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2 Basic multigrid algorithm
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Basic ideas
Reconstruct the fine level
solution from information of
coarse representations of the
fine problem.

Apply cheap smoothers on
each multigrid level.

Restriction and
prolongation operators
transfer information between
different multigrid levels.

The multigrid method is fully defined by the
level smoothers and transfer operators!

Main idea:
Attack different components of the er-
ror on different grids/levels!
⇒ Desired optimal behaviour: conver-
gence in a fixed number of iterations in-
dependent of problem size n.
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Recursive algorithm
Multigrid(xk , bk ):

1. If n < 1000, use direct solver and
return.

2. Presmoothing: Apply Spre
k on xk .

3. Transfer residual r k to next
coarser level:

r k+1 = Rk→k+1r k

4. Call Multigrid(xk+1, r k+1).

5. Transfer correction xk+1 to fine
grid and add to xk :

xk = xk + Pk+1→k xk+1

6. Postsmoothing: Apply Spost
k on xk .
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smoothers and transfer operators!
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3 What Is MG-Region?

Some advances have focused on MG for hybrid hierarchical grids (HHGs).

MG-Region extends these ideas to the broader class of semi-structured
meshes.
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4 HHG with an unstructured region

Modify the HHG scheme to allow for unstructured regions

Structured-multigrid algorithm AMG algorithm

Need coarse points on interface to agree between regions
Want sparsity pattern of operators to agree on the interface
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5 A domain decomposition framework

We would like to solve Au = f on Ω.

𝛺(") 𝛺($) 𝛺(%)

Γ!" Γ"#

Write Ω =
⋃

1≤k≤n
Ω(k), A =

∑
1≤k≤n

A(k).

A(k) is 0 for all DOFs outside of domain k .
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6 The region format, JvK

Convert traditional representations (composite) to region representations.

JvK = ΨT v .
Ψ is an n × nr boolean transform.

JvKT =
[

JvKT
1 , . . . , JvKT

m
]T .

ΨΨT counts the number of region DOFs
associated with a composite DOF.

Ψ = [Ψ1, . . . ,Ψm].
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7 Non-Invasive
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8 Utilizing the region format

Similarly, this may be applied to matrices.

[[[A]]] =


ΨT

1 A(1)Ψ1
.

.
.

ΨT
mA(m)Ψm

 . (1)

Lemma 1. Using [[[A]]] and Ψ as defined previously, we have

Ψ[[[A]]]ΨT = A. (2)
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9 Utilizing the region format

Let Ψ̄ be the coarse version of Ψ. Define

JPK =


ΨT

1 PΨ̄1
.

.
.

ΨT
mPΨ̄m

 , (3)

JRK =


Ψ̄T

1 RΨ1
.

.
.

Ψ̄T
mRΨm

 . (4)

Grid transfers must match on interfaces.
August 2, 2022



10 Utilizing the region format

Lemma 2. Let JPK and JRK be defined by (3), (4). Then if each row of P does not
have nonzeros in multiple region interiors, and if each column of R does not have
nonzeros in multiple region interiors,

JPKΨ̄T = ΨP, (5)

Ψ̄JRK = RΨ. (6)
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11 Main result

Theorem 1. Let JRK, [[[A]]], JPK be as defined previously. Then

Ψ̄JRK[[[A]]]JPKΨ̄T = RAP. (7)
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12 Algorithm

Residual updates:
JrK = JbK−ΨT Ψ[[[A]]]JuK, (8)

Jacobi smoothing:

JuK← JuK + ω JD̃−1KJrK (9)

Coarsen the regions using a structured algorithm, then either coarsen additionally
with AMG or direct solve.
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13 Algorithm

function mgSetup([[[A]]]) : function mgCycle([[[A]]], JuK, JbK) :

JDK← diag(ΨT Ψ diag([[[A]]])) JuK← applySmoother(JuK, JbK, [[[A]]])

JPK← constructP([[[A]]]) JrK← JbK−ΨT Ψ[[[A]]]JuK
JRK← JPKT JūK← 0
[[[Ā]]] ← JRK[[[A]]]JPK JūK← solve([[[Ā]]], JūK, Ψ̄T Ψ̄JRKJΨΨT K−1JrK)

Ψ̄← inject(Ψ) JuK← JuK + JPKJūK

August 2, 2022



14 Results - structured hierarchy match
Structured vs. MG-Region (structured), 730× 730 square mesh
2D Laplace problem with a 7-point stencil, 1pre, 1post

Jacobi Gauss–Seidel Chebyshev
#its. Structured 9 Regions Structured 9 Region Structured 9 Regions

0 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00
1 1.77885821e-02 1.77885821e-02 1.34144214e-02 1.34395087e-02 1.42870540e-02 1.42868592e-02
2 3.09066249e-03 3.09066249e-03 1.22727384e-03 1.23709339e-03 9.93752447e-04 9.93713870e-04
3 6.17432509e-04 6.17432509e-04 1.27481334e-04 1.29627870e-04 1.21921975e-04 1.21914771e-04
4 1.29973612e-04 1.29973612e-04 1.41133381e-05 1.45165400e-05 1.58413729e-05 1.58401012e-05
5 2.81812370e-05 2.81812370e-05 1.61878817e-06 1.69088891e-06 2.11105538e-06 2.11083642e-06
6 6.22574415e-06 6.22574415e-06 1.89847271e-07 2.02561731e-07 2.86037857e-07 2.86000509e-07
7 1.39312700e-06 1.39312700e-06 2.26276959e-08 2.48757453e-08 3.92564304e-08 3.92500462e-08
8 3.14666393e-07 3.14666393e-07 2.73250326e-09 3.13452182e-09 5.44989750e-09 5.44879379e-09
9 7.15836477e-08 7.15836477e-08 3.33798476e-10 4.06768456e-10 7.65555357e-10 7.65361045e-10

10 1.63770972e-08 1.63770972e-08 4.12201997e-11 5.46524944e-11 1.08974518e-10 1.08939546e-10
11 3.76413472e-09 3.76413472e-09 5.14512205e-12 7.64221900e-12 1.57581213e-11 1.57516868e-11
12 8.68493274e-10 8.68493274e-10 6.49387222e-13 1.11538919e-12 2.32197807e-12 2.32077246e-12
13 2.01044350e-10 2.01044350e-10 1.69735837e-13 3.49742848e-13 3.49514354e-13
14 4.66714466e-11 4.66714466e-11
15 1.08616953e-11 1.08616953e-11
16 2.53347464e-12 2.53347464e-12
17 5.92132868e-13 5.92132868e-13

MG-Region and composite structured
hierarchies are identical, residuals match*
*GS and Cheby have slight implementation differences for composite/MG-Region
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15 Results - hierarchy mismatch
Structured vs. MG-Region (structured), 700× 720 rectangular mesh
2D Laplace problem with a 7-point stencil, 1pre, 1post

Jacobi Gauss–Seidel Chebyshev
#its. Structured 9 Regions Structured 9 Region Structured 9 Regions

0 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00 1.00000000e+00
1 1.78374178e-02 1.77971728e-02 1.34028366e-02 1.34057178e-02 1.26092241e-02 1.25980465e-02
2 3.09747239e-03 3.08750444e-03 1.22692052e-03 1.22958855e-03 7.39937462e-04 7.40632616e-04
3 6.17958674e-04 6.15974350e-04 1.27486109e-04 1.28178073e-04 7.93385189e-05 7.96677401e-05
4 1.29899263e-04 1.29526261e-04 1.41232878e-05 1.42759476e-05 9.07488160e-06 9.15976761e-06
5 2.81258416e-05 2.80574257e-05 1.62135195e-06 1.65159920e-06 1.06848944e-06 1.08744092e-06
6 6.20516379e-06 6.19293768e-06 1.90317494e-07 1.95946605e-07 1.28512584e-07 1.32547397e-07
7 1.38672740e-06 1.38463243e-06 2.27023402e-08 2.37209815e-08 1.57501731e-08 1.65970557e-08
8 3.12830389e-07 3.12499063e-07 2.74346365e-09 2.92685712e-09 1.96757719e-09 2.14457022e-09
9 7.10802795e-08 7.10369390e-08 3.35333590e-10 3.68648440e-10 2.51098105e-10 2.87885059e-10

10 1.62430334e-08 1.62406131e-08 4.14287275e-11 4.75775741e-11 3.28456275e-11 4.04047421e-11
11 3.72913854e-09 3.73041913e-09 5.17289942e-12 6.32676763e-12 4.41956012e-12 5.94633832e-12
12 8.59490959e-10 8.60260047e-10 6.53051744e-13 8.72272622e-13 6.13278643e-13 9.15663966e-13
13 1.98754318e-10 1.99060540e-10
14 4.60939586e-11 4.62011981e-11
15 1.07170764e-11 1.07525542e-11
16 2.49746150e-12 2.50886608e-12
17 5.83206191e-13 5.86815903e-13

MG-Region and composite structured
hierarchies are not identical due to
region interfaces not matching refinement.
Residuals still close.
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16 Results - timing comparison

Mesh nproc L Region MG Pure AMG
nodes Lr/Lc (L) #its Setup V-cycle #its Setup V-cycle

823 27 3/2 (3) 13 0.0728 s 0.193 s 13 0.117 s 0.242 s
1633 216 3/2 (4) 13 0.104 s 0.241 s 13 0.176 s 0.273 s
3253 1728 3/3 (5) 13 0.352 s 0.428 s 13 0.581 s 0.400 s
6223 12167 3/3 (6) 13 0.386 s 0.425 s 13 0.711 s 0.423 s

Table: Example 2: MG-Region vs AMG for three-dimensional Poisson

Mesh nproc #levels Region MG Pure AMG
nodes Lr/Lc (L) #its Setup V-cycle #its Setup V-cycle

823 27 3/2 (4) 22 0.333 s 1.94 s 35 2.46 s 4.23 s
1633 216 3/3 (5) 21 0.423 s 1.97 s 33 2.78 s 4.34 s
3253 1728 3/3 (5) 21 0.697 s 2.38 s 32 3.54 s 4.92 s
6223 12167 3/4 (6) 20 1.199 s 2.63 s 32 3.92 s 5.06 s

Table: Example 2: MG-Region vs AMG for three-dimensional elasticity
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17 Semi-structured aggregate visualization
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Figure: Visualization of a 3× 3× 3 region layout on a cube and an example of the region
aggregates, with region 2 unstructured.
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18 Semi-structured Plate with Hole
Structured cylinder mesh (5 regions)
Unstructured plate with hole mesh (1 region)
Iteration counts (its) for solving a 3D Laplace
equation
conjugate gradient preconditioned with MG-Region
V-cycle
Two sweeps Summetric Gauss–Seidel relaxation

MESH SIZE

35910 244290 1777644
# levels (approx. 183 per region) (approx. 343 per region) (approx. 663 per reigon)

2 16 its 18 its 22 its
3 21 its 24 its 27 its
4 25 its 33 its 43 its
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MG-Region for semi-structured meshes
Extension of HHG to unstructured regions
Mayr, Berger-Vergiat, O., Tuminaro, Non-Invasive
Multigrid for Semi-structured Grids, SISC, Accepted.

Future Work
Integration with mesh refinement packages
Further implementation optimization
Apply to real-world applications
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