
Michael Ropp, Matthew J. Reno
Sandia National Laboratories

IEEE PES General Meeting 2022

Leveraging AMI for DER 
Interconnection and 

Model Validation

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly 
owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



Introduction

• DER integration is reliant on 1) data, 2) power system models, and 3) 
software tools for planning or implementing controls

• Recent additions of Advanced Metering Infrastructure (AMI), or smart 
meters, provide measurements of each customer’s power consumption 
and possibly other quantities, such as voltage and reactive power
• Brings new opportunities and new challenges

• The distribution system is getting more complicated with the 
proliferation of distributed energy resources (DER), and new control 
strategies – electric vehicles, rooftop PV, energy storage, microgrids, 
etc.

• Power Systems—and specifically distribution systems— are a perfect 
application for Machine Learning due to their complexity and large 
amounts of data
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What is the General Problem?

DER integration is reliant on 1) data and 2) power system models, both 
of which can contain errors and challenges

• System measurements include streaming and historical data from 
sensors like SCADA, AMI, and PMU
• Data quality issues such as missing data
• Challenges in storing and accessing big data (many utilities have not 

updated their database structures, which makes data queries incredibly 
slow)

• Power system models have a large number of parameters such as 
line lengths, transformer impedances, and governor settings
• Challenging to exactly match all the values that are in the field
• Errors due to manual data entry or unknown estimated values is 

common

Need – Models that provide a more granular understanding of the 
distribution system and substantially increase the precision and 
accuracy of planning and operation tools
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Data Quality Issues:
❖ Measurement Interval and Time 

Synchronization
❖ Measurement Type (instantaneous vs. average)
❖ Meter Resolution (decimals)
❖ Measurement Noise
❖ Missing Data
❖ Erroneous Data
❖ Calibration or Installation Errors



Challenges to Overcome

• Keeping grid models up-to-date is difficult as the grid is continually 
changing due to maintenance, DER interconnections, equipment 
upgrades, and new smart grid technologies and controls

• DER is being installed at an incredible rate, but it may vary from the 
interconnection plan - not interconnected, project delayed, changed 
size, shading issues, gradual soiling, or module/string failures.
• Information for existing DER systems may not be known (DC power 

rating, tilt, or azimuth) and settings like power factor, volt-var, and ride-
throughs may change

• Automated DER interconnection screening tools have uncertainty, 
and generating hosting capacity maps is time-consuming and 
computationally intensive, so they may not be updated very often.
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How do we overcome this obstacle?

• For improved DER interconnection planning and control, we need new tools that will incorporate data into 
the physics-based models, to detect modeling errors and calibrate parameters

• Data-driven methods can be used to detect events and system changes, allowing the models to 
dynamically adapt and automatically update based on system conditions

• Solar disaggregation methods can separate the PV from the load measurements. Machine learning can 
detect if there is PV, along with size, tilt, azimuth, and identify advanced inverter control parameters, 
behavior, and dynamic response characteristics, including any mis-operations that are different than 
planned

• Development of data-driven hosting capacity maps can make DER integration less reliant on power system 
models
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Benefits and Impacts
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•Manual data entry – compiling records of 
installations, upgrades, and maintenance 
over decades

•Prone to errors – unlogged or erroneous 
maintenance reports or entry into the model

• Little validation with measurements

•Often out of date with a list of changes to 
add to the model

• Leveraging AMI data and other grid edge 
sensing to derive and validate system models

•High accuracy and fidelity – a reproduction 
faithful to the original

•Granular and high resolution, multi-phase 
model down to the low-voltage system

•Model dynamically adapts and automatically 
updates based on system conditions

Conventional Methods Physics-Based Data-Driven Modeling



Conclusions

Regarding advancing grid planning and operations in a high DER future, a critical obstacle to collectively 
overcome is model accuracy and data management.

Solution: Automation and data-driven algorithms combined with physics-based modeling
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Customer Transformers
Identify which transformer 
each meter is connected to
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Estimate cable length and 

topology of the low-
voltage system

Phase Identification
Identify the phase of laterals and 

phase of single-phase transformers

PV Detection
Detect PV configuration (size, 
tilt, and azimuth) and settings

Setting and State Determination
Determine the controls and state of 
distribution automation equipment

Reconfiguration
Detect the state of 

switches, including load 
transfers to other feeders
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PV Dynamic Modeling
Determine dynamic 

model parameters for PV

For t = [0 : ∆ tdyn : tdyn ]

Run OpenDSS

dynamic simulat ion

Complex voltage of

each phase of PV-

connected node

P and Q after

every 5∆ t solut ion

Disturbance voltage

in increments of

∆ tdyn = 50 ms

Run PV-DER dynamic

simulat ion

Update negat ive

load power
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Detailed Load Modeling
Improved spatial and temporal 
resolution for phase-specific, 
voltage-sensitive load models
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Questions?

Matthew J. Reno, mjreno@sandia.gov

Michael Ropp, meropp@sandia.gov


