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, | Boltzmann Equation

8tf+v-Vf+a-va:

Particle Density Velocity coordinate Forc

» Defines statistical evolution of system
* Models rarefied gas dynamics:

* Plasmas (Vlasov)

* Upper atmosphere fluid dynamics
* Physically modeled in 6D

* 3D coordinate space (x)

* 3D velocity space (v)
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.| Two Class of Numerical Methods

|
1.Particle-in-cell (PIC) methods T ‘
 Uses coordinate space mesh (3D) (S !
* Particle evolution samples ‘f’ %v o } [‘éﬁiﬁ‘ifﬁéﬁf&é‘éﬁ }l
 Collison operator handled using Direct i ( ) :
Sim. Monte Carlo (DSMC) LT
* Fast, with sampling errors
2. “Continuum” simulation |
. Uses FD/FEM/FV 6D coord/velocity
space mesh .
. Collision operator can be expensive |
. No sampling, 6D mesh-based ‘

methods



‘ Collision Operator
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Collision Operator: Convolutional integral over velocity space
* Each point in velocity space “talks” to every other point

In 3D: N3 points means naive algorithm scales as N°
* For hard-sphere collisions FFT methods have been developed scaling like?
N3log(N)
e Recent work for general methods has developed methods that scale as??
N4log(N)
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. Collision Operator: Our Machine Learning Approach

Clf) ~ 2 (far — ) + Culf

Learnable Parameter Maxwellian Neural network

“Learn” perturbation to BGK operator
 BGK is damping around Maxwellian
e Will learn BGK parameter 7
* Perturbation will be a neural network
* Will “teach” the model using cross-sectional data from DSMC



| Neural Networks

A neural network is a parameterized model:

Neural Network NN(QC, @) — Y Output

Input Parameters
It is composed of multiple layers:
Uy = AOZE‘ -+ b07
uipr = flui;{Aibif) t=1...L—1,

y=Apur;
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Determining the Parameters

Neural network should map data according to the sampled training set:
Input Output

Find ® minimizing the in the model over the training set:

N
Parameters mén ; Loss (NN(CUna @)7 yn)

Loss function is model/data difference:

model data)

° LOSS(y Yy model dataHZ

= Hy

° LOSS(y model —»data Z ydata lOg model)



| Feature Selection

Neural network inputs and outputs written in spectral form over velocity space

Weighting Function Spectral Coefficients Scaled Random Velocity Coordinate
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ijk 31

Normalization Parameter Hermite Polynomials

Number Density = 7 - _ T - Collision Relaxation
Temperature T G Time (used for BGK)
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Spectral representation is designed and normalized to enforce the conservation of
mass, momentum, and energy.

Training and testing data is generated from “converged” DSMC data.



, | Training Data

Using a DSMC code:

1. Generate initial particle distribution

2. Run DSMC simulation with desired collisional kernel

3. Extract data pairs input (density distribution) to output (collisional response)

4 A4

SPIN Conserved Moments
( . ~ | fo(mAt) - Ty,
Simulation 1:  £,(0) = - = fi(mAt) = - = f,(MAt) \ T <
. J
— Simulation Average
Initial State N - ~
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\ J
¥ p [ \
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Comments:

* Leverages existing cross-section tables

* Expensive offline phase for generating data

* Accuracy of trained model will be limited to range of training data
(neural networks are not magic, extrapolation is still hard ill-posed)



o | Training Loss

> Do |giie — Gigel Qijk

_ 8-
samples samples Z Z 9ijk -+ —%JZ Q?)jk
samples 17k !
Relaxation Time Loss Weighted Error for Hermite

Coefficients

Qiji = // |[vijiHi(ws ) Hj (wy) Hy (w.) exp(—w?)| d*w



.| Network Architectures

Vanilla neural networks with sigmoid activations, two flavors:

N3,2(878) N3,2(874)
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» | Applying the network in a Boltzmann code

RK Time Step n

Evaluate Hermite State

f(tns1)

Ft) i f-nT,F
v v
RK Stage O — Evaluate ML Model Evaluate DSMC Correction
=
f(t, + coAt) | n,T,F—1,G G-og

v

Evaluate BGK Term

RK Time Step End T — _(f _ fM)/T

Run time (3D):

Nc2 off T (2Ncoeff + 1)N3

O

Neural Network Hermite Coeff
Calculation Evaluation

Evaluation

BGK




. | Training and Testing

Using an Argon Maxwell-molecule
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Initial Marginal Density
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.1 Double Half Normal

IH

To test behavior in “novel” regimes (an extrapolation test):
* |s machine learned model accurate? No ®
* |s machine learned model stable? Yes ©
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- | Collisional Shock-Tube
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Moderately collisional regime shows formation of shock front
* Good agreement in comparison to PIC (within noise)
* Difference to BGK, shows correction can be significant



» | Final Thoughts

Presented a machine learned model for evaluating collisions

* Useful in the context of a continuum Boltzmann solver
e Compares well to PIC simulation (shock tube)
e Stable in extrapolation regime (double half normal)
* Transient accuracy (bump on tail)

* Theoretical performance in line with other spectral approaches
* Model generated directly from a DSMC code

Presentation based on the Paper:
S. T. Miller, N. V. Roberts, E. C. Cyr, Neural-Network Based Collision Operators for
the Boltzmann Equation, under review at JCP, 2021.
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