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Alleviating lll-Posedness in Training of ML Models with Sparse Data @ Natorel

Laboratories

« Challenge: Many Sandia mission domains are defined by a lack of reliable data, effectively precluding
the use of many modern deep learning/machine learning techniques for predictive modeling:

X Excessive expense of computer simulations
X Prohibitive experimental data acquisition cost
X Limited access to classified ad/or sensitive data
* Goal: Enhance the trust in machine learning (ML) model predictions within noisy and sparse data
settings
* Proposed Solution: Novel probabilistic transfer learning framework.

* Transfer learning (TL): knowledge gained through
similar training tasks is used to possibly improve Better start
the training process on a target domain having

Faster convergence

v Greater achievable performance

* Proposed framework will aim to alleviate potential
negative transfer: TL resulting in decreased
Performance

I|m|ted/n0|sy data: g Improved asymptote .
v Improved initialization W \ — Jraditional ML
v Increased rate of convergence % — Negative TL
3
o

Training cycles



Shortcomings of existing TL methodologies

» State-of-the-art algorithms in TL

X tend to be ML model-specific [George et al., 2018]

Traditional ML

X do not consider all (if any) types of uncertainties (data, parametric, - e snge kiearing

Knowledge is not retained

model-form/fidelity) [Colbaugh et al., 2017, Raina et al., 2006] " previoudy ovaine knowedge.
X use simplified (i.e. Gaussian) probability representations of data
[Karbalayghareh et al., 2018]. " Tak
* Most importantly, existing methods do not address key questions

relating to

Target Learning
data Task 2

X when it is worth applying TL (as opposed to traditional ML)
X which ML model to use in TL (out of a set of plausible ones)
X how much knowledge is to be transferred in order to safeguard against negative learning
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Transfer Learning

e Learning a new task relies on previously

learned tasks

® |eamning process on new task may be

more accurate with less data

Source Learning
data Task 1
Target Learning
data Task 2

Transfer Learning Approaches

Brief Description

Instance-transfer

To re-weight some labeled data in the source domain for use in the target domain

Feature-representation-transfer

Find a “good” feature representation that reduces difference between the source and the target

domains and the error of classification and regression models

Parameter-transfer

Discover shared parameters or priors between the source domain and target domain models, which

can benefit for transfer learning

Relational-knowledge-transfer

Build mapping of relational knowledge between the source domain and the target domains. Both

domains are relational domains and i.i.d assumption is relaxed in each domain




Technical Approach @ Nofous
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* Proposed TL framework aims to address the shortcomings in existing methodologies.

* |t determines when to apply TL, which model to use, and how much knowledge to transfer.

* It relies on probability/measure theories to characterize and propagate uncertainties, thereby enhancing
the trustworthiness of ML models in making predictions based on noisy and sparse training data.

Traditional ML Proposed TL
* Isolated, single task learning * Learnings a new task relies on previously learned tasks
* Knowledge is not retained * Learning process on new task may be more accurate
* Learning is performed while ignoring previously obtained with sparse target data

knOWIedge -
Source

data, Dg

Tempering
transformation,
parameterized by

Target

\ data, D
lll-posed learning \
problem due to . Well-posed )

data sparsity! learning problem

S

Probabilistic Approaches to Transfer Learning 4/17




Technical Approach @ Nofous
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* The proposed framework comprises of four inter-related tasks:
« Capturing the knowledge to be transferred in training on source data
* Provide flexibility in capturing PDFs |
» Low-fidelity Gaussian approximations (obtained using, for example, variational inference)
« High-fidelity Gaussian mixture-models (GMM), able to characterize general non-Gaussian
PDFs while enabling analytical scrutiny of the Bayesian framework. [
* Result in a spectrum of performance gains in TL
* Propagating the knowledge to be transferred to target training tasks
« Achieved via extensions of sequential (Bayesian) data assimilation
* Rely on prior PDF tempering transformations (more on this later)
« Determining how much knowledge to transfer given a choice of tempering transformation
 Hierarchical or empirical Bayesian approaches for (joint) inference of tempering hyper-
parameters
 Information-theoretic measures; similarity and distance metrics
» Selecting optimal ML model to use in TL
» Probabilistic TL framework facilitates the use of Bayesian techniques for optimal model
selection
* Investigate feasibility of enhancing model complexity by leveraging Relevance Vector Machine
learning techniques



Training of ML Models — Bayesian Approach @ Nofous
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\ .
ML model// \ \ \ noise

features observation
parameters target
» Forward Problem: Given ML model, M, model parameters, @, and feature vector, x, predict “clean” targets, y
» Inverse Problem: Given a set of “noisy” observations, D = {d, ..., dy}, and feature vectors, X = {x,, ..., xy}, infer parameters
» Observations are
* inherently noisy with unknown (or weakly known) noise model
» sparse in space and time (insufficient resolution)
» Problem typically ill-posed, i.e. no guarantee of solution existence nor uniqueness
« Solution: Probability density function (PDF) over the parameter space obtained using Bayes’ rule:

likelihood prior
! \p(Dlﬁ')p(B)/

posterior — p(D)—__

evidence

« p(0) is the prior PDF of 8: describes prior knowledge, inducing regularization
« p(d|@) is the likelihood PDF of @: describes data fit
« p(@]d) is the posterior PDF of 8: full Bayesian solution

* Not a single point estimate

« Completely characterizes the uncertainty in 6

» Subseauently used in makina predictions under uncertainty

Probabilistic Approaches to Transfer Learning 6/17




Transferal of “Learning” in a Probabilistic Setting @ Natorel
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* In a transfer learning context, we have a target task of interest (regression/classification) with
associated target data {D;, X;}. We also have access to "supplementary” source data {Ds, Xs}.

« Extending on mechanisms of propagating knowledge in sequential data assimilation (e.g. Kalman-
based filters), we can take the captured knowledge from the source data in the form of the
likelihood function and use it as prior knowledge in the target task:

S likelihood of target data

posterior — p(81Dr, Ds) « p(Dr|0)ps(6) —_ prior from source data

« Sequential data assimilation would dictate that the prior PDF is in fact the likelihood PDF obtained
using the source data, i.e. ps(8) = p(Ds|0)

X This approach does not provide flexibility in allowing the modeler to dictate how much knowledge,
If any, is transferred:

* In a traditional setting of data assimilation, all data, whether source or target, can be captured
by the same model with the same parameter values (or PDFs). This assumption is not longer
guaranteed to be valid in a transfer learning setting

* Need a mechanism to control how much knowledge, if any, is transferred from source task to target
task

I I Em B



Tempering-based Diffusion of Knowledge @ Notoel
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How much knowledge to transfer: Tempering-based methodologies
Tempering transformations allow us to “diffuse” or “concentrate” probabilistic knowledge (PDFs)
gained through source domain learning tasks, effectively dictating how much knowledge is
transferred to the target learning task
Many PDF-tempering transformations that dictate how knowledge is transferred are envisaged
Two proposed strategies consist of extensions/modifications of existing Bayesian priors:

* ps(0 | B) xp(Dg|B)F Based on “power” priors

* ps(@|B)=BpDs|®) + (1 —B)N(8;0,02]) Based on “mixture” priors

For the two types of transformations above

* Full transfer: g — 1 reverts back to the full likelihood from the source training task (i.e.
traditional Bayes)

* No transfer: g — 0 results in a flat prior
 Partial transfer:0< g <1
Optimal choice of  depends on many factors, including:
* ML model used (can capture local vs global trends)
* Disparity between source and target domains
» Degree of relative data sparsity (between source and target domains)
 Relative intensity of noise in source and target domain data
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Tempering-based Diffusion of Knowledge @ Notoel
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« The following is an example of the extension of power-based and mixture-based prior tempering transformation to “diffuse”
knowledge in the prior PDF
» The prior and likelihood PDFs are chosen to be Gaussian

* Note: one can show that for a Gaussian PDF, raising it to a power f8 is equivalent to scaling the associated covariance
matrix by the same £ (mean vector unaffected)

» Power prior: Gaussian posterior
p(81D,B) o« p(D|6)p(8)*
=1 = 0.5 =0.3 = 0.15

| pawer priar | pawer prior | pawer priar | paswer prior
|—likelibod |—likelibod |—likelibaod [ likelibeaesd
» » P 1 3

| — pasteriar | —psteriar |— psteriar [ pesteria

« Mixture prior: Gaussian-mixture posterior

p(0|D,B) xp(D|6)[Bp(@)+ (1 —B) N (6;0,1x10%)]

|—méxure prier
— Bk Eoed

— pastirinr

|—mdxiure prior,
— ik Ehoed

— pstirinr

|—mixiure prier
— B Eoed
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Tempering intractable posteriors - high fidelity PDF approximations
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to apply tempering transformations

model (GMM) approximation source posterior/target prior:

pS(‘ngS) ~ q(ﬂ) - zkﬂ'k N(9|#k-3k), Ek = H—logpg(ﬂk)_i

Bayesian inverse problems for nonlinear models can yield intractable posteriors with multimodal behavior.
Problem: multimodal, intractable source posteriors require high-fidelity, closed-form approximations in order

Strategy: combine global optimization with Laplace approximations to efficiently obtain a Gaussian mixture

Can be used as an initialization strategy for obtaining efficient Variational Inference (VI) approximations.

Multimodal, intractable High-fidelity GMM approximation Scalability of VI initialized by GMM approx.
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Degree of Knowledge/Learning to Transfer - Hierarchical Bayes @ Natorel
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« The “tempering” hyper-parameter(s) g allow us to control the degree to which learning is transferred from the
source task, characterized by the prior PDF, to the target task

« There are two approaches within a Bayesian context to determining f:
1. Hierarchical Bayes

« Afully Bayesian treatment of model parameters, 8, and noise and prior hyper-parameters, e.g. y
and f8

« Proceed with joint inference of all unknowns according to joint posterior:

p0,8|D)=p@|B,D)p(B|D) (probability chain rule)
xp(D|6,8)p@|B)p(B|D) (Bayes’rule)
=pD|0)p@|L)pr(p) (independence assumptions) Q Q

« Posterior distribution over the ML model parameters, 8, can be |
obtained by marginalizing over the hyper-parameters ~N(@©,) 0~ps(®15)

v Propagates uncertainty in hyper-parameters through to parameter /dD !

posterior

X Added complexity associated with inference of “less relevant”
parameters and propagation of uncertainty associated with it

M(x,0) = d+e€

jof
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Degree of Knowledge/Learning to Transfer - Empirical Bayes @ Natorel

« There are two approaches within a Bayesian context to determining £:
2. Empirical Bayes
+ A pseudo-Bayesian treatment of prior hyper-parameter(s), S

Instead of inferring and subsequentially propagating uncertainties in the hyper-parameters, point
estimates are obtained by maximizing some objective function

v

X Although empirical Bayes has been applied in numerous contexts for various purposes, there is not
precedent for its use in transfer learning in determining such hyper-parameters

v

Idea: for the objective function, we will follow an information-theoretic approach that relates to the
Bayesian model evidence, oftentimes used in data-informed model selection:

l RN
I \ N

log-evidence  expected data-fit expected information gain

llogF'(D |13)l = E[logp(D |9)]' _E ’lo p(6 ID,ﬁ)‘

* Inthe above, the expectations are with respect to the parameter posterior p(8 | D, )

* The (log) evidence is comprised of a data-fit term and a term which provides a penalty against more
“complex” models, the expected information gain: This has the tendency to drive 8 to zero in many
settings (akin to behavior seen in automatic relevance determination in relevance vector machines)

» Result: use the expected data-fit as the objective function to maximize for the optimal
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Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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« Assuming we’re dealing with a “true” model given by
yi = f(x) +€ = 0.1x3 — 0.75x + ¢; e ~ N (0,1x10%)

« We have 30 data points from the source domain and 4 from the target domain

0.6 = 1 I |
—truth i f —truth
0.4} ® source data %1 " " ® source data
i ® target data p i ® target data
0.2F 0.1F | ! !
1 1 1
ok ol 1 1 1 1
- -~ 1 1 1 1
= = 1 1 1
0.2F 0.1F I | )® 1
1 [ 1 1
-0.4F -0.2F 1 I 1
1 1 1 1
-0.6F -0.3F 1 I 1 1
1 1 1 1
0.8 L N L : 0t : 1 1 L 1 2 I L
-1 0.5 1 1.5 2 04 -03 -0.2 -0.1 0 0.1 02 03 04
X X

« Transfer learning task: Leverage the available source data to enhance accuracy of predictive model for target [
task, trained using the scarce target data ]

» We start with an approximate ML model to train. Let’s assume a linear model:
Vi ® Qo T a1X + €;
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Probabilistic Transfer Learning at Work — Polynomial Surrogates
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* The source data, once assimilated, provide the prior PDF for subsequent use in the target training task
Similarly, the target data provide the likelihood PDF
* We maximize the expected data-fit to arrive at an optimal power prior
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The following are posterior predictive mean estimates and confidence intervals
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* Observation: overlapping source and target domains result in full transfer of learning L



Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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» Let’s repeat the procedure with a target domain that's adjacent to the source domain (extrapolation)
« Again, we maximize the expected data-fit to arrive at an optimal power prior
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 Observation: Optimal transfer results in more accurate/precise predictions
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Probabilistic Transfer Learning at Work — Polynomial Surrogates @ Natorel
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 Lastly, we examine dissimilar target and source domains
« Again, we maximize the expected data-fit to arrive at an optimal power prior
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* The following are posterior predictive mean estimates and confidence intervals
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* Observation: Negligible transfer takes place with dissimilar tasks
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* Goals for probabilistic transfer learning
1. Model performance: improve model performance by leveraging data from similar domains
2. UQ: propagating parametric, model-form, and data uncertainties towards predictions
3. Model selection: allowing for optimal ML model selection within the TL paradigm
4. Scalability: exhibiting moderate/strong computational scalability with increasing data volume and model complexity
5. Optimal transfer: safeguarding against negative learning.
* Key technical steps:
1. Capture the knowledge to be transferred in training on source data
« Probability density functions on the calibrated ML model parameters/hyperparameters using Bayesian inversion
« Efficient, high-fidelity approximations of parameter PDFs using Gaussian Mixture Models
2. Propagate the knowledge to be transferred to target training tasks
* Novel mechanisms for knowledge transfer that extends the traditional Bayesian approach via the application of
prior PDF tempering transformations
3. Determine how much knowledge to transfer given a choice of tempering transformation
« Explore hierarchical or empirical Bayes approaches, based on information-theoretic measures and distance
metrics

Thank you!




