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Fig. 5. Examples of pulse shapes: we add time delays to the machine so that 
bricks are triggered at different times. The application of current over a span of 
time changes the peak pressure of each shot. Each shot is uniquely tailored to 
achieve desired experimental pressures without shocking the sample.
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• Pulsed-power machine Thor can achieve pressures up to 40 
GPa via a magnetically-driven pressure wave

• We use Thor to compress samples from pressures ranging 
from 0 to 30 GPa, which correspond to depths at the base of 
the MTZ

• Electrical current is stored in groups of capacitors called 
bricks; bricks are connected to the central power flow section 
by long cables

Fig. 6. Thor uniquely mimics the mantle geotherm. Because of its ability to tailor 
pulses, we can avoid shocking samples and accessing regions of pressure-
temperature space that are more similar to the geothermal gradient. The data we 
obtain from these experiments is directly applicable to seismic observations of 
the mantle.

Discussion

Fig. 2. Schematic of Earth’s upper mantle, showing the ak135-f 1-D global 
reference model for average seismic wave speeds with depth.7 Equations of 
state typically used to model behavior of crystalline materials, such as the Birch-
Murnaghan EOS, do not accurately predict behavior of amorphous materials like 
melts and glasses. APS Science Highlight (2016).

Fig. 1. Seismic low-velocity zones observed just above and just below the mantle 
transition zone may be attributed to partial melt. Figure modified from Bercovici 
and Karato (2003), Hirschmann (2006) and Sakamaki (2013).

Photo courtesy of Steven Jacobsen

Fig. 4. Left, a photo of the magnetically-driven pulsed power machine Thor, at 
Sandia National Laboratories. Right, stripline geometry schematic with one side 
containing just the LiF window, which measures the machine drive. The other 
side of the stripline contains the stack with both the LiF window and the sample. 
Pressure is generated by shorting an electric current. 

Seismic low-velocity zones (LVZs) just above and below the 
mantle transition zone (MTZ), at 440 km and 660 km depths, 
respectively, are attributed to the presence of molten material.1-3 
Present temperatures at these depths are not hot enough to 
melt mantle material alone. Convective movement of hydrated 
material is thought to induce melting via mineral dehydration 
reactions that occur when relatively wet material moves into a 
region where water storage capacity is low, as it is in both the 
upper and lower mantle.4,5 To interpret the LVZs, we must 
understand how the density and seismic velocities of dry versus 
hydrated silicate melts vary with pressure and temperature at 
mantle conditions.

Equations of state developed for crystalline materials that model 
compressibility and density with respect to pressure do not 
accurately predict behavior of melts.6 Unlike crystalline 
materials, which have periodic, repeating structures, melts and 
their frozen counterparts, glasses, are amorphous materials that 
lack long-range order. In this work, we are using pulsed-power 
shockless ramp experiments at Sandia National Laboratories 
DICE facility to determine the equations of state of vitreous-
SiO2 as a melt analogue. The results will ultimately be used to 
interpret the observed seismic structure of mantle LVZs.  

Backwards integration of the 
drive through space using the 
equations of motion to produce 
pressure-velocity history

Conservation of mass

Conservation of momentum

Map velocity in windowed stack to 
in-situ, then perform Lagrangian 
analysis to obtain longitudinal 
stress vs. density tabular equation 
of state. This updated equation of 
state informs the next mapping. 
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Fig 7. Graph showing the particle velocity vs. time curves of the drive and 
sample, as measured by VISAR. The sample is vitreous-SiO2 containing less 
than 1 ppm H2O
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Fig 9. A comparison of longitudinal sound speed between this work and Zha et 
al.’s results from static compression experiments. Our data shows a dramatic 
decrease in sound velocity at significantly higher pressures.

Fig 10 A side-by-side comparison of static and shock datasets from previous 
works (refs. 9, 10, 11, and 12). Our data shows a change in slope, which might 
indicate a phase transition in SiO2 glass.

Fig 8. Iterative Lagrangian Analysis (ILA) begins with an initial guess equation 
of state, and then iterates until the equations of state converge.8
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