

Exceptional service in the national interest

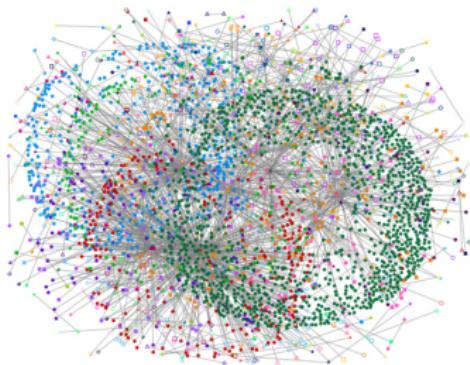
Randomized Spectral Graph Partitioning

Heliezer J.D. Espinoza (Cal Poly Pomona)
Jennifer Loe & Erik Boman (Sandia National Laboratories)

July 11, 2022

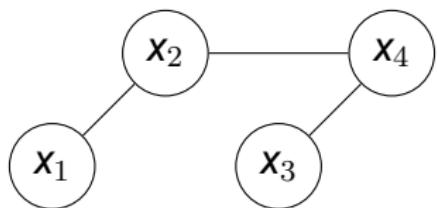
Introduction

- ▶ A graph is a mathematical representation of a network.
- ▶ Large/complicated graphs are difficult to analyze.
- ▶ The partitioning of a graph allows for easier analysis & gives better load balancing in parallel computing [1].



<https://homepages.inf.ed.ac.uk/hsun4/talks.html>

Graph Laplacian

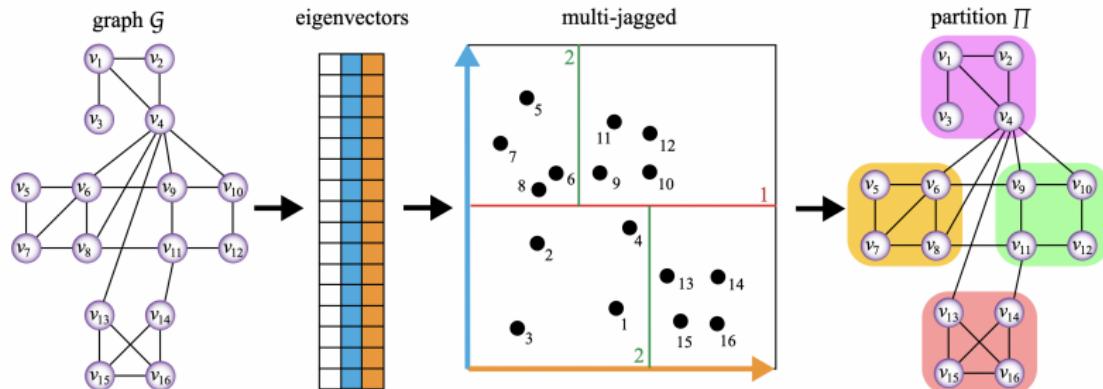


$$D - A = L$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$$

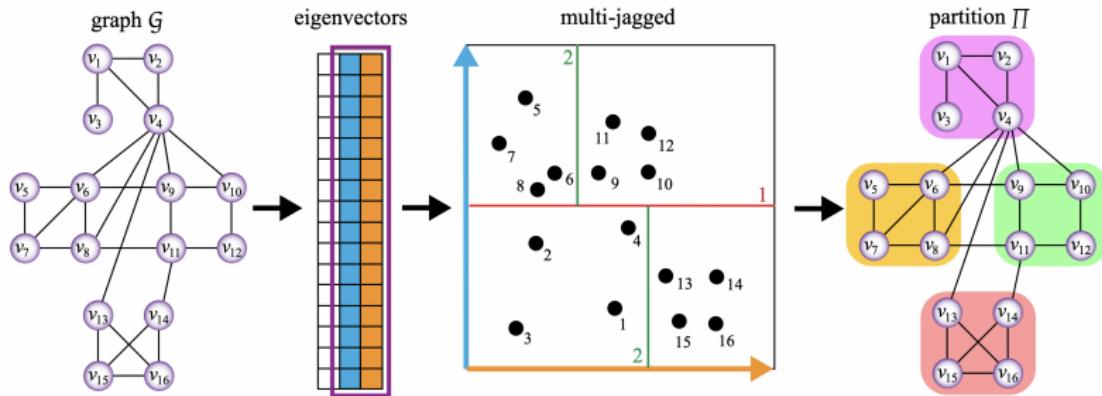
Spectral Partitioning Big Idea

Spectral graph partitioning was proposed by Pothen, Simon, and Liu (1990). We use the Sphynx package in Zoltan2 [2].



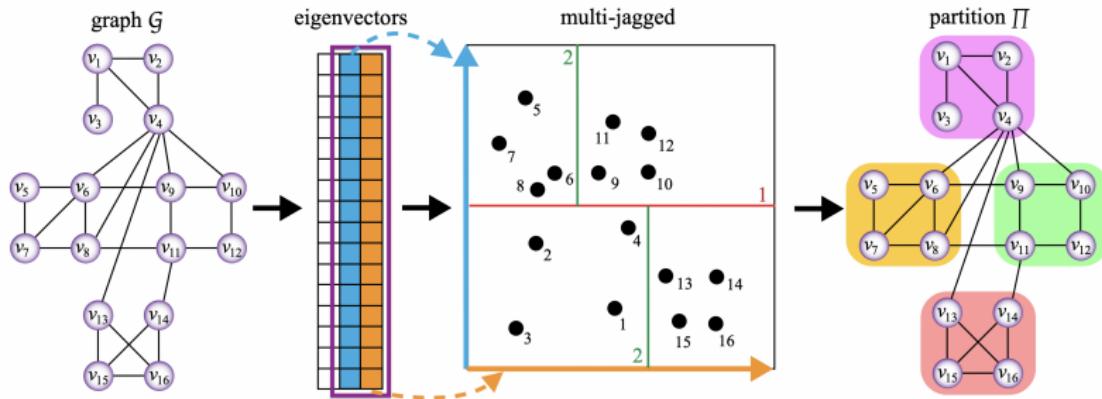
Spectral Partitioning Big Idea

Spectral graph partitioning was proposed by Pothen, Simon, and Liu (1990). We use the Sphynx package in Zoltan2 [2].



Spectral Partitioning Big Idea

Spectral graph partitioning was proposed by Pothen, Simon, and Liu (1990). We use the Sphynx package in Zoltan2 [2].



Eigenvector Computation

Computing eigenvectors for Sphynx spectral partitioning:

1. Take adjacency matrix of the graph.
2. Compute graph Laplacian $L = D - A$.
3. Compute eigenvectors ($Lx = \lambda x$).

We test two different methods with randomization for 3:

1. LOBPCG [3][4] with randomized Cholesky preconditioning.
2. A randomized eigenvector approximation method.

Method 1:

Part 1: LOBPCG with Randomized Preconditioning

- ▶ Jacobi Preconditioning
- ▶ Incomplete Cholesky (ichol) Preconditioning
- ▶ Randomized Cholesky (rchol) Preconditioning

(For this method, we only tested the convergence of LOBPCG.
Did not plug eigenvector results into Sphynx partitioner.)

Randomized Cholesky (rchol) Method

LOBPCG is a known eigensolver.

Preconditioners replace original problem with a related one.

Cholesky Factorization decomposes a matrix

$$A = GG^T = \begin{bmatrix} g_{11} & 0 & 0 \\ g_{12} & g_{22} & 0 \\ g_{13} & g_{21} & g_{33} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ 0 & g_{22} & g_{21} \\ 0 & 0 & g_{33} \end{bmatrix}$$

Randomized Cholesky Factorization was proposed by Chen, Liang, and Biros (2020). [5].

Test Matrices

Brick 3D 100 Matrix

- ▶ Synthetic discretization of the Laplacian on 27-point stencil
- ▶ Known Pattern and Structured Matrix (1,000,000 vertices)

Hollywood-2009 Matrix

- ▶ Unstructured Matrix with unknown properties ($\sim 1,070,000$ vertices)
- ▶ Hollywood movie actor network from SuiteSparse Database

Rchol Results - Brick 3D 100 Matrix

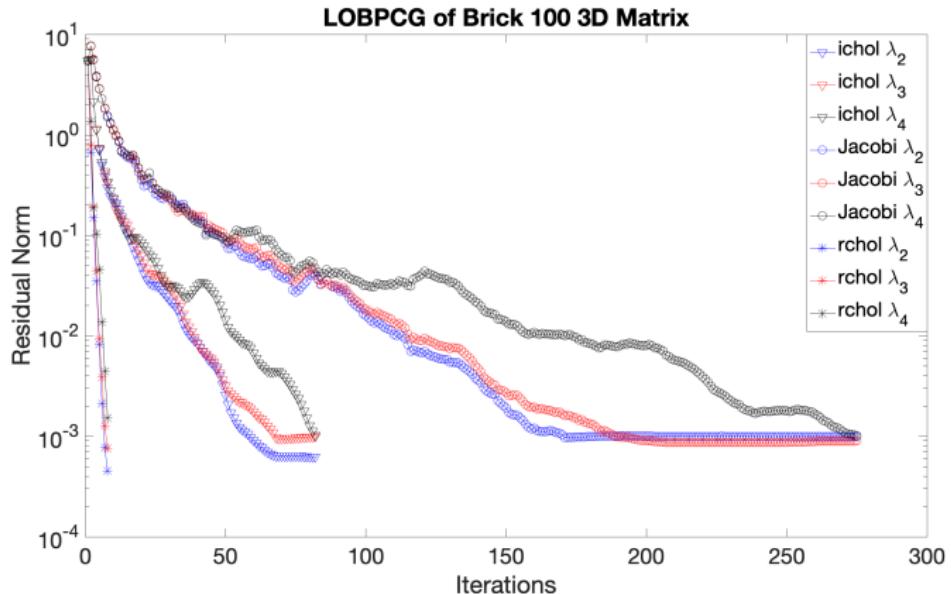


Figure: 100 3D Brick Matrix LOBPCG for 3 eigenvalues with varying preconditioners

Rchol Results - Brick 3D 100 Matrix

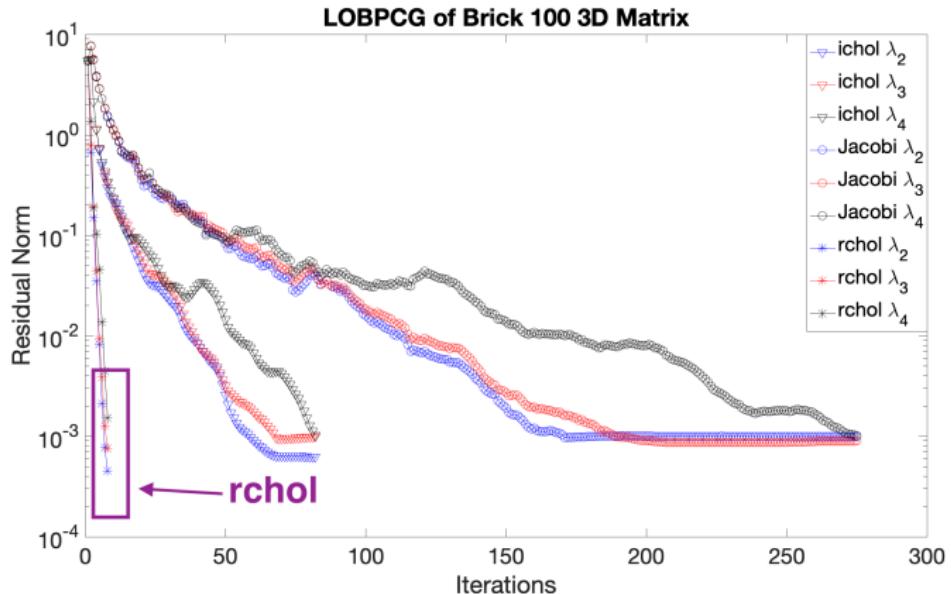


Figure: 100 3D Brick Matrix LOBPCG for 3 eigenvalues with varying preconditioners

Rchol Results - Hollywood Matrix

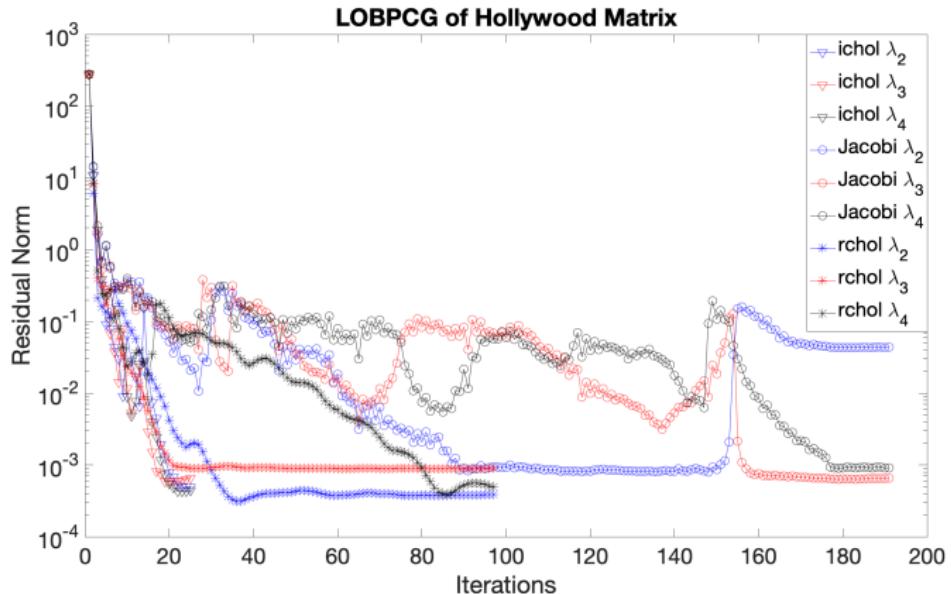


Figure: Hollywood LOBPCG for 3 eigenvalues with varying preconditioners

Rchol Results - Hollywood Matrix

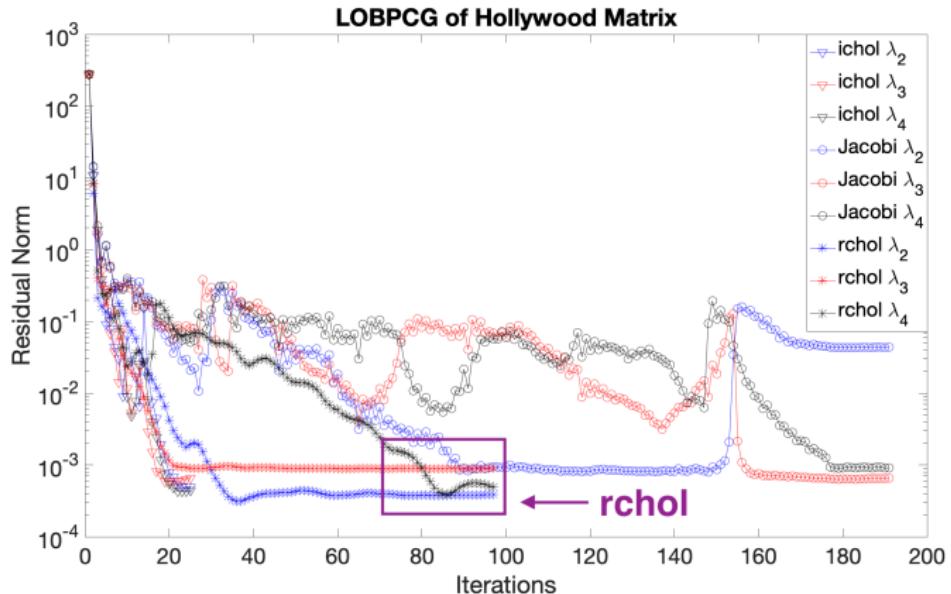


Figure: Hollywood LOBPCG for 3 eigenvalues with varying preconditioners

Method 2:

Part 2: Randomized Eigenvector Approximation

- ▶ Randomized Eigenvector approximation method
- ▶ LOBPCG & Jacobi Preconditioning

Randomized Eigenvector Approximation Method

Recall

$$L = D - A$$

Define

$$\hat{A} = D^{-1/2}AD^{1/2}$$

The randomized eigensolver has two main parts:

- ▶ **Part A:** Compute orthogonal basis Q of the range of \hat{A} .
- ▶ **Part B:** Solve projected eigenvalue system, and project back.

Randomized Eigenvector Approximation Method

Part A: Compute orthogonal basis Q of the range of \hat{A} .

1. Draw a random Gaussian matrix, $\Omega \in \mathbb{R}^{n \times l}$
2. Form $Y = \hat{A}^q \Omega$.
3. Compute the skinny QR factors: $QR = Y$.

Randomized Eigenvector Approximation Method

Part B: Solve the same projected eigenvalue system, and project back.

1. Compute projection $B = Q^T \hat{A} Q$.
2. Solve eigenproblem $B = V \Lambda V^T$.
3. Project back to large system $U = QV$.

Partitioning Results - Brick 3D100 Matrix

Recall $Y = \hat{A}^q \Omega$

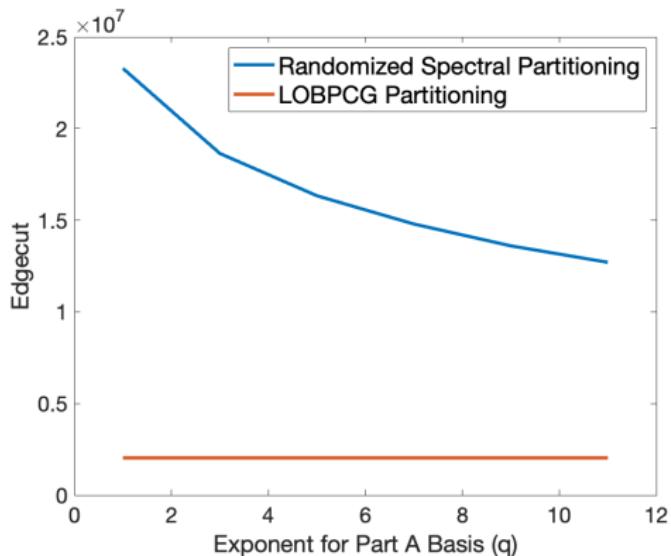
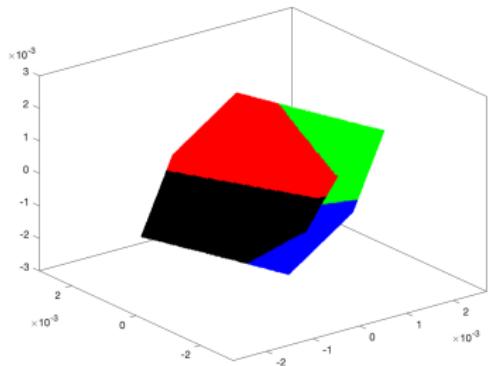
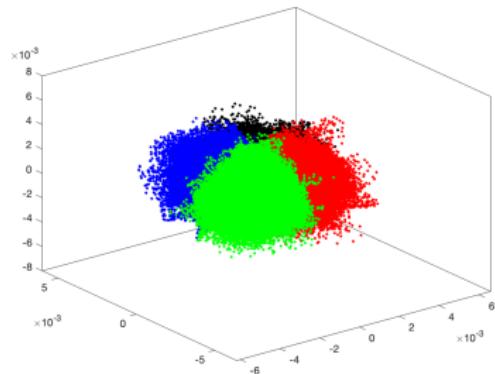


Figure: Brick3D100 Matrix Results

Partitioning Results - Brick 3D100 Matrix



(a) LOBPCG



(b) Randomized Spectral

Partitioning Results - Hollywood Matrix

Recall $Y = \hat{A}^q \Omega$

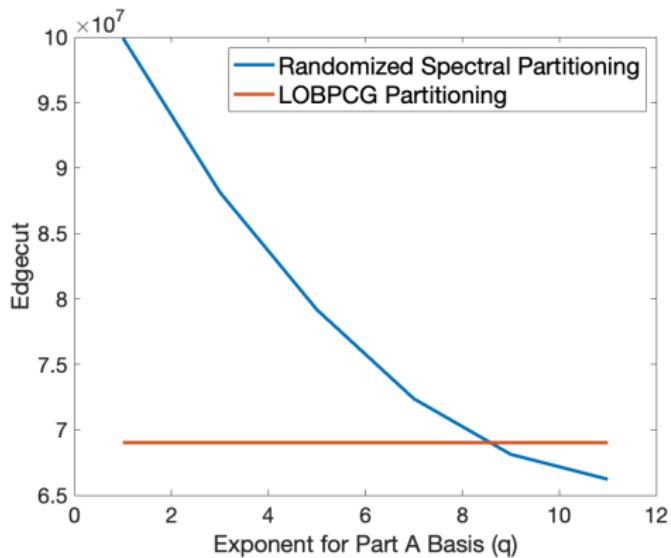


Figure: Hollywood Matrix Results

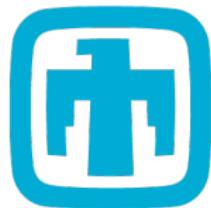
Future Work

- ▶ Coding Randomized Methods into Trilinos
- ▶ Perform additional runs
- ▶ Adjust different Trilinos variables

References

- [1] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent Advances in Graph Partitioning, volume 9220, pages 117–158.
Springer International Publishing, 11 2016.
- [2] Seher Acer, Erik G. Boman, Christian A. Glusa, and Sivasankaran Rajamanickam.
Sphynx: a parallel multi-gpu graph partitioner for distributed-memory systems.
CoRR, 2021.
- [3] Yousef Saad.
Iterative Methods for Sparse Linear Systems.
Society for Industrial and Applied Mathematics (SIAM), January 2003.
- [4] Andrew V. Knyazev.
Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method.
SIAM Journal on Scientific Computing, 23(2):517–541, 2001.
- [5] Chao Chen, Tianyu Liang, and George Biros.
Rchol: Randomized cholesky factorization for solving sdd linear systems.
SIAM J. Sci. Comput., 43:C411–C438, 2021.

Thank you All!



**Sandia
National
Laboratories**

U.S. DEPARTMENT OF
ENERGY