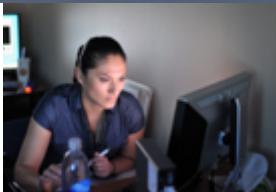


Sandia
National
Laboratories

Neural-Network Based Collision Operators for the Boltzmann Equation



PRESENTED BY

Eric C. Cyr, Nathan V. Roberts, Stephen D. Bond
(SNL)

Seam Miller (AMD)

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Boltzmann Equation

$$\partial_t f + \mathbf{v} \cdot \nabla f + \mathbf{a} \cdot \nabla_{\mathbf{v}} f = C[f]$$

Particle Density Velocity coordinate Force Collisions

- Defines statistical evolution of system
- Models rarefied gas dynamics:
 - Plasmas (Vlasov)
 - Upper atmosphere fluid dynamics
- Physically modeled in 6D
 - 3D coordinate space (\mathbf{x})
 - 3D velocity space (\mathbf{v})

Apollo command module

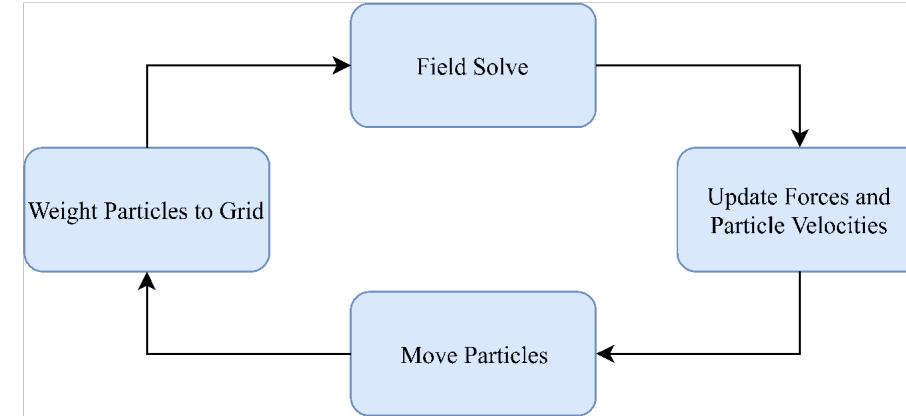
Two Class of Numerical Methods

1. Particle-in-cell (PIC) methods

- Uses coordinate space mesh (3D)
- Particle evolution samples 'f'
- Collision operator handled using Direct Sim. Monte Carlo (DSMC)
- Fast, with sampling errors

2. “Continuum” simulation

- Uses FD/FEM/FV 6D coord/velocity space mesh
- Collision operator can be expensive
- No sampling, 6D mesh-based methods



Collision Operator

$$C[f] = \iiint d\mathbf{v}_1 \iint dS B(\|\mathbf{v} - \mathbf{v}_1\|, \theta) (f(\mathbf{x}, \mathbf{v}', t) f(\mathbf{x}, \mathbf{v}'_1, t) - f(\mathbf{x}, \mathbf{v}, t) f(\mathbf{x}, \mathbf{v}_1, t))$$

Collision Operator: Convolutional integral over velocity space

- Each point in velocity space “talks” to every other point

In 3D: N^3 points means naïve algorithm scales as N^6

- For hard-sphere collisions FFT methods have been developed scaling like¹

$N^3 \log(N)$

- Recent work for general methods has developed methods that scale as^{2,3}

$N^4 \log(N)$

1. C. Mouhot, L. Pareschi, Fast algorithms for computing the Boltzmann collision operator, *Math. of Comp.* (2006)
2. I. M. Gamba, J. R. Haack, C. D. Hauck, J. Hu, A fast spectral method for the Boltzmann collision operator with general collision kernels, *SISC* (2017)
3. S. Jaiswal, A. A. Alexeenko, J. Hu, A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general collision kernels, *JCP* (2019)

Collision Operator: Our Machine Learning Approach

$$C[f] \approx \frac{1}{\tau} (f_M - f) + C_{\text{ML}}[f]$$

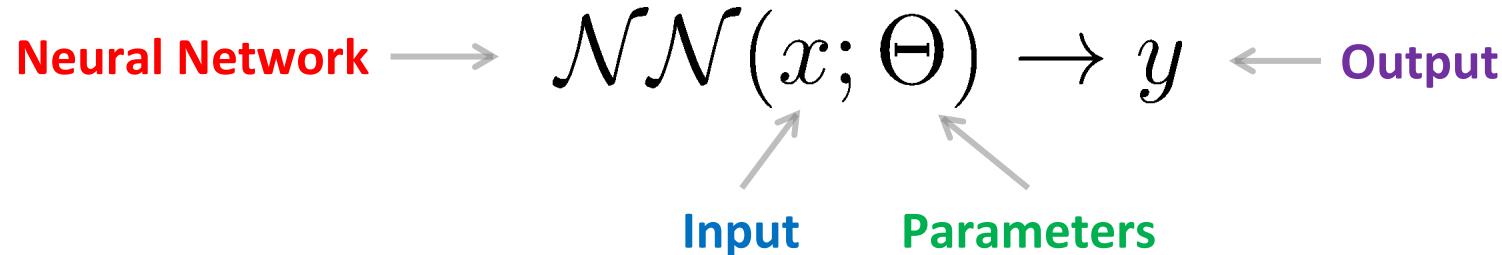
Learnable Parameter Maxwellian Neural network

“Learn” perturbation to BGK operator

- BGK is damping around Maxwellian
- Will learn BGK parameter τ
- Perturbation will be a neural network
- Will “teach” the model using cross-sectional data from DSMC

Neural Networks

A neural network is a parameterized model:



It is composed of multiple **layers**:

Feature Vectors

$$u_1 = A_0 x + b_0,$$
$$u_{i+1} = f(u_i; \{A_i, b_i\}) \quad i = 1 \dots L - 1,$$
$$y = A_L u_L;$$
$$\Theta = \{A_i, b_i\}_{i=0}^{L-1} \cup \{A_L\}$$

Determining the Parameters

Neural network should map data according to the sampled **training set**:

Find Θ minimizing the **loss** in the model over the **training set**:

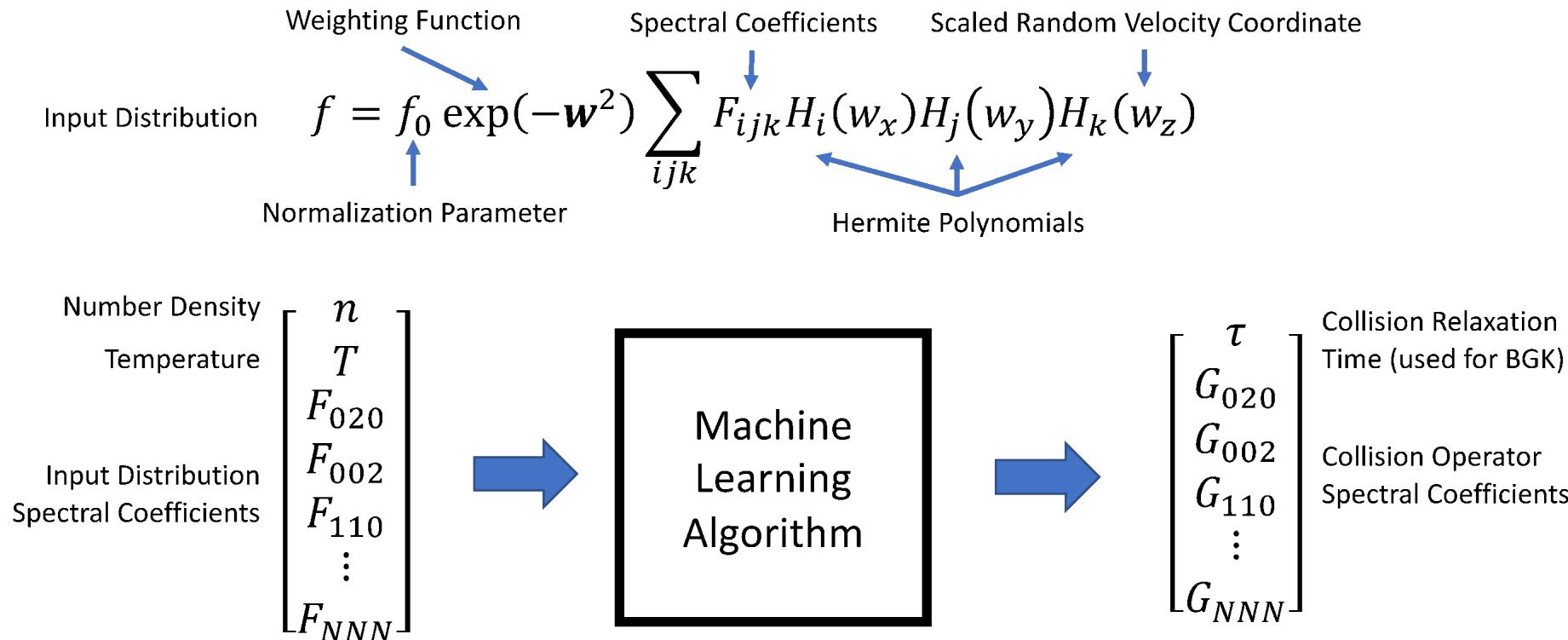
A diagram showing the optimization equation for parameters:
$$\min_{\Theta} \sum_{n=1}^N \text{Loss}(\mathcal{NN}(x_n; \Theta), y_n)$$
. The label 'Parameters' is positioned to the left of the equation, with an arrow pointing to the Θ in the equation.

Loss function is model/data difference:

- $\text{Loss}(y^{model}, y^{data}) = \|y^{model} - y^{data}\|^2$
- $\text{Loss}(\vec{y}^{model}, \vec{y}^{data}) = \sum_{c=1}^{N_c} y_c^{data} \log(y_c^{model})$

Feature Selection

Neural network inputs and outputs written in spectral form over velocity space



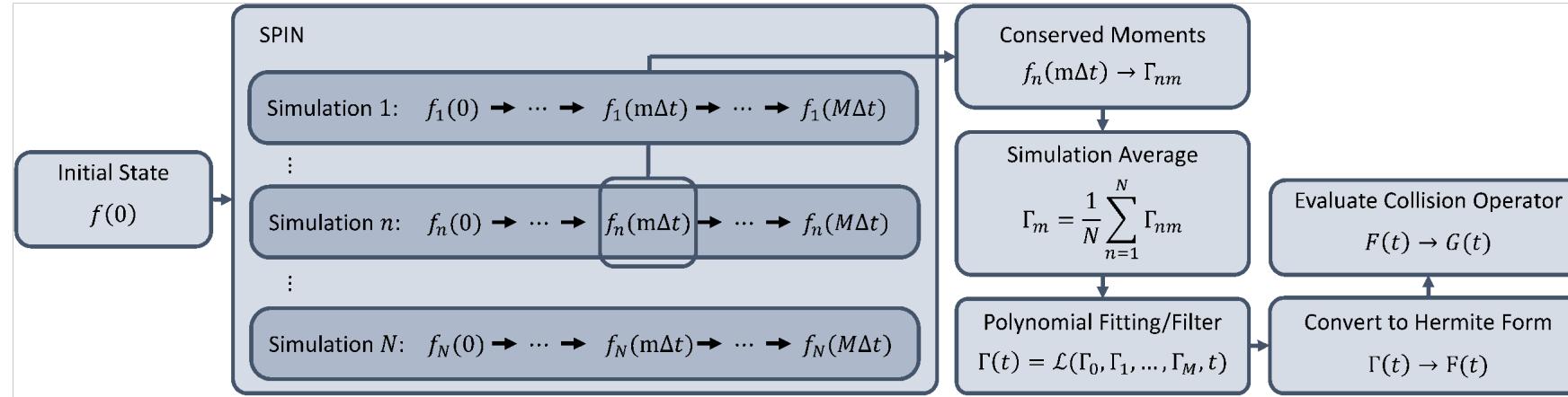
Spectral representation is designed and normalized to enforce the conservation of mass, momentum, and energy.

Training and testing data is generated from “converged” DSMC data.

Training Data

Using a DSMC code:

1. Generate initial particle distribution
2. Run DSMC simulation with desired collisional kernel
3. Extract data pairs input (density distribution) to output (collisional response)



Comments:

- Leverages existing cross-section tables
- Expensive offline phase for generating data
- Accuracy of trained model will be limited to range of training data
(neural networks are not magic, extrapolation is still hard ill-posed)

Training Loss

$$\sqrt{\frac{1}{N_{\text{samples}}} \sum_{\text{samples}} (\tau - \bar{\tau})^2}$$

Relaxation Time Loss

+

$$\frac{\sum_{\text{samples}} \sum_{ijk} |g_{ijk} - \bar{g}_{ijk}| \Omega_{ijk}}{\sum_{\text{samples}} \sum_{ijk} \left| \bar{g}_{ijk} + \frac{\delta_{ijk}}{\gamma_{ijk}} \right| \Omega_{ijk}}$$

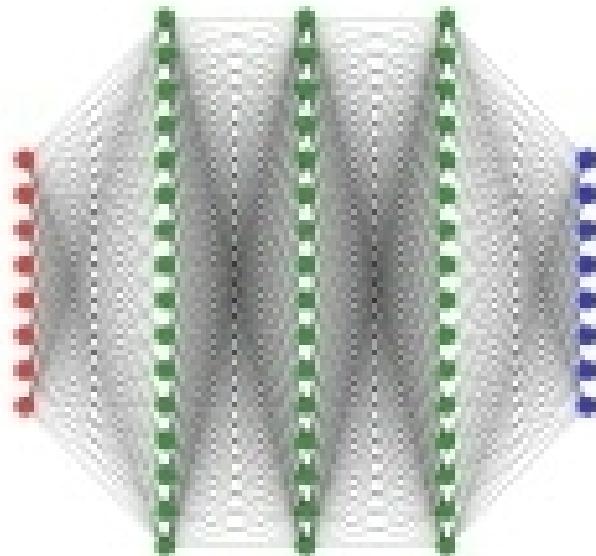
**Weighted Error for Hermite
Coefficients**

$$\Omega_{ijk} = \iiint_{-\infty}^{\infty} \left| \gamma_{ijk} H_i(w_x) H_j(w_y) H_k(w_z) \exp(-\mathbf{w}^2) \right| d^3 w$$

Network Architectures

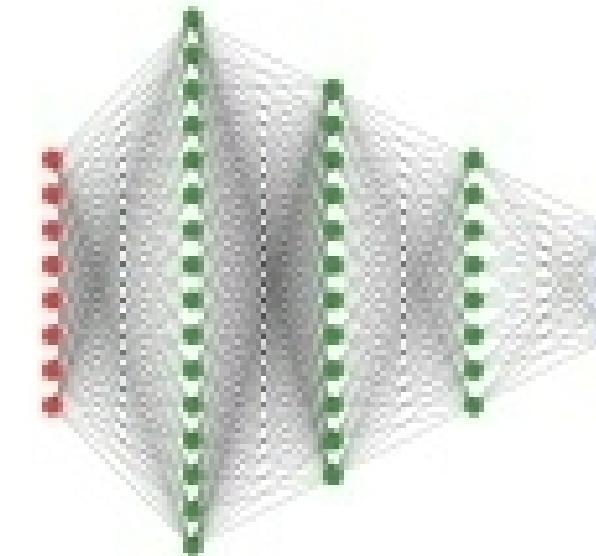
Vanilla neural networks with sigmoid activations, two flavors:

$$\mathcal{N}_{3,2}(8, 8)$$



Input/Output Spectral space is
the same

$$\mathcal{N}_{3,2}(8, 4)$$

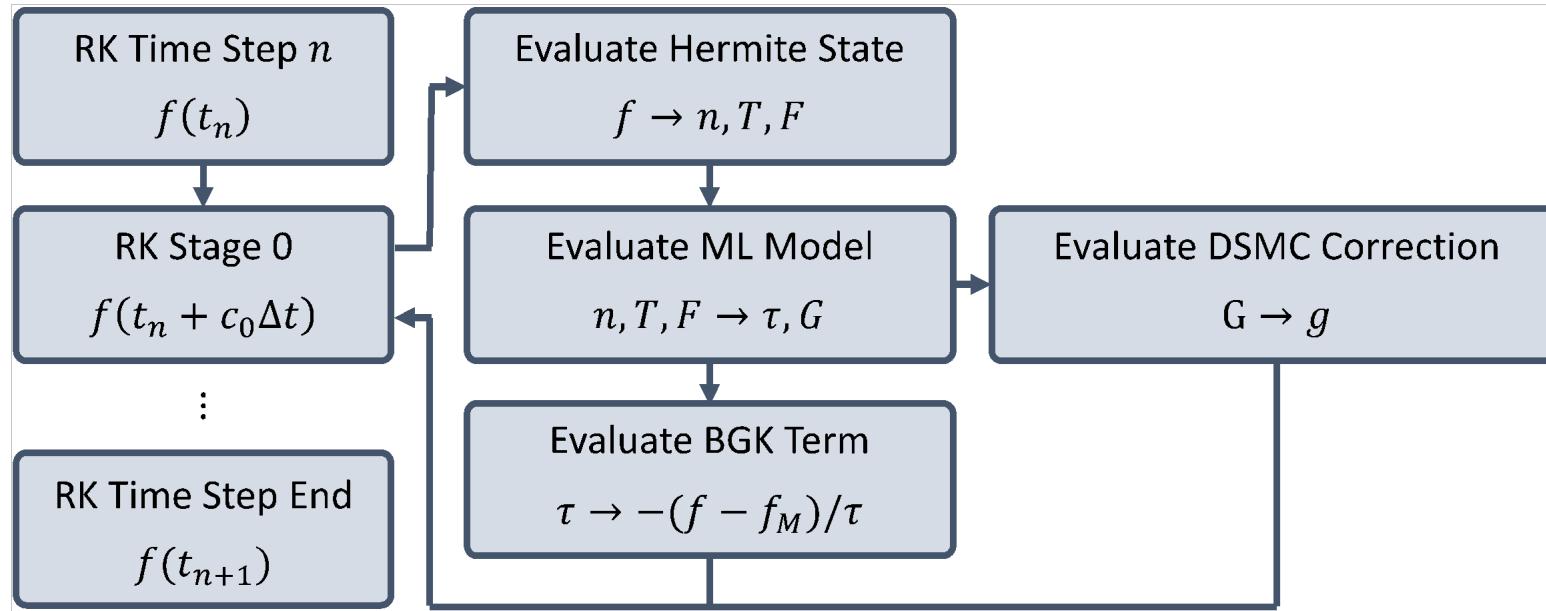


"Truncated": Output spectral
space is smaller

Width Mult. In size
Hidden layers Out size

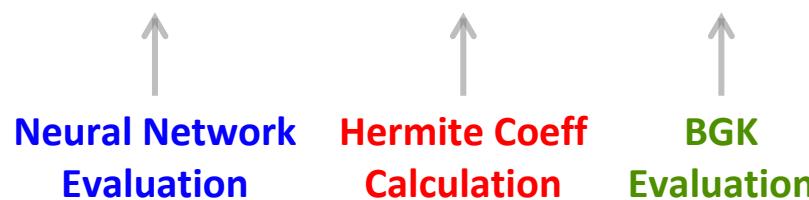
$$\mathcal{N}_{l,w}(i, o)$$

Applying the network in a Boltzmann code



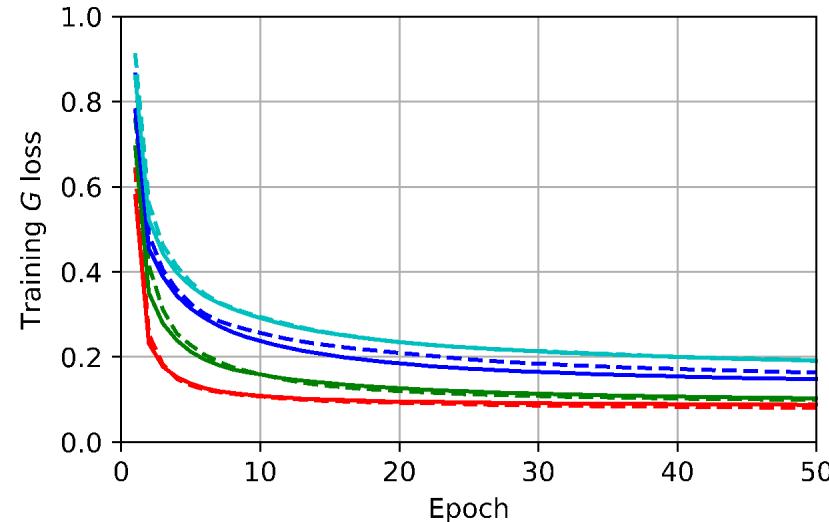
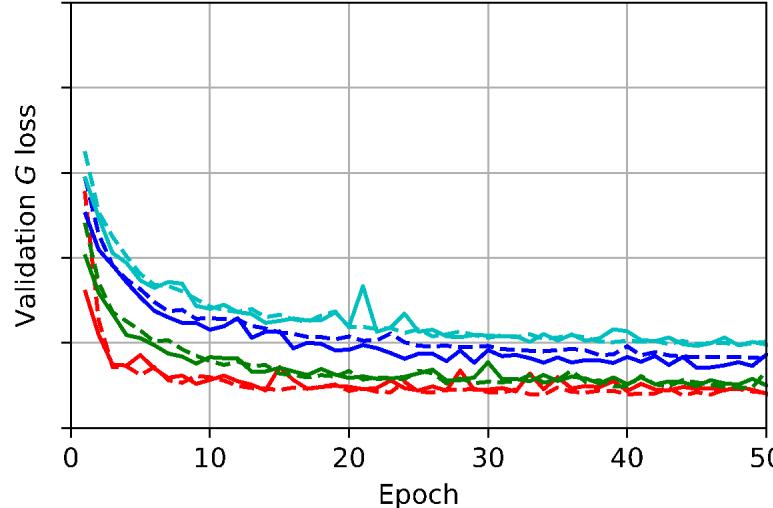
Run time (3D):

$$N_{\text{coeff}}^2 + (2N_{\text{coeff}} + 1)N^3$$

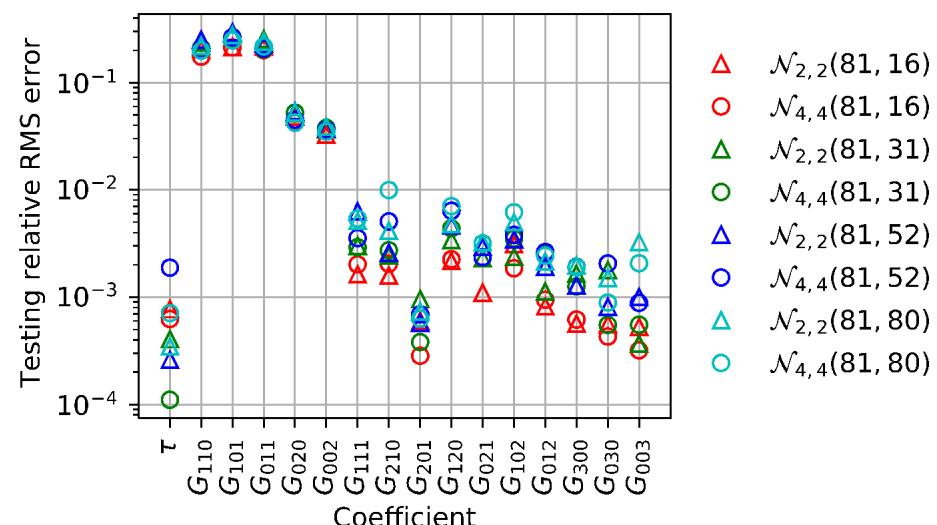


Training and Testing

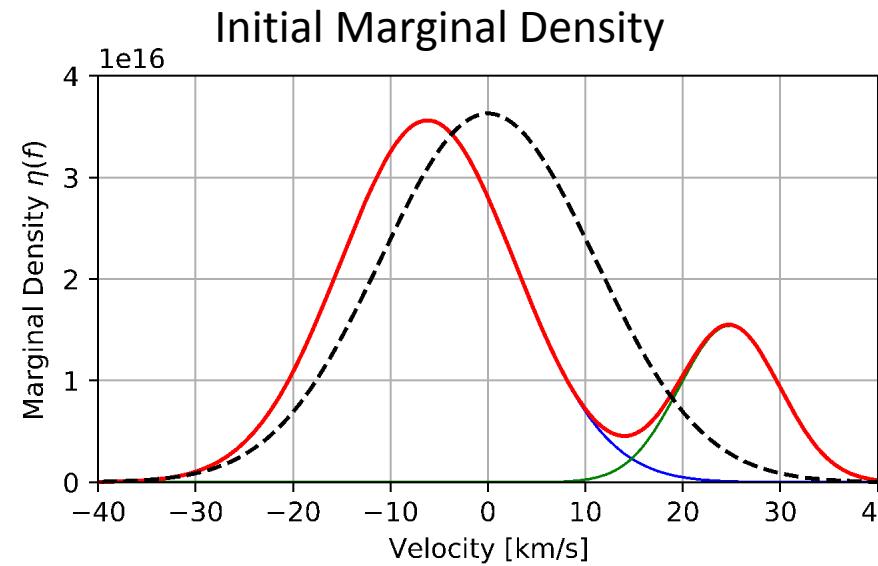
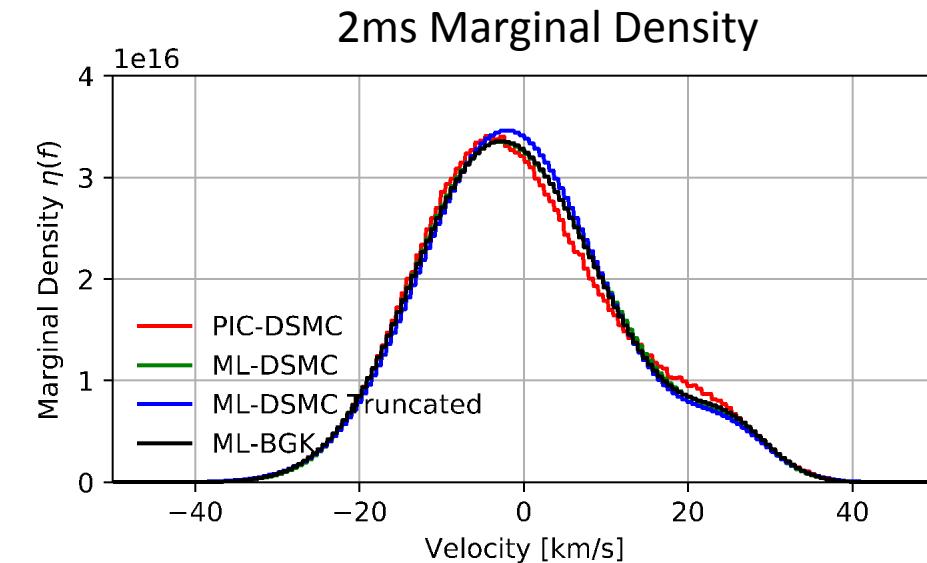
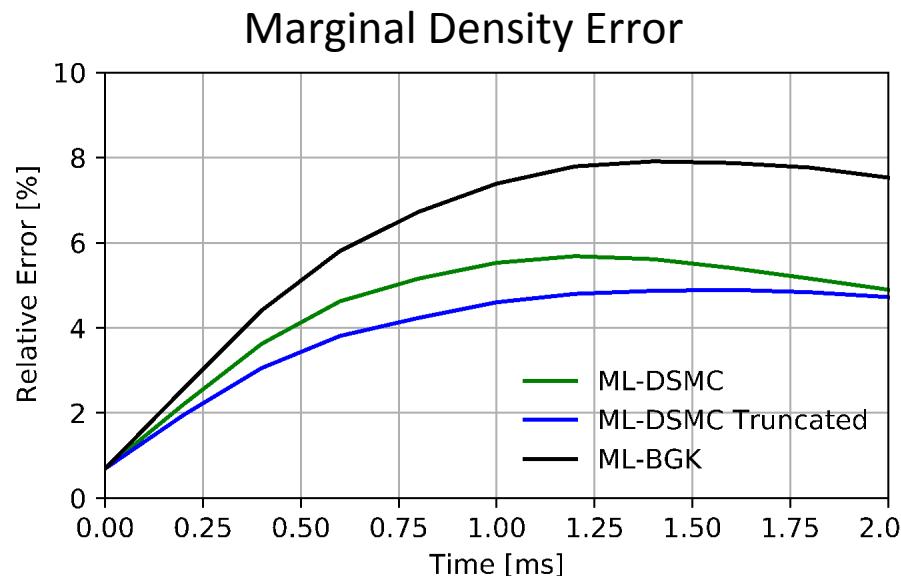
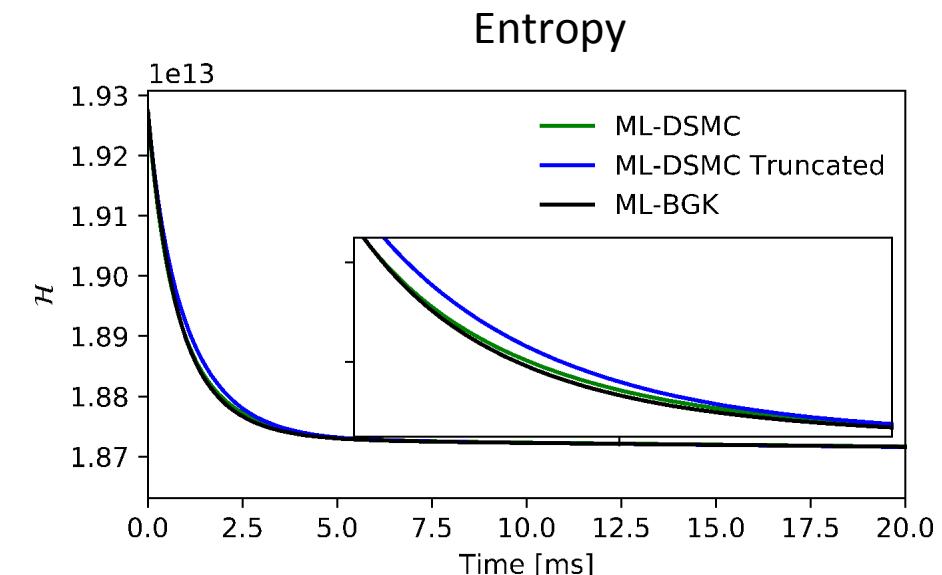
Using an Argon Maxwell-molecule



**Neural network trains well,
no sign of overfitting, error
is reasonable on test set**



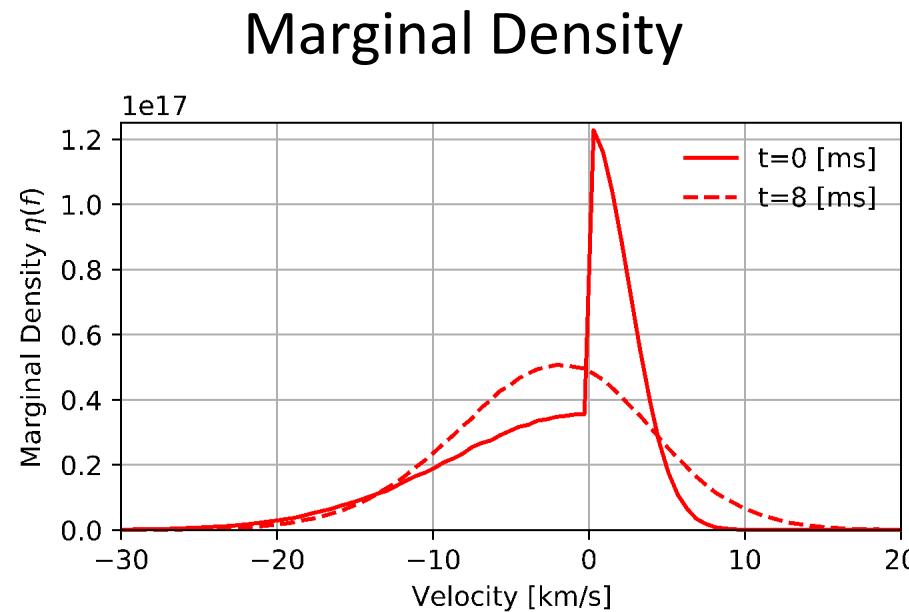
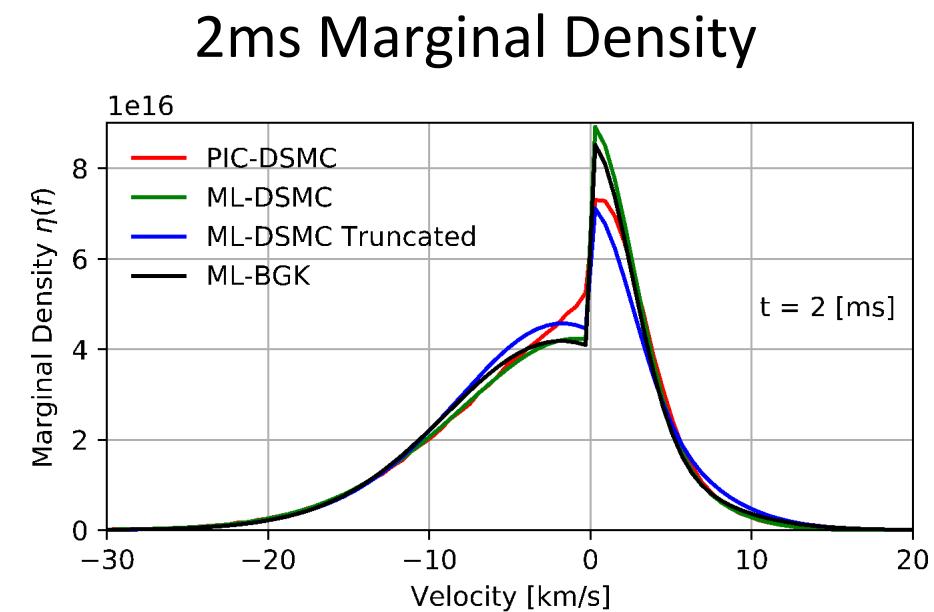
Bump on Tail



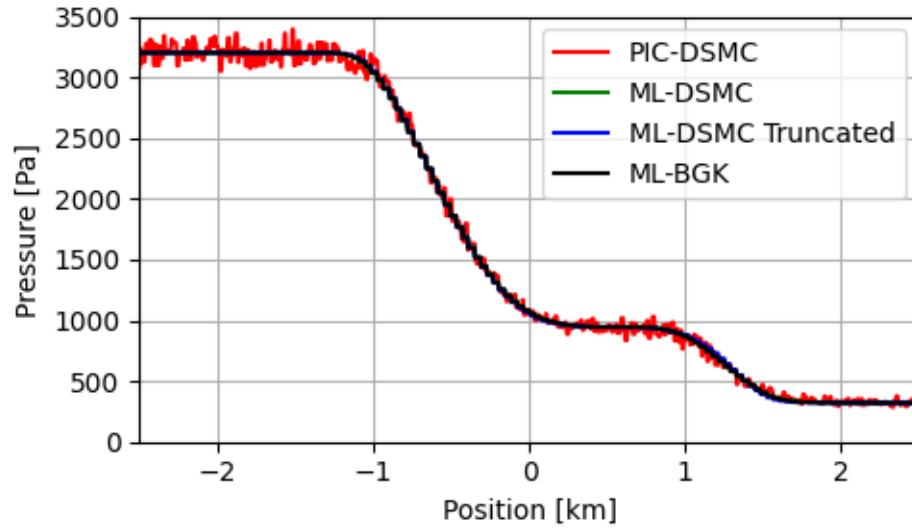
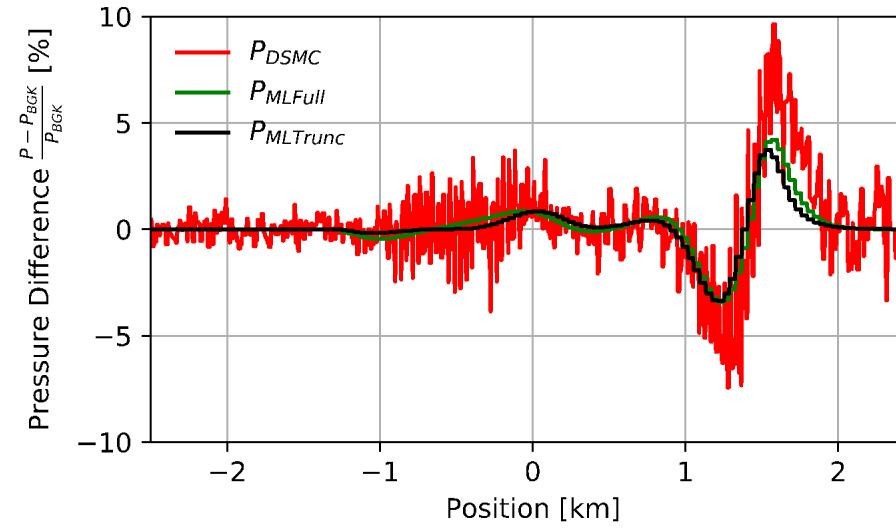
Double Half Normal

To test behavior in “novel” regimes (an extrapolation test):

- Is machine learned model accurate? No 😞
- Is machine learned model stable? Yes 😊



Collisional Shock-Tube



Moderately collisional regime shows formation of shock front

- Good agreement in comparison to PIC (within noise)
- Difference to BGK, shows correction can be significant

Final Thoughts

Presented a machine learned model for evaluating collisions

- Useful in the context of a continuum Boltzmann solver
 - Compares well to PIC simulation (shock tube)
 - Stable in extrapolation regime (double half normal)
 - Transient accuracy (bump on tail)
- Theoretical performance in line with other spectral approaches
- Model generated directly from a DSMC code

Presentation based on the Paper:

S. T. Miller, N. V. Roberts, E. C. Cyr, Neural-Network Based Collision Operators for the Boltzmann Equation, under review at JCP, 2021.