCs: the initial
condition disagrees with the injection BC at x = 0.

■ Our approach can handle this, but it costs us in the test space
degree.

■ We therefore use a linear temporal ramp wramp(t) to weight the
inflow BC; wramp(0) = 0,wramp(0.25) = 1.

July 12, 2022 SIAM Annual 22

Space-Time Results: Uniform Refinement Studies

Table: Relative L2 errors

f order Mesh Size E err. ϕ err. ne err. vx err.
0 4× 40× 40 2.458E-01 2.228E-01 2.276E-02 2.386E-02
0 8× 80× 80 1.228E-01 1.133E-01 1.130E-02 1.198E-02
0 16× 160× 160 6.137E-02 5.690E-02 5.630E-03 5.998E-03
1 4× 20× 40 2.481E-03 2.505E-02 2.446E-03 2.200E-03
1 8× 40× 80 7.065E-04 6.266E-03 6.660E-04 6.212E-04
1 16× 80× 160 3.924E-04 1.605E-03 3.641E-04 3.399E-04
2 4× 10× 40 5.021E-04 4.206E-04 2.586E-03 6.109E-04
2 8× 20× 80 3.660E-04 3.673E-04 4.753E-04 3.365E-04
2 16× 40× 160 3.618E-04 3.635E-04 4.016E-04 3.138E-04
3 4× 5× 40 6.151E-03 2.189E-03 2.614E-02 3.178E-03
3 8× 10× 80 3.624E-04 3.632E-04 4.126E-04 3.133E-04
3 16× 20× 160 3.619E-04 3.637E-04 3.353E-04 3.126E-04

Uniform refinement study for space-time, for poly orders from 0 to 3. As with our finest
time-marching solves, we see error of roughly 3× 10−4 in each variable, due to the nonzero
value for σ. Note that the second dimension is time; we use coarser discretizations in time
for higher polynomial orders so that we have roughly the same number of temporal nodes
as in the time-marching scheme.

July 12, 2022 SIAM Annual 23

Adaptive Space-Time Results

For this AMR run, we perform a set of initial refinements, driven by
the error in the boundary condition, until that error is less than a
specified tolerance in the relative L2 norm on the boundary. In this
run, we use the following setup:

■ coarse mesh: 2× 4× 10 elements

■ σ = 0.025

■ BC tol: 10−5

■ quadratic field variables

■ test space enrichment ∆p = 4

■ greedy refinement parameter θ = 0.2

July 12, 2022 SIAM Annual 24

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 0 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 25

Adaptive Space-Time Results: Vlasov

Vlasov solution for the the cold diode problem, after 1 energy-error
refinement. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 26

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 2 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 27

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 3 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 28

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 4 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 29

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 5 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 30

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 6 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 31

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 7 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 32

Adaptive Space-Time Results: Vlasov

Vlasov solution for the cold diode problem, after 8 energy-error
refinements. Time dimension is coming out of the screen; the left side
is the spatial outflow.

July 12, 2022 SIAM Annual 33

Further Cost Mitigation: Serendipity Basis

Table: Number of dofs/element for full tensor H1 basis.

p 1 2 3 4 5 6 7
Dim.
2 4 9 16 25 36 49 64
3 8 27 64 125 216 343 512
4 16 81 256 625 1296 2401 4096
5 32 243 1024 3125 7776 16807 32768
6 64 729 4096 15625 46656 117649 262144
7 128 2187 16384 78125 279936 823543 2097152

Table: Number of dofs/element for Serendipity basis.

p 1 2 3 4 5 6 7
Dim.
2 4 8 12 17 23 30 38
3 8 20 32 50 74 105 144
4 16 48 80 136 216 328 480
5 32 112 192 352 592 952 1472
6 64 256 448 880 1552 2624 4256
7 128 576 1024 2144 3936 6960 11776

Questions:
■ Can we use Serendipity for test as well as trial?
■ How well can we approximate optimal test functions with Serendipity basis?
■ How well can we approximate (typical) solutions?

July 12, 2022 SIAM Annual 34

Further Cost Mitigation: Smart Assembly

We can take advantage of the structure of Vlasov to perform assembly
more efficiently. The simplest terms in our formulation take the form

(Cϕi,ψj)K = (Cϕx
ix
ϕv
iv
,ψx

jx
ψv

jv
)

=

Z
K

Cϕx
ix
ϕv
iv
ψx

jx
ψv

jv
∂x∂v

where ϕi is the trial function and ψj is the test function, and C some
constant. Each velocity dimension is an orthogonal extrusion =⇒
ref.-to-physical Jacobians diagonal, so we may write:�Z

Kx

Cϕx
ix
ψx

jx
∂x

��Z
Kv

ϕv
iv
ψv

jv
∂v

�
.

The velocity-space integral itself decomposes into a product of
integrals along each velocity-space dimension; these integrals may be
performed in reference space and multiplied by the cell measure in the
corresponding velocity dimension to obtain a physical integral.
Similar tricks can be performed for most terms in our formulation.

July 12, 2022 SIAM Annual 35

Conclusion

■ In Intrepid2, we have some pretty good building blocks for
structure-dependent algorithms.

■ In Vlasov, we have a highly structured problem — especially so
for a space-time 3D3V discretization!

■ Still to do:
■ Use Serendipity bases (recently added to Intrepid2)
■ Smart Assembly
■ Anisotropic adaptivity: vital for higher dimensions

■ We do not have a robust, local anisotropic error indicator. An
area for future research!

July 12, 2022 SIAM Annual 36

Time-Marching Results: Uniform Refinement Study

Table: Quadratic f, Time-Marching, Relative L2 errors

Mesh Size Num Time Steps E err. ϕ err. ne err. vx err.
4x40 20 3.951E-04 3.715E-04 1.206E-03 5.041E-04
8x80 25 3.620E-04 3.638E-04 3.361E-04 3.133E-04

16x160 50 3.616E-04 3.634E-04 3.350E-04 3.126E-04
32x320 100 3.322E-04 3.333E-04 3.117E-04 3.069E-04

July 12, 2022 SIAM Annual 37

Adaptive Solve

To give just one adaptive solve example:

■ start with a fine mesh identical to the finest fixed-size quadratic
solution, 32× 320 elements

■ each time step, refine according to energy error, and unrefine an
equal number of elements

■ test space enrichment ∆p = 5.

July 12, 2022 SIAM Annual 38

Adaptive Solve

Time step 1.

July 12, 2022 SIAM Annual 39

Adaptive Solve

Time step 5.

July 12, 2022 SIAM Annual 40

Adaptive Solve

Time step 10.

July 12, 2022 SIAM Annual 41

Adaptive Solve

Time step 20.

July 12, 2022 SIAM Annual 42

Adaptive Solve

Time step 100. In contrast to the fixed-mesh solution, here there is no
visible error accumulation at inflow (or elsewhere).

July 12, 2022 SIAM Annual 43

Motivation: Sum Factorization

For hexahedral elements in 3D:

■ standard assembly: O(p9) flops

■ sum factorization: O(p7) flops in general; O(p6) flops for
constant-Jacobian case.

Savings increase for higher dimensions. . .
Basic idea: save flops by factoring sums.

Adds Multiplies Total OpsPN
i=1

PN
j=1 aibj N2 − 1 N2 2N2 − 1PN

i=1 ai
PN

j=1 bj 2N− 2 N 3N− 2

July 12, 2022 SIAM Annual 44

Intrepid2’s Basis Class

■ Principal method: getValues() — arguments: points,
operator, Kokkos View for values

■ Fills the View with basis values at each ref. space quadrature
point.

Structure has been lost:

■ points: flat container discards tensor structure of points.

■ values: each basis value is the product of tensorial component
bases; we lose that by storing the value of the product.

Both points and values will generally require (a lot) more storage than
a structure-preserving data structure would allow.
But our main interest is in the impediment to algorithms that take
advantage of the structure.

July 12, 2022 SIAM Annual 45

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 46

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 47

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 48

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 49

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 50

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 51

Structure-Preserving Data Classes in Intrepid2

■ CellGeometry: general class for specifying geometry, with support
for low-storage specification of regular grids, as well as arbitrary meshes.

■ Data: basic data container, with support for expression of regular
and/or constant values without requiring redundant storage of those.

■ TensorData: tensor product of Data containers; allows storage of
tensor-product basis evaluations such as those from H1 value basis
evaluation.

■ VectorData: vectors of TensorData, possibly with multiple families
defined within one object. Allows storage of vector-valued basis
evaluations.

■ TensorPoints: tensor point container defined in terms of component
points.

■ BasisValues: abstraction from TensorData and VectorData;
allows arbitrary reference-space basis values to be stored.

■ TransformedVectorData: VectorData object alongside a
transformation matrix, stored in a Data object, that maps it to physical
space.

July 12, 2022 SIAM Annual 52

Two Sum Factorization Approaches

In N-dimensional hypercube integration, we can have N+ 2 nested
summations; we want to compute and store these in an efficient
manner.
We implement two sum factorization algorithms:

1 Basis-indexed:
■ standard approach (see e.g. Mora & Demkowicz)
■ loop nesting structure: point loops contain basis loops
■ intermediates are indexed by basis ordinals, with implicit reference
to quadrature indices

2 Point-indexed:
■ our design, based on Intrepid2 data layout: we attempt to improve
data locality.

■ loop nesting: basis loops contain point loops
■ intermediates are indexed by point ordinals, with implicit reference
to basis ordinals

July 12, 2022 SIAM Annual 53

Estimated Flops for Each Algorithm

We use Poisson assembly on a 163 grid, with elementwise integrals of
the form

Kij =

Z
K

∇ϕi ·∇ϕj ∂K,

as our test problem. We implement a flop estimator (counting each
add or multiply as one flop), with results:

p Standard Basis-Indexed Speedup Point-Indexed Speedup
1 1.6e+07 2.7e+07 0.60x 2.9e+07 0.55x
2 5.3e+08 3.6e+08 1.5x 3.8e+08 1.4x
3 6.7e+09 2.4e+09 2.8x 2.5e+09 2.7x
4 4.9e+10 1.1e+10 4.5x 1.1e+10 4.5x
5 2.5e+11 3.7e+10 6.8x 3.9e+10 6.4x
6 1.0e+12 1.1e+11 9.1x 1.1e+11 9.1x
7 3.3e+12 2.7e+11 12x 2.7e+11 12x
8 9.6e+12 6.0e+11 16x 6.1e+11 16x

(Speedup values here are theoretical, based only on flop counts.)

July 12, 2022 SIAM Annual 54

Poisson Results: Serial

2 4 6 8

0

2,000

4,000

6,000

500

p

T
im

e
(s
ec
.)

Integration Time (Serial CPU)

Standard Intrepid2
Point-Indexed

2 4 6 8

1

5

10

15

20

p

sp
ee
d
u
p

Actual Speedup (Serial CPU)

Point-Indexed

2 4 6 8

0.5

1

1.5

2

p

E
st
.
T
h
ro
u
gh

p
u
t
(G

F
lo
p
s)

Estimated Throughput

Standard
Point-Indexed

Figure: Serial (Intel Xeon W, 2.3 GHz) timing comparison for 3D Poisson
integration, 4096 elements. (Optimal workset sizes for each case determined
experimentally.)

July 12, 2022 SIAM Annual 55

Poisson Results: OpenMP

1 2 3 4 5 6 7 8

0

200

400

600

p

T
im

e
(s
ec
.)

Integration Time (OpenMP CPU)

Standard Intrepid2
Basis-Indexed
Point-Indexed

1 2 3 4 5 6 7 8
1

5

10

15

20

25

30

35

p

sp
ee
d
u
p

Speedup on Xeon W (16 threads)

Basis-Indexed
Point-Indexed

2 4 6 8

10

20

30

p

E
st
.
T
h
ro
u
gh

p
u
t
(G

F
lo
p
s)

Estimated Throughput

Standard
Basis-Indexed
Point-Indexed

Figure: OpenMP (Intel Xeon W, 2.3 GHz, 16 threads) timing comparison for
3D Poisson integration, 4096 elements. (Optimal workset sizes for each case
determined experimentally.)

July 12, 2022 SIAM Annual 56

Poisson Results: CUDA P100

1 2 3 4 5 6 7 8

0

200

400

600

800

p

T
im

e
(s
ec
.)

Integration Time (CUDA P100)

Standard Intrepid2
Basis-Indexed
Point-Indexed

1 2 3 4 5 6 7
1

5

10

15

20

25

p
sp
ee
d
u
p

Speedup on CUDA

Basis-Indexed
Point-Indexed

2 4 6 8

0

50

100

150

200

p

E
st
.
T
h
ro
u
gh

p
u
t
(G

F
lo
p
s)

Estimated Throughput

Standard
Basis-Indexed
Point-Indexed

Figure: CUDA (P100) timing comparison for 3D Poisson integration, 4096
elements. (Optimal workset sizes for each case determined experimentally.)

Note: The p = 8 case has a dramatic slowdown for standard (for this case, the only

workset size that ran to completion was 1); we exclude it from the speedup plot so

as to not to throw off the scaling.

July 12, 2022 SIAM Annual 57

	Vlasov-Poisson Problem
	Vlasov + DPG: The Vision
	Space-Time DPG Formulation
	Cold Diode: Problem and Approach
	Cold Diode: Results (Space-Time)
	Further Cost Mitigation Strategies
	Conclusion

