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2 Introduction to the Monge-Ampère Equation
Optimal transport problem:

min
ϕ

Z
Ω

µ0(x)|ϕ(x)− x|2dx,

subject to det(∇ϕ(x))µ1(ϕ(x))− µ0(x) = 0,

where µ0, µ1 are the source and target densities.

Assume the map ϕ is the gradient of a convex function u, ϕ = ∇u,

det(∇ϕ) = det(∇(∇u)) = det(H(u)) = det

� ∂
∂x ux

∂
∂x uy

∂
∂y ux

∂
∂y uy

�
in 2D

with Hessian H.

Obtain the Monge-Ampère equation (MAE) with Dirichlet boundary conditions

det(H(u)) =
µ0

µ1
= f, u ∈ Ω,

u =g , u ∈ ∂Ω.
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3 Applications of the Monge-Ampère Equation

Several applications for the Monge-Ampère equation:

Inverse problems in seismic imaging.

Differential geometry.

Wasserstein Neural Networks.

Mesh adaptation

If u is a convex solution to the Monge-Ampère equation, then x⃗ = ∇u gives an adaptive
mesh in the physical space (assumption of a transport boundary condition).
Mesh point locations are determined through a density function f = µ0

µ1
.
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4 Types of Solutions

The Monge-Ampère equation admits several
possible solution types.

Classical solutions: u ∈ C 2,α(Ω)

Strongest solution type.
Classical solutions may not always exist!

Viscosity solutions u ∈ C (Ω).

Weak solution type.
Requires continuity of f ∈ C(Ω).
Based on theory of sub and super solutions and
elliptic operators.

Alexandrov solutions: u ∈ C (Ω).

Weakest solution type.
Stable with respect to weak convergence.
Does not require continuity in the source term f .
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5 Conditional Ellipticity for the MAE

Define the Monge-Ampère operator as

F (x, r ,H(u)) =

(
detH(u)− f (x), x ∈ Ω

g(x)− r , x ∈ ∂Ω.

Elliptic if and only if H(u) is restricted to positive semidefinite matrices.

Limits the set of admissible solutions to convex functions.

The restriction to convex functions significantly complicates numerical approaches.

We will “sidestep” convexity through a robust nonlinear solver.
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6 Highlighted Numerical Method

Focus on the mixed finite element method (or nonvariational finite element method) by
Lakkis and Pryer †.

Mixed in that we have auxiliary variables that define the Hessian matrix – thus resulting in
a system of equations.

Remaining talk summary:
1 Mixed finite element method for linear elliptic problems that use the Hessian matrix.

2 Application to general nonlinear elliptic systems.

3 Focusing specifically on the Monge-Ampère equation, propose an optimization-based
multigrid-enabled nonlinear solver.

4 Present a variety of 2D and 3D examples.

† Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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7 Mixed Finite Element Method for Elliptic Problems

This method directly applies conforming finite elements to elliptic problems dependent on the
Hessian matrix †. Uses the notation D2u to denote the Hessian of u.

General formulation entails finding u such that

A : D2u = f in Ω andu = g on ∂Ω,

for A : Ω → Rd×d .

A : D2u = trace(ATD2u) is the Frobenius inner product.

Requires a finite element approximation for the Hessian D2u.

Allows us to solve an augmented system for the elliptic PDE and the Hessian.

† Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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8 Mixed Finite Element Method for Elliptic Problems

Define a piecewise polynomial finite element space Pk for elements K in triangulation T .

V := {Φ ∈ H1(Ω) : Φ|K ∈ Pk ∀K ∈ T },
◦
V := V ∩ H1

0 (Ω) = {Φ ∈ V : Φ|∂Ω0}.

For test function ϕ ∈ H1
0 (Ω), an FE approximation for the problem is given by

⟨A : D2u, ϕ⟩ = ⟨f , ϕ⟩.

Still need an approximation for the Hessian D2u.
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9 Finite Element Hessian

Consider the smooth function v ∈ C 2(Ω) ∩ C 1(Ω) and apply integration by parts to show the
Hessian D2v of v satisfies

⟨D2v , φ⟩ = −⟨∇vDφ⟩+ ⟨∇vnTφ⟩∂Ω, for eachφ ∈ H1(Ω).

Define the generalized Hessian of v , where D2v maps to Rd×d .

Generalize for functions v ∈ H1(Ω) with ∇vnT |∂Ω in
(
H1/2(∂Ω)′

�d×d
.

⟨Dv |φ⟩ := −⟨∇vDφ⟩+ ⟨∇vnT |φ⟩(H1/2(∂Ω))×H1/2(∂Ω) for eachφ ∈ H1(Ω)

. Define the finite element Hessian for v ∈ V,

⟨Hv ,Φ⟩ΩT = ⟨D2v |Φ⟩ = ⟨∇V ⊗∇Φ⟩+ ⟨∇V ⊗ nΦ⟩∂Ω ∀Φ ∈ V,

where a⊗ b = abT for vectors a, b.
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10 Finite Element Convexity for Low-Order Elements

Aguilera and Morin † define the potential limitation for low-order finite elements to accurately
approximate convex functions .

Define the discrete finite element Hessian:

⟨Hu, φ⟩ij = −
Z
Ω

∂iu(x)∂jϕ(x)dx+

Z
∂Ω

∂iu(x)φ(x)njdS .

Finite element convexity: A function u ∈ Vh is finite element convex with respect to test and
trial functions {ϕh

r }, {φh
s } if Hh

s ⪰ 0 for all s ∈ I htest .

They note in their experiments that FE convexity is not always guaranteed when using linear
elements so they cannot prove convergence.

However this does not mean that it is impossible for linear elements to be finite element convex.

†Aguilera, Morin (2009), On convex functions and the finite element method, SINUM.
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11 Mixed FEM System
Discretized augmented system for a Dirichlet boundary condition, Ev = b− Edcbdc.

E =


M 0 . . . 0 −C1,1

0 M . . . 0 −C1,2

...
. . .

. . .
. . .

...
0 0 . . . M −Cd,d

B1,1 B1,2 . . . Bd,d 0.

 , Edc =


−Cdc

1,1

−Cdc
1,2
...

−Cdc
d,d

0.

 .

v = (h1,1,h1,2, . . . ,hd,d ,u)T ,b = (0, 0, . . . , 0, f),bdc = [g]T .

Bα,β := ⟨
◦
Φ,Aα,βΦT ⟩ ∈ R

◦
N×N ,

M := ⟨Φ,ΦT ⟩ ∈ RN×N ,

Cα,β := −⟨∂βΦ, ∂α
◦
Φ

T

⟩+ ⟨Φnβ , ∂α
◦
Φ

T

⟩∂Ω ∈ R
◦
N×N

f := ⟨f ,
◦
Φ⟩ ∈ R

◦
N
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12 Schur Complement System
If low order elements are used, then M can be diagonalized using mass lumping and a Schur
complement can be used to solve for u and the auxiliary Hessian variables are recovered
separately.

Du :=
dX

α=1

dX
β=1

Bα,βM−1Cα,βu = f.

Bα,β := ⟨
◦
Φ,Aα,βΦT ⟩ ∈ R

◦
N×N ,

M := ⟨Φ,ΦT ⟩ ∈ RN×N ,

Cα,β := −⟨∂βΦ, ∂α
◦
Φ

T

⟩+ ⟨Φnβ , ∂α
◦
Φ

T

⟩∂Ω ∈ R
◦
N×N

f := ⟨f ,
◦
Φ⟩ ∈ R

◦
N

Note: We can reduce the size of the system by using the symmetry of the Hessian, i.e.
ha,b = hb,a.
Kelsey DiPietro MAE



13 Mixed FEM Equivalence to Standard FEM

Equivalence to standard FEM

†For the second order elliptic problem A : D2u = f , if the problem coefficients in A are
piecewise constant then the mixed finite element method coincides with the standard FEM
A : D2u = div(A∇u). This implies that u solves both

Du =f and Su = f

where S =
dX

α,β=1

⟨∂βΦ, aα,β∂αΦ
T ⟩.

Opens up the possibility to use algebraic multigrid to solve the Schur complement system,
due to its structure, which resembles the structure of the discrete Laplacian.

†Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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14 Mixed FEM for Nonlinear Elliptic Problems
General nonlinear elliptic problem††:

N [u] = F (D2u)− f = 0 inΩ.

Previous applications use a Newton’s method to obtain the linear system of equations

N(D2un) : D2un+1 = g(D2un),

N(X) := F ′(X),

g(X) := f − F (X) + F ′(X) : X.

Solve using the mixed finite element method, given an initial guess U0 := Π0u
0 for each

n ∈ N0 find (Un+1,H[Un+1]) ∈ V× Vd×d such that,

< H[Un+1],Φ > +

Z
Ω

∇Un+1 ⊗∇Φ−
Z
∂Ω

∇Un+1 ⊗ nΦ = 0 ∀Φ ∈ V,

< N(H[Un]) : H[Un+1],Ψ >=< g(H[Un]),Ψ > ∀Ψ ∈ V,

†† Lakkis, Pryer (2012), A finite element method for nonlinear elliptic problems, SISC.
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15 Mixed FEM Applied to the MAE

Recall the MAE:
det(D2u) = f in Ω, u = g on ∂Ω.

Newton’s method applied to the MAE:

< H[Un+1],Φ > +

Z
Ω

∇Un+1 ⊗ Φ−
Z
∂Ω

∇Un+1 ⊗ nΦ = 0 ∀Φ ∈ V

< Cof(D2Un) : H[Un+1],Ψ >= < f + detD2Un,Ψ > ∀Ψ ∈
◦
V.

Where Cof(D2Un) is the cofactor matrix given by

2D : Cof(D2Un) =

�
Un
yy −Un

xy

−Un
yx Un

xx

�
,

3D : Cof(D2Un) =

 UyyUzz − U2
yz UyzUxz − UxyUzz UxyUyz − UyyUxz

UyzUxz − UxyUzz UxxUzz − U2
xz UxyUxz − UxxUyz

UxyUyz − UyyUxz UxyUxz − UxxUyz UxxUyy − U2
xy


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15 Mixed FEM Applied to the MAE
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Z
Ω
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Z
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16 The Mixed FEM for P1 Elements
Previous applications of the method are limited to Pk elements with k ≥ 2. †

Further asserted in a follow-up paper †† that P1 elements can only be used with a gradient
recovery operator.

List of assertions about the method:

Newton’s method and damped Newton’s methods do not converge for P1.

Finite element convexity cannot be preserved during the Newton’s iterations. ?

The method only converges for Pk , k ≥ 2, so using Schur complements becomes
impractical.?

Convergence with P1 elements and Newton’s method requires an auxiliary gradient
recovery operator.?

Motivates using a robust optimization-based solver for the low-order system.

†Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.

††Kawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampère equation with optimal
transport boundary condition, arXiv.
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17 An Optimization-based Nonlinear Solver

Combine auxiliary and primal variables into x = (h1,1,h1,2, . . . ,hd,d−1,hd,d ,u). We solve
the nonlinear equation:

c(x) = 0,

where c is the nonlinear residual function, c : X → C.

Verified that Newton’s method and damped Newton’s method do not converge for P1

mixed finite element discretizations.

Observation: Solving the problem

min 0

subject to c(x) = 0,

with a composite-step sequential quadratic programming (SQP) solver converges
without exception for a variety of MAE examples, using P1 elements.

Simplify the nonlinear solution method by using the normal step, and eliminating the
tangential step, of the SQP method†.

†Heinkenschloss, Ridzal (2014). A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
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18 SQP Summary

The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

At every nonlinear iteration k , the feasibility step s solves the trust-region subproblem:

min ∥c ′(xk)s + c(xk)∥2C
subject to ∥s∥X ≤ ∆k ,

where c ′(xk) is the MAE Jacobian at iterate xk , c(xk) is the residual, and ∆k is the
trust-region radius.

Minimization of linearized residual with trust regions for global convergence.

Related to the Levenberg-Marquardt method for nonlinear least-squares problems.

Can also be viewed as the Gauss-Newton method with trust regions.

Significantly more robust than damped Newton.

We compute the feasibility step using Powell’s dogleg method.
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19 Dogleg Method

Cauchy point

scpk = min
α≥0,∥s∥X≤∆k

∥c ′(xk)s + c(xk)∥2C

subject to s = −αc ′(xk)
∗c(xk)

Newton point

sNk = minimum norm solution of

min
s

∥c ′(xk)s + c(xk)∥2C

Dogleg Path

c′(xk )s + c(xk ) = 0

s
cp
k

sNk

∆k

For an invertible c ′(xk), the Newton point sNk can be computed as sNk = −(c ′(xk))
−1c(xk) .

Step: sk = scpk + sNk .

If ∥sk∥X > ∆k , compute sk = scpk + τsNk , with


scpk + τ(sNk − scpk )



2
X = ∆2

k .
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20 Step Acceptance

Calculate ratio of actual and predicted reduction,

r =
∥c(xk)∥2C − ∥c(xk + sk)∥2C

∥c(xk)∥2C − ∥c ′(xk)sk + c(xk)∥2C
.

If r > η, for some specified threshold η > 0, accept the step, xk+1 = xk + sk .

Otherwise set xk+1 = xk and the decrease the trust-region radius, e.g., ∆k+1 =
1
2∥sk∥X .

Algorithm terminates if the norm of the residual is less than a specific tolerance or the
maximum number of iterations is reached.
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21 Cauchy Point Computation

Recall c ′(xk) is the Jacobian of the discretized Monge-Ampère equation evaluated at the step
xk , c

′(xk)
∗ is the adjoint of the Jacobian, c(xk) is the residual of the Monge-Ampère equation

at xk , and ∆k is the trust region radius at step k .

First compute

scpk = −
∥c ′(xk)∗c(xk)∥2X

∥c ′(xk)c ′(xk)∗c(xk)∥2C
c ′(xk)

∗c(xk).

If ∥sk∥cpX > ∆k , then set sk = ∆k

∥scpk ∥
scpk .

Cauchy point computation is inexpensive, as it does not involve application of (c ′(xk))
−1.
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22 Global Convergence

Algorithm converges from any initial guess under the following assumptions:

The step sk must satisfy the boundedness condition

∥sk∥X ≤ κ1∥c(xk)∥C ,

and the sufficient decrease condition

∥c(xk)∥2C − ∥c ′(xk)sk + c(xk)∥2C ≥ κ2∥c(xk)∥C min {κ3∥c(xk)∥C ,∆k} ,

where κ1, κ2, κ3 > 0 are independent of k .

Satisfied by the Cauchy point!!!

Must ensure that the Newton point does not destroy the progress made by the Cauchy point.
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23 Newton Point Computation

Newton point: sNk = −(c ′(xk))
−1c(xk)

Instead of solving for sNk , we solve for

δsk = sNk − scpk

In other words, solve

c ′(xk)δsk = −(c ′(xk)s
cp
k + c(xk))

Dogleg Path

c′(xk )s + c(xk ) = 0

s
cp
k

sNk

∆k

If the linear system is solved iteratively with nonzero error vector e, i.e.,

c ′(xk)δsk = −(c ′(xk)s
cp
k + c(xk)) + e,

then for global convergence it is sufficient to require ∥e∥C / ∥c ′(xk)scpk + c(xk)∥C ≤ 1 .

−→ Any reasonable relative residual will do!!!
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c ′(xk)δsk = −(c ′(xk)s
cp
k + c(xk)) + e,

then for global convergence it is sufficient to require ∥e∥C / ∥c ′(xk)scpk + c(xk)∥C ≤ 1 .

−→ Any reasonable relative residual will do!!!
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24 Efficient Solution of the Linear System
Solve the linear system using the Schur complement,
Du :=

Pd
α=1

Pd
β=1 B

α,βM−1Cα,βu = f, for α, β = 1, . . . , d ,

Bα,β := ⟨
◦
Φ,Cof(H[U])α,β)ΦT⟩ ∈ R

◦
N×N ,

Cα,β := −⟨∂βΦ, ∂α
◦
Φ

T

⟩+ ⟨Φnβ , ∂α
◦
Φ

T

⟩∂Ω ∈ R
◦
N×N

M := ⟨Φ,ΦT ⟩ ∈ RN×N , f := ⟨f ,
◦
Φ⟩ ∈ R

◦
N , f = −(c ′(xk)s

cp
k + c(xk))

Schur complement of the linear system Du = f is solved using an algebraic multigrid
method.
Use the Trilinos package Muelu to set up and solve the resulting system.

Symmetric Gauss-Siedel smoother.
GMRES used for solving the resulting system.
Future plans to explore Petrov-Galerkin methods for nonsymmetric linear systems.†

Hessian terms hα,β are recovered separately using the definition of the finite element
Hessian.

†Sala,Tuminaro (2008), A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear
systems, SISC.
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25 Results - 2D Smooth Solution

Exact Solution: u = exp
�

|x|2
2

�
, u ∈ C∞.

Classical solution of the Monge-Ampère equation.
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26 Results - 2D Smooth Solution

Grid Size ∥u − ue∥22 Rate ∥u − ue∥∞ Rate
25 × 25 3.40e-03 - 4.40e-03 -
26 × 26 8.60e-04 1.98 1.10e-03 2
27 × 27 2.16e-04 2.0 2.88e-04 1.93
28 × 28 5.40e-05 2.0 7.27e-05 1.99

Standard smooth problem used in every numerical paper for the MAE, we attain optimal L2
error estimates.
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27 Results - 2D Viscosity Solution

Exact solution: u(x) = |x|2α, α ∈ (1/2, 3/4), singular derivatives at (0, 0), α = 0.6.
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28 Results - 2D Viscosity Solution

Grid Size ∥u − ue∥22 L2 Rate LP L2 Rate† ∥u − ue∥∞ ∞ Error Rate
25 × 25 0.1249 - - 0.1841 -
26 × 26 0.0937 0.41 0.42 0.1381 0.41
27 × 27 0.0705 0.41 0.41 0.1036 0.41
28 × 28 0.0531 0.41 0.41 0.0777 0.42

Compared to the paper by Lakkis and Pryer† which uses P2 elements to solve for the
Monge-Ampère equation using a Newton’s method. We attain similar errors with P1 element
method.

Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic
problems, SJSC.
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29 Results - 2D Unbounded Gradient

Exact solution: u(x , y) = −
p
2− x2 − y2, u ∈ C∞(Ω) ∩ C 0(Ω).
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30 Results - 2D Unbounded Gradient

Grid Size ∥u − ue∥22 L2 Rate LP Rate† ∥u − ue∥∞ FO Max Error††

25 × 25 6.4e-03 - - 8.62e-02 1.74e-03
26 × 26 2.3e-03 1.48 1.62 6.10e-02 5.9e-04
27 × 27 8.2460e-04 1.48 1.60 4.32e-02 2.0e-04
28 × 28 2.9253e-04 1.50 1.55 3.05e-02 1.5e-04

Compared to the P2 mixed finite element method by Lakkis and Pryer † and the wide stencil,
monotone finite difference schemes by Froese and Oberman ††.

Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic
problems, SJSC.

Froese, Oberman (2013), Convergent filtered schemes for the Monge-Ampère partial
differential equation, SJNA.
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31 Results - 2D Degenerate Elliptic

Exact solution: u(x) = 1
2 (max(|x− x0| − 0.2, 0))2, x0 = (0.5, 0.5).

Forcing term: f (x) = max
�
1− 0.2

|x−x0| , 0
�
.
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32 Results - 2D Degenerate Elliptic

Grid Size ∥u − ue∥22 Rate ∥u − ue∥∞ NNZ Max Error† FO Max Error††

25 × 25 2.18e-04 - 4.22e-04 5.4e-04 3.73e-04
26 × 26 6.04e-05 1.8516 1.39e-04 2.8e-04 1.51e-04
27 × 27 2.00e-05 1.5915 5.51e-05 1.5e-4 9.2e-05
28 × 28 6.48e-06 1.6282 2.22e-05 7.8e-05 3.8e-05

Compared to two-scale (unstructured wide scale) finite element method by Nochetto et al. †

and the wide stencil, montone finite differences schemes by Frose and Oberman ††.

Nochetto, Ntogkas, Zhang (2019), Two-Scale method for the Monge-Ampère equation:
convergence to the viscosity solution. Mathematics of Computation.

Froese, Oberman (2013), Convergent filtered schemes for the Monge-Ampère partial
differential equation, SJNA.
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33 Results - 3D Smooth Solution

f =(1 + x2 + y2 + z2)exp

�
3(x2 + y2 + z2)

2

�
u =exp

�
x2 + y2 + z2

2

�
Ω =(0, 1)3

Taken from: Liu et al. (2016), A multigrid scheme for 3D
Monge-Ampère equations, IJCM.

Convergence results for the 3D smooth problem.

Grid Size N ∥u − ue∥22 Rate ∥u − ue∥∞ Rate Max GMRES
8 6.70e-03 - 3.72e-02 - 3
16 1.50e-03 2.16 1.02e-02 1.87 3
32 3.39e-04 2.15 2.70e-03 1.89 3
64 8.06e-05 2.07 6.84e-04 1.92 5
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34 Results - 3D Smooth Solution

f =(sin(x) + 1)(sin(y) + 1)(sin(z) + 1)

u =− sin(x)− sin(y)− sin(z) + (x2 + y2 + z2)/2

Ω =(0, π)3

Taken from: Liu et al. (2016), A multigrid scheme for 3D
Monge-Ampère equations, IJCM.

Convergence results for the 3D smooth problem.

Grid Size N ∥u − ue∥22 Rate ∥u − ue∥∞ Rate Max GMRES
8 2.09e-01 - 7.12e-02 - 4
16 4.84e-02 2.11 1.82e-02 1.97 4
32 1.16e-02 2.06 4.60e-03 1.98 3
64
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35 Results - 3D Non-smooth Solution

f =(1/16)(x2 + y2 + z2)−3/4

u =(1/3)(x2 + y2 + z2)3/4

Ω =(0, 1)3

Taken from: Liu et al. (2016), A multigrid scheme for 3D
Monge-Ampère equations, IJCM.

Convergence results for the 3D non-smooth problem.

Grid Size N ∥u − ue∥22 Rate ∥u − ue∥∞ Rate Max GMRES
8 1.10e-03 - 6.50e-03 - 3
16 2.35e-04 1.50 2.30e-03 2.23 4
32 5.38e-05 1.50 8.13e-04 2.13 5
64 1.27e-05 1.50 1.27e-05 2.08 6
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36 Conclusion

Presented an optimization-based solver for any standard low-order finite element
discretization of nonlinear elliptic problems.

Our optimization-based algorithm combined with a P1 discretization demonstrates good
results with solid numerical error and convergence rates.

While the method does not directly impose convexity like other discretizations for the
Monge-Ampère equation, we have reason to believe that it is provably convergent to a
solution of the MAE.

Future work will further leverage the built in machinery for inexact methods that can offer
additional speed ups for the methods.

Potential to build in convexity constraints or other boundary conditions (such as the
optimal transport condition) directly into the objective function of the optimization solver.
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