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Boltzmann Equation2

• Defines statistical evolution of system
• Models rarefied gas dynamics:

• Plasmas (Vlasov)
• Upper atmosphere fluid dynamics

• Physically modeled in 6D
• 3D coordinate space (x)
• 3D velocity space (v)

Particle Density Velocity coordinate Forc
e

Collisions

Apollo command module



Two Class of Numerical Methods3

1.Particle-in-cell (PIC) methods
• Uses coordinate space mesh (3D)
• Particle evolution samples ‘f’
• Collison operator handled using Direct 

Sim. Monte Carlo (DSMC)
• Fast, with sampling errors

2. “Continuum” simulation
• Uses FD/FEM/FV 6D coord/velocity 

space mesh
• Collision operator can be expensive
• No sampling, 6D mesh-based 

methods



Collision Operator4

Collision Operator: Convolutional integral over velocity space
• Each point in velocity space “talks” to every other point

• For hard-sphere collisions FFT methods have been developed scaling like1

• Recent work for general methods has developed methods that scale as2,3 

In 3D: N3 points means naïve algorithm scales as N6

N3 log(N)

N4 log(N)
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Collision Operator: Our Machine Learning Approach5
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Feature 
Vectors

Neural Networks
A neural network is a parameterized model:

Neural Network

Input

Output

Parameters

It is composed of multiple layers:
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Determining the Parameters
Neural network should map data according to the sampled training set: 

Parameters

Input Output

Loss function is model/data difference: 



Feature Selection8

Neural network inputs and outputs written in spectral form over velocity space

Spectral representation is designed and normalized to enforce the conservation of 
mass, momentum, and energy.

Training and testing data is generated from “converged” DSMC data.



Training Data9

Using a DSMC code:
1. Generate initial particle distribution
2. Run DSMC simulation with desired collisional kernel
3. Extract data pairs input (density distribution) to output (collisional response)

Comments:
• Leverages existing cross-section tables
• Expensive offline phase for generating data
• Accuracy of trained model will be limited to range of training data

(neural networks are not magic, extrapolation is still hard ill-posed)



Training Loss10

Relaxation Time Loss

+

Weighted Error for Hermite 
Coefficients



Network Architectures11

Vanilla neural networks with sigmoid activations, two flavors:

Input/Output Spectral space is 
the same

”Truncated”: Output spectral 
space is smallerIn size

Out sizeHidden layers

Width Mult.



Applying the network in a Boltzmann code12

Run time (3D):

Neural Network 
Evaluation

Hermite Coeff 
Calculation

BGK 
Evaluation



Training and Testing13

Using an Argon Maxwell-molecule

Neural network trains well, 
no sign of overfitting, error 
is reasonable on test set



Bump on Tail14

Initial Marginal Density 2ms Marginal Density

Marginal Density Error Entropy



Double Half Normal15

To test behavior in “novel” regimes (an extrapolation test):
• Is machine learned model accurate? No 
• Is machine learned model stable? Yes 

Marginal Density 2ms Marginal Density



Collisional Shock-Tube16

Moderately collisional regime shows formation of shock front
• Good agreement in comparison to PIC (within noise)
• Difference to BGK, shows correction can be significant



Final Thoughts17

Thanks to the DOE Office of Science ASCR Early Career Research 
Program for supporting this work! 

Presented a machine learned model for evaluating collisions
• Useful in the context of a continuum Boltzmann solver

• Compares well to PIC simulation (shock tube)
• Stable in extrapolation regime (double half normal)
• Transient accuracy (bump on tail)

• Theoretical performance in line with other spectral approaches
• Model generated directly from a DSMC code

Presentation based on the Paper:
S. T. Miller, N. V. Roberts, E. C. Cyr, Neural-Network Based Collision Operators for 
the Boltzmann Equation, under review at JCP, 2021. 


