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2l Introduction to the Monge-Ampere Equation

Optimal transport problem:

min /Q o(x)[6(x) — x2dx,
subject to det(V(x))yu1 (6(x)) — pio(x) = 0,

where g, 111 are the source and target densities.
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2l Introduction to the Monge-Ampere Equation
Optimal transport problem:
min - [ o(0]o(x) = xd,
subject to det(V(x))u1(¢(x)) — po(x) =0,

where g, 111 are the source and target densities.

Assume the map ¢ is the gradient of a convex function u, ¢ = Vu,

Kelsey DiPietro MAE



2l Introduction to the Monge-Ampere Equation
Optimal transport problem:
min - [ o(0]o(x) = xd,
subject to det(V(x))u1(¢(x)) — po(x) =0,

where g, 111 are the source and target densities.

Assume the map ¢ is the gradient of a convex function u, ¢ = Vu,

oy Ux gy Uy

2, &
det(V¢) = det(V(Vu)) = det(H(u)) = det < gt gty > in 2D

with Hessian H.

Kelsey DiPietro MAE



2l Introduction to the Monge-Ampere Equation

Optimal transport problem:

min /Q o(x)[6(x) — x2dx,
subject to det(V(x))yu1 (6(x)) — pio(x) = 0,

where g, 111 are the source and target densities.

Assume the map ¢ is the gradient of a convex function u, ¢ = Vu,

0 0
det(V) = det(V(Vu)) = det(H(u)) = det < QZ iz > in 2D
dy X dy Y

with Hessian H.

Obtain the Monge-Ampere equation (MAE) with Dirichlet boundary conditions

det(H(u)) =22 =f, ueQ,
H1

u=g, ucoi.
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3

Applications of the Monge-Ampére Equation
Several applications for the Monge-Ampére equation:

@ Inverse problems in seismic imaging.

@ Differential geometry.

@ Wasserstein Neural Networks.

@ Mesh adaptation
e If uis a convex solution to the Monge-Ampére equation, then X = Vu gives an adaptive
mesh in the physical space (assumption of a transport boundary condition).
e Mesh point locations are determined through a density function f = %
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sl Types of Solutions

@ The Monge-Ampeére equation admits several
possible solution types.
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sl Types of Solutions

@ The Monge-Ampere equation admits several
possible solution types.

e Classical solutions: u € C2%(Q)

o Strongest solution type.
o Classical solutions may not always exist!
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4| Types of Solutions

Degenerate Elliptic

@ The Monge-Ampere equation admits several
possible solution types.

e Classical solutions: u € C2%(Q)

o Strongest solution type.
o Classical solutions may not always exist!

@ Viscosity solutions u € C(Q).
o Weak solution type.
e Requires continuity of f € C().
o Based on theory of sub and super solutions and g :‘Wm,
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4| Types of Solutions

@ The Monge-Ampeére equation admits several
possible solution types.

e Classical solutions: u € C%%(Q)

o Strongest solution type.

o Classical solutions may not always exist!
@ Viscosity solutions u € C().

o Weak solution type.

e Requires continuity of f € C().

o Based on theory of sub and super solutions and
elliptic operators.

@ Alexandrov solutions: u € C().

o Weakest solution type.
o Stable with respect to weak convergence.

o Does not require continuity in the source term f.

Kelsey DiPietro
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si Conditional Ellipticity for the MAE

Define the Monge-Ampére operator as

detH(u) — f(x), x€Q

F(x,r,H(u)) = {g(x) —r,x € 0.
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Define the Monge-Ampére operator as

detH(u) — f(x), x€Q

F(x,r,H(u)) = {g(x) —r,x € 0.

Elliptic if and only if H(u) is restricted to positive semidefinite matrices.
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Conditional Ellipticity for the MAE

Define the Monge-Ampére operator as

detH(u) — f(x), x€Q

F(x,r,H(u)) = {g(x) —r,x € 0.

Elliptic if and only if H(u) is restricted to positive semidefinite matrices.
Limits the set of admissible solutions to convex functions.

The restriction to convex functions significantly complicates numerical approaches.
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Conditional Ellipticity for the MAE

Define the Monge-Ampére operator as

detH(u) — f(x), x€Q

F(x,r,H(u)) = {g(x) —r,x € 0.

Elliptic if and only if H(u) is restricted to positive semidefinite matrices.
Limits the set of admissible solutions to convex functions.
The restriction to convex functions significantly complicates numerical approaches.

We will “sidestep” convexity through a robust nonlinear solver.
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Highlighted Numerical Method

@ Focus on the mixed finite element method (or nonvariational finite element method) by
Lakkis and Pryer f.

@ Mixed in that we have auxiliary variables that define the Hessian matrix — thus resulting in
a system of equations.

@ Remaining talk summary:
© Mixed finite element method for linear elliptic problems that use the Hessian matrix.

@ Application to general nonlinear elliptic systems.

© Focusing specifically on the Monge-Ampere equation, propose an optimization-based
multigrid-enabled nonlinear solver.

@ Present a variety of 2D and 3D examples.

t Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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71 Mixed Finite Element Method for Elliptic Problems
This method directly applies conforming finite elements to elliptic problems dependent on the
Hessian matrix 7. Uses the notation D?u to denote the Hessian of u.
General formulation entails finding u such that
A:D>u=finQ andu=gondQ,
for A: Q — RI*d,

A : D?u = trace(A" D?u) is the Frobenius inner product.

t Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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71 Mixed Finite Element Method for Elliptic Problems
This method directly applies conforming finite elements to elliptic problems dependent on the
Hessian matrix 7. Uses the notation D?u to denote the Hessian of u.
General formulation entails finding u such that
A:D>u=finQ andu=gondQ,
for A: Q — RI*d,
A : D?u = trace(A" D?u) is the Frobenius inner product.

Requires a finite element approximation for the Hessian D?u.

t Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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71 Mixed Finite Element Method for Elliptic Problems
This method directly applies conforming finite elements to elliptic problems dependent on the
Hessian matrix 7. Uses the notation D?u to denote the Hessian of u.
General formulation entails finding u such that
A:D>u=finQ andu=gondQ,
for A: Q — RI*9,
A : D?u = trace(A" D?u) is the Frobenius inner product.
Requires a finite element approximation for the Hessian D?u.

Allows us to solve an augmented system for the elliptic PDE and the Hessian.

t Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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8l Mixed Finite Element Method for Elliptic Problems

Define a piecewise polynomial finite element space P¥ for elements K in triangulation 7.
V= {®c HY(Q): d|x € P*VK € T},
Vi=VNH;(Q) = {P €V:dpq0}.
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8

Mixed Finite Element Method for Elliptic Problems

Define a piecewise polynomial finite element space P¥ for elements K in triangulation 7.
V= {®c HY(Q): d|x € P*VK € T},
V= VAHY(Q) = {® € V : &[5q0).
For test function ¢ € H3(Q), an FE approximation for the problem is given by
(A: D, ¢) = (f,9).

Still need an approximation for the Hessian D?u.
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9l Finite Element Hessian

Consider the smooth function v € C?(Q) N C1(Q) and apply integration by parts to show the
Hessian D?v of v satisfies

(D?v,p) = —(VvDp) + (Vvn' p)sq, for eachp € H(Q).
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Finite Element Hessian

Consider the smooth function v € C?(Q) N C1(Q) and apply integration by parts to show the
Hessian D?v of v satisfies

(D?v,p) = —(VvDp) + (Vvn' p)sq, for eachp € H(Q).
Define the generalized Hessian of v, where D?v maps to RY¥9.

Generalize for functions v € H}(Q) with VvnT|5q in (H1/2(8Q)’)dXd.

(DY]p) := —(VvDyp) + <anT|¢>(H1/z(3m)x,_,1/z(am for each p € H*(Q)
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Finite Element Hessian

Consider the smooth function v € C?(Q) N C1(Q) and apply integration by parts to show the

Hessian D?v of v satisfies
(D?v,p) = —(VvDp) + (Vvn' p)sq, for eachp € H(Q).
Define the generalized Hessian of v, where D?v maps to RY¥9.

Generalize for functions v € H}(Q) with VvnT|5q in (H1/2(8Q)’)dXd.

(DY]p) := —(VvDyp) + <anT|¢>(H1/z(3m)x,_,1/z(am for each p € H*(Q)

. Define the finite element Hessian for v € V,
(Hv,®)q, = <D2v|d>> =(VVeVe)+ (VVandlyg VeV,

where a® b = ab' for vectors a, b.

Kelsey DiPietro
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10l Finite Element Convexity for Low-Order Elements

Aguilera and Morin T define the potential limitation for low-order finite elements to accurately
approximate convex functions .

Define the discrete finite element Hessian:

(Hu, )i = — /Q Oiu(x)0jp(x)dx + /{m Oiu(x)p(x)n;dS.

Finite element convexity: A function u € V} is finite element convex with respect to test and
trial functions {¢"}, {oh} if HP =0 for all s € Ih

test -

TAguilera, Morin (2009), On convex functions and the finite element method, SINUM.
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10l Finite Element Convexity for Low-Order Elements

Aguilera and Morin T define the potential limitation for low-order finite elements to accurately
approximate convex functions .

Define the discrete finite element Hessian:

(Hu, )i = — /Q Oiu(x)0jp(x)dx + /{m Oiu(x)p(x)n;dS.

Finite element convexity: A function u € V} is finite element convex with respect to test and
trial functions {¢"}, {oh} if HP =0 for all s € Ih

test -

They note in their experiments that FE convexity is not always guaranteed when using linear
elements so they cannot prove convergence.

However this does not mean that it is impossible for linear elements to be finite element convex.

TAguilera, Morin (2009), On convex functions and the finite element method, SINUM.
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1l Mixed FEM System

Discretized augmented system for a Dirichlet boundary condition, Ev = b — E4cbgc.

M 0 0 —Ci, —C¥
0 M 0 —Ci» —cd5
E = [} EdC -
0 0 M _Cd,d _Cgcd
Bll pBl2 gd-d 0 0 ’

V= (h1717hl,27 ey hd,da u)Tab = (OaOa .. 'aOaf)ade = [g]T

B/ = (¢, A% oT) € RNV,
M:= (d,07) e RVN,

OT oT o
Caﬁ = _<8ﬂ¢78a¢' > + <¢n[578a¢’ >6§2 S RN*N
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12l Schur Complement System

If low order elements are used, then M can be diagonalized using mass lumping and a Schur
complement can be used to solve for u and the auxiliary Hessian variables are recovered
separately.

d d
Du := Z Z B*’M~'C, su=f.
a=1p=1

BYA .— <¢7A017[3¢.T> c RNXN7
M = <¢7¢T> c RNXN’
OT oT o
Ca,ﬁ = *<85¢,8a¢ > + <¢n5,8a¢ >3g2 S RNxN
fi= (f, ) e RV

Note: We can reduce the size of the system by using the symmetry of the Hessian, i.e.
ha,b - hb,a-

Kelsey DiPietro MAE



13| Mixed FEM Equivalence to Standard FEM

Equivalence to standard FEM

TFor the second order elliptic problem A : D?u = f, if the problem coefficients in A are
piecewise constant then the mixed finite element method coincides with the standard FEM
A : D%y = div(AVu). This implies that u solves both

Du=f and Su=f
d
where S = Z (93,2 0,®T).
a,B=1
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13| Mixed FEM Equivalence to Standard FEM

Equivalence to standard FEM

TFor the second order elliptic problem A : D?u = f, if the problem coefficients in A are
piecewise constant then the mixed finite element method coincides with the standard FEM
A : D%y = div(AVu). This implies that u solves both

Du=f and Su=f
d
where S = Z (93,2 0,®T).
a,B=1

Opens up the possibility to use algebraic multigrid to solve the Schur complement system,
due to its structure, which resembles the structure of the discrete Laplacian.

T Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SISC.
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1sl  Mixed FEM for Nonlinear Elliptic Problems

General nonlinear elliptic problemt:

Nu] = F(D?u) —f=0 inQ.

11 Lakkis, Pryer (2012), A finite element method for nonlinear elliptic problems, SISC.
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1sl  Mixed FEM for Nonlinear Elliptic Problems
General nonlinear elliptic problemt:
Nu] = F(D*u) —f=0 inQ.
Previous applications use a Newton's method to obtain the linear system of equations

N(D2un) . D2 n+l _ (D2un)7
N(X) := F'(X),
g(X):=f — F(X)+ F'(X): X.

11 Lakkis, Pryer (2012), A finite element method for nonlinear elliptic problems, SISC.
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1sl  Mixed FEM for Nonlinear Elliptic Problems

General nonlinear elliptic problemt:
Nu] = F(D*u) —f=0 inQ.

Previous applications use a Newton's method to obtain the linear system of equations
N(D?u") : D*u™! = g(D?u"),

N(X) := F'(X),

g(X):=f — F(X)+ F'(X): X.

Solve using the mixed finite element method, given an initial guess U° := Myu® for each

n € Ny find (U™ H[U"Y]) € V x V%9 guch that,

< H[U"+1],¢>+/VU"+1®V¢— VUl ond=0 VYoeV,
Q o0

< N(H[U™) : H[U"™], ¥ >=< g(H[U"]),¥ > WYV €V,

11 Lakkis, Pryer (2012), A finite element method for nonlinear elliptic problems, SISC.
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151 Mixed FEM Applied to the MAE

Recall the MAE:
det(D?u) =f inQ, u=g ondQ.
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151 Mixed FEM Applied to the MAE

Recall the MAE:
det(D?u) =f inQ, u=g ondQ.

Newton's method applied to the MAE:
<H[U"+1],¢>+/VU"+1®¢— VU @ond =0 VYoecV
Q a9

< Cof(D2U) : H[U™ Y, W >= < f + detD?U", ¥ > YW € V.
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151 Mixed FEM Applied to the MAE
Recall the MAE:
det(D?u) =f inQ, u=g ondQ.
Newton's method applied to the MAE:

<H[U™], & > +/ VU™ @e— [ VU™ ond=0 VocV
Q o0

< Cof(D2U) : H[U™ Y, W >= < f + detD?U", ¥ > YW € V.

Where Cof(D?U") is the cofactor matrix given by

v, -U;
. 2y — yy Xy
2D : Cof(D*U )_< /" )
Uyy Uzz - U}%z Uyz sz - ny Uzz ny Uyz - Uyy sz
3D: Cof(D?U™) = | U,Ug — UgyU,, U Uz — U2, Uy Uz — Ug Uy,
ny Uyz - Uyy sz ny sz - Uxx Uyz Uxx Uyy - U2

Xy
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
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Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:
@ Newton's method and damped Newton's methods do not converge for P!.

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:
@ Newton's method and damped Newton's methods do not converge for P!.
@ Finite element convexity cannot be preserved during the Newton's iterations. ?

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:
@ Newton's method and damped Newton's methods do not converge for P!.
@ Finite element convexity cannot be preserved during the Newton's iterations. ?

@ The method only converges for PX, k > 2, so using Schur complements becomes
impractical.?

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:
@ Newton's method and damped Newton's methods do not converge for P!.
@ Finite element convexity cannot be preserved during the Newton's iterations. ?

@ The method only converges for PX, k > 2, so using Schur complements becomes
impractical.?

@ Convergence with P! elements and Newton's method requires an auxiliary gradient
recovery operator.?

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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161 The Mixed FEM for P! Elements

Previous applications of the method are limited to P¥ elements with k > 2. |

Further asserted in a follow-up paper ' that P! elements can only be used with a gradient
recovery operator.

List of assertions about the method:
@ Newton's method and damped Newton's methods do not converge for P!.
@ Finite element convexity cannot be preserved during the Newton's iterations. ?

@ The method only converges for PX, k > 2, so using Schur complements becomes
impractical.?

@ Convergence with P! elements and Newton's method requires an auxiliary gradient
recovery operator.?

Motivates using a robust optimization-based solver for the low-order system.

fLakkis, Pryer (2011), A finite element method for second order nonvariational elliptic problems, SJSC.
ttKawecki, Lakkis, Pryer (2018), A finite element method for the Monge-Ampére equation with optimal
transport boundary condition, arXiv.
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171 An Optimization-based Nonlinear Solver

@ Combine auxiliary and primal variables into x = (h1 1,h12,...,hg g1, hg g,u). We solve
the nonlinear equation:

where c is the nonlinear residual function, ¢ : X — C.
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171 An Optimization-based Nonlinear Solver

@ Combine auxiliary and primal variables into x = (h1 1,h12,...,hg g1, hg g,u). We solve
the nonlinear equation:

where c is the nonlinear residual function, ¢ : X — C.

@ Verified that Newton's method and damped Newton’s method do not converge for P!
mixed finite element discretizations.
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171 An Optimization-based Nonlinear Solver

@ Combine auxiliary and primal variables into x = (h1 1,h12,...,hg g1, hg g,u). We solve
the nonlinear equation:

where ¢ is the nonlinear residual function, ¢ : X — C.

@ Verified that Newton's method and damped Newton’s method do not converge for P!
mixed finite element discretizations.

@ Observation: Solving the problem

min 0
subject to ¢(x) =0,

with a composite-step sequential quadratic programming (SQP) solver converges
without exception for a variety of MAE examples, using P! elements.

@ Simplify the nonlinear solution method by using the normal step, and eliminating the
tangential step, of the SQP method.

T Heinkenschloss, Ridzal (2014). A matrix-free trust-region SQP method for equality constrained optimization, SIOPT.
Kelsey DiPietro MAE



181 SQP Summary

@ The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

@ At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.
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181 SQP Summary

@ The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

@ At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.

@ Minimization of linearized residual with trust regions for global convergence.
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@ The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

@ At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.

@ Minimization of linearized residual with trust regions for global convergence.

@ Related to the Levenberg-Marquardt method for nonlinear least-squares problems.
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181 SQP Summary

@ The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

@ At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.

@ Minimization of linearized residual with trust regions for global convergence.
@ Related to the Levenberg-Marquardt method for nonlinear least-squares problems.
@ Can also be viewed as the Gauss-Newton method with trust regions.
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181 SQP Summary

@ The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

@ At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.

Minimization of linearized residual with trust regions for global convergence.
Related to the Levenberg-Marquardt method for nonlinear least-squares problems.
Can also be viewed as the Gauss-Newton method with trust regions.

Significantly more robust than damped Newton.
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SQP Summary

The SQP solver is a composite-step method that coordinates two steps: tangential step,
which improves optimality, and a normal step, which improves feasibility.

At every nonlinear iteration k, the feasibility step s solves the trust-region subproblem:

min || ¢’ (xk)s + c(x0)lIZ
subject to ||s||x < Ay,

where ¢’(xx) is the MAE Jacobian at iterate xx, c(xk) is the residual, and Ay is the
trust-region radius.

Minimization of linearized residual with trust regions for global convergence.
Related to the Levenberg-Marquardt method for nonlinear least-squares problems.
Can also be viewed as the Gauss-Newton method with trust regions.

Significantly more robust than damped Newton.

We compute the feasibility step using Powell’s dogleg method.
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191 Dogleg Method

Cauchy point

sP = min

¢ (xe)s + c(xx)|3
a20,|s]lx <A €' Ca)s + clalle

subject to s = —ac’ (xk)*c(xk)

Newton point

s,’(V = minimum norm solution of

min ¢’ (x)s + c(xe)ll

Kelsey DiPietro
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191 Dogleg Method

Cauchy point TN s £ (o) — 0
sP = min ¢ (xe)s + c(xx)|3
az>0,|[s||x <Ak || ( k) ( )”C Dogleg Path
subject to s = —ac'(x)" c(xk) o
Newton point Se
sV = minimum norm solution of
- ’ 2 Ak
min  [[¢'(x)s + c(x)llc
For an invertible ¢’(xx), the Newton point s can be computed as ‘s = —(c’(xx)) tc(x«) -
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191 Dogleg Method

Cauchy point TN s £ (o) — 0
sP = min ¢ (xe)s + c(xx)|3
az>0,|[s||x <Ak || ( k) ( )HC Dogleg Path
subject to s = —ac'(x)" c(xk) o
Newton point Se
sV = minimum norm solution of
- ’ 2 Ak
min  [[¢'(x)s + c(x)llc
For an invertible ¢’(xx), the Newton point s can be computed as ‘s = —(c’(xx)) tc(x«) -

Step: sk = 57 + sp.
If |[skllx > Ak, compute s, = 5.7 + 75, with ||s” + 7(sp — s,fp)Hi = A2,
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200 Step Acceptance

Calculate ratio of actual and predicted reduction,

leCallg = lle(xi + si) Iz

r = .
le(ilIg = lle" Ca)sic + ()l
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200 Step Acceptance

Calculate ratio of actual and predicted reduction,

leCallE — lleCe + si)lIZ
le(ilIg = lle" Ca)sic + ()l

r =

If r > n, for some specified threshold 7 > 0, accept the step, xx+1 = Xk + Sk-
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200 Step Acceptance

Calculate ratio of actual and predicted reduction,

leCallg = lle(xi + si) Iz

r = .
le(ilIg = lle" Ca)sic + ()l

If r > n, for some specified threshold 7 > 0, accept the step, xx+1 = Xk + Sk-

Otherwise set xx;1 = xx and the decrease the trust-region radius, e.g., Axy1 = %||sk||x.
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200 Step Acceptance

Calculate ratio of actual and predicted reduction,

leCallE — lleCe + si)lIZ
le(ilIg = lle" Ca)sic + ()l

r =

If r > n, for some specified threshold 7 > 0, accept the step, xx+1 = Xk + Sk-
Otherwise set xx;1 = xx and the decrease the trust-region radius, e.g., Axy1 = %||sk||x.

Algorithm terminates if the norm of the residual is less than a specific tolerance or the
maximum number of iterations is reached.
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211 Cauchy Point Computation

Recall ¢’(xk) is the Jacobian of the discretized Monge-Ampére equation evaluated at the step
Xk, ¢’(xk)* is the adjoint of the Jacobian, c(xk) is the residual of the Monge-Ampére equation
at xx, and Ay is the trust region radius at step k.
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Cauchy Point Computation

Recall ¢’(xk) is the Jacobian of the discretized Monge-Ampére equation evaluated at the step
Xk, ¢’(xk)* is the adjoint of the Jacobian, c(xk) is the residual of the Monge-Ampére equation
at xx, and Ay is the trust region radius at step k.

First compute

G "G * c(xe) 113 .

sk =— - ; . & 5 "(xk)* e(xx)-
[’ (xk) e (xk)*c(xi) I
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21

Cauchy Point Computation

Recall ¢’(xk) is the Jacobian of the discretized Monge-Ampére equation evaluated at the step
Xk, ¢’(xk)* is the adjoint of the Jacobian, c(xk) is the residual of the Monge-Ampére equation
at xx, and Ay is the trust region radius at step k.

First compute

g R v,
' lle" (i) e ()  c(xk) |12 (%)™ e(xe)

H: HSng(p > Ak, then set Sk = Hs%sk .
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Cauchy Point Computation

Recall ¢’(xk) is the Jacobian of the discretized Monge-Ampére equation evaluated at the step
Xk, ¢’(xk)* is the adjoint of the Jacobian, c(xk) is the residual of the Monge-Ampére equation
at xx, and Ay is the trust region radius at step k.

First compute

PR 12 C = O T S

e’ ()€’ (i)™ € (i) |12

If ||skl|5 > Ax, then set s, = HAPH
Sk

Cauchy point computation is inexpensive, as it does not involve application of (c/(xx)) ™.
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221 Global Convergence

Algorithm converges from any initial guess under the following assumptions:
The step sk must satisfy the boundedness condition
Iskllx < malle(xi)lles
and the sufficient decrease condition
leCaliE = lle’ (xe)sk + c(x)IE = w2llc(xi)lle min {wsllc(xk)lle, Axl

where k1, k2, k3 > 0 are independent of k.
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Global Convergence

Algorithm converges from any initial guess under the following assumptions:
The step sk must satisfy the boundedness condition

Iskllx < malle(xi)lles
and the sufficient decrease condition

leGadllz = lle’Gadsi + e(x)llz = malle(a)lle min {r3llc(xc)lle, Ax},

where k1, k2, k3 > 0 are independent of k.

Satisfied by the Cauchy point!!!
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Global Convergence

Algorithm converges from any initial guess under the following assumptions:
The step sk must satisfy the boundedness condition

Iskllx < malle(xi)lles
and the sufficient decrease condition

leGadllz = lle’Gadsi + e(x)llz = malle(a)lle min {r3llc(xc)lle, Ax},

where k1, k2, k3 > 0 are independent of k.

Satisfied by the Cauchy point!!!

Must ensure that the Newton point does not destroy the progress made by the Cauchy point.
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231 Newton Point Computation

'/_\c'(xk)s +c(x) =0
Newton point: sf = —(c’(xk)) " *c(x«)
Dogleg Path
st
5
A
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231 Newton Point Computation

'/_\c'(xk)s +c(xx) =0

Newton point: sf = —(c’(xk)) " *c(x«)
Instead of solving for s}, we solve for Dogleg Path

_ N cp
Osk =5, — s,

AV
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231 Newton Point Computation

'/_\c'(xk)s +c(xx) =0

Newton point: sf = —(c’(xk)) " *c(x«)
Instead of solving for s}, we solve for Dogleg Path

_ N cp
Osk =5, — s,

In other words, solve

¢’ (xk)0sk = —(c'(xk)sg” + c(x«)) Ay
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231 Newton Point Computation

'/_\c'(xk)s +c(xx) =0

Newton point: sf = —(c’(xk)) " *c(x«)
Instead of solving for s}, we solve for Dogleg Path

_ N cp
Osk =5, — s,

In other words, solve

¢’ (xk)0sk = —(c'(xk)sg” + c(x«)) Ay

If the linear system is solved iteratively with nonzero error vector e, i.e.,
/ o / cp
(xk)dsk = —(c'(xx)s” + c(xx)) + e,

then for global convergence it is sufficient to require |lelle /||’ (xk)se" + cx)lle < 1.
— Any reasonable relative residual will do!!!
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241 Efficient Solution of the Linear System

@ Solve the linear system using the Schur complement,
Du:=3Y% 59  B*’M'Copu="f fora,f=1,...,d,

B™# .= (&, Cof(H[U])*)®") & RVXN,
oT

oT o
Cop = —<ag¢, 0a® )+ <¢ng, 0a® don € RV*N

M= (0,07) e RVN f.= (f.0) e RV, f = —(c'(x¢)sP + c(x))
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241 Efficient Solution of the Linear System
@ Solve the linear system using the Schur complement,

Du:=3Y% 59  B*’M'Copu="f fora,f=1,...,d,

B™# .= (&, Cof(H[U])*)®") & RVXN,
oT oT °
Coé”g = —<ag¢, Oa® > + <¢ng, O ® >BQ € RNXN

M= (0,07) e RVN f.= (f.0) e RV, f = —(c'(x¢)sP + c(x))

@ Schur complement of the linear system Du = f is solved using an algebraic multigrid
method.
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241 Efficient Solution of the Linear System

@ Solve the linear system using the Schur complement,
Du:=3Y% 59  B*’M'Copu="f fora,f=1,...,d,

B™# .= (&, Cof(H[U])*)®") & RVXN,

oT oT °
Caﬁ = —<8g¢,8ad> > + <¢ng,aa¢ >3Q € RNXN

M= (0,07) e RV N, fi=(£,0) ¢ RV, £ = —(c'(x)s + c(x))

@ Schur complement of the linear system Du = f is solved using an algebraic multigrid
method.
@ Use the Trilinos package Muelu to set up and solve the resulting system.
o Symmetric Gauss-Siedel smoother.
o GMRES used for solving the resulting system.
o Future plans to explore Petrov-Galerkin methods for nonsymmetric linear systems. !

TSala, Tuminaro (2008), A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear
systems, SISC.
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241 Efficient Solution of the Linear System

@ Solve the linear system using the Schur complement,
Du:=3Y% 59  B*’M'Copu="f fora,f=1,...,d,

B™# .= (&, Cof(H[U])*)®") & RVXN,

oT oT °
Caﬁ = —<8g¢,8ad> > + <¢ng,aa¢ >3Q € RNXN

M= (0,07) e RV N, fi=(£,0) ¢ RV, £ = —(c'(x)s + c(x))

@ Schur complement of the linear system Du = f is solved using an algebraic multigrid
method.
@ Use the Trilinos package Muelu to set up and solve the resulting system.
o Symmetric Gauss-Siedel smoother.
o GMRES used for solving the resulting system.
o Future plans to explore Petrov-Galerkin methods for nonsymmetric linear systems. !
@ Hessian terms h, g are recovered separately using the definition of the finite element
Hessian.
TSala, Tuminaro (2008), A new Petrov-Galerkin smoothed aggregation preconditioner for nonsymmetric linear

systems, SISC.
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251 Results - 2D Smooth Solution

Ix|®

Exact Solution: u = exp (T) ue C™.

Classical solution of the Monge-Ampére equation.

Smooth Solution to the MAE Right Hand Side for MAE

Kelsey DiPietro
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Results - 2D Smooth Solution

Grid Size | [Ju — ue|]3 | Rate | [Ju — te|]loo | Rate
25 x 25 3.40e-03 - 4.40e-03 -
20 x 26 8.60e-04 | 1.98 1.10e-03 2
27 x 27 2.16e-04 2.0 2.88e-04 1.93
28 x 28 5.40e-05 2.0 7.27e-05 1.99

Standard smooth problem used in every numerical paper for the MAE, we attain optimal L,

error estimates.

Kelsey DiPietro
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27| Results - 2D Viscosity Solution

Exact solution: u(x) = |x|>*, a € (1/2,3/4), singular derivatives at (0,0), o = 0.6.

Viscosity Solution o= 0.6 Right Hand Side for MAE

S
Sse.
Rt
e

£
£
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ALY
NN Y Ty
IR 25
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Results - 2D Viscosity Solution

LP L, Ratef

Grid Size | [Ju — ue|[3 | Lo Rate lu — tel]lso | oo Error Rate
25 x 25 0.1249 - - 0.1841 -

26 x 28 0.0937 0.41 0.42 0.1381 0.41

27 % 27 0.0705 0.41 0.41 0.1036 0.41

28 x 28 0.0531 0.41 0.41 0.0777 0.42

Compared to the paper by Lakkis and Pryer’ which uses P? elements to solve for the
Monge-Ampere equation using a Newton's method. We attain similar errors with P! element

method.

Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic

problems, SJSC.
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Results - 2D Unbounded Gradient

Exact solution: u(x,y) = —/2 —x2 —y2, u € C>*(Q) N C%(Q).

Unbounded Gradient Right Hand Side for MAE

120
100
80
60
40
20
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301 Results - 2D Unbounded Gradient

Grid Size | |Ju— ue|? | Lo Rate | LP Ratel | ||u — e]loo | FO Max ErrorT
25 x 25 6.4e-03 - - 8.62e-02 1.74e-03
20 x 26 2.3e-03 1.48 1.62 6.10e-02 5.9e-04
27 x 27 | 8.2460e-04 1.48 1.60 4.32e-02 2.0e-04
28 x 28 | 2.9253e-04 1.50 1.55 3.05e-02 1.5e-04

Compared to the P? mixed finite element method by Lakkis and Pryer T and the wide stencil,
monotone finite difference schemes by Froese and Oberman .

Lakkis, Pryer (2011), A finite element method for second order nonvariational elliptic
problems, SJSC.

Froese, Oberman (2013), Convergent filtered schemes for the Monge-Ampére partial
differential equation, SIJNA.
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31| Results - 2D Degenerate Elliptic

Exact solution: u(x) = %(max(|x — xo| — 0.2,0))?, xo = (0.5,0.5).

Forcing term: f(x) = max (1 - ﬁ, 0).

Right Hand Side for MAE

Degenerate Elliptic

e
S5,
el
! OO0 2
‘3{‘\\\\\_\\.‘“‘ AR
A Ui

g

!
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R
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321 Results - 2D Degenerate Elliptic

Grid Size | |lu — ue|]3 | Rate | ||u— telloo | NNZ Max Error’ | FO Max ErroriT
25 x 25 2.18e-04 - 4.22e-04 5.4e-04 3.73e-04
20 x 28 6.04e-05 | 1.8516 1.39e-04 2.8e-04 1.51e-04
27 x 2" | 2.00e-05 | 1.5915 | 5.51e-05 1.5e-4 9.2e-05
28 x 28 6.48e-06 | 1.6282 2.22e-05 7.8e-05 3.8e-05

Compared to two-scale (unstructured wide scale) finite element method by Nochetto et al.
and the wide stencil, montone finite differences schemes by Frose and Oberman ft

Nochetto, Ntogkas, Zhang (2019), Two-Scale method for the Monge-Ampere equation:
convergence to the viscosity solution. Mathematics of Computation.

Froese, Oberman (2013), Convergent filtered schemes for the Monge-Ampére partial
differential equation, SIJNA.

Kelsey DiPietro MAE



33| Results - 3D Smooth Solution

f=(14x*+y*+ 2%)exp <

u =exp (

Q=(0,1)3

Monge-Ampeére equations, |JCM.

32 + y2 + 22)

)

3D Multigird Smooth Solution

—— L infinty Error
—e—L, Error

X%+ y? + 22 :
2

Taken from: Liu et al. (2016), A multigrid scheme for 3D "

Grid Size (N%)
Convergence results for the 3D smooth problem.

Grid Size N | |Ju — ue||3 | Rate | |Ju — te]l~ | Rate | Max GMRES

8 6.70e-03 - 3.72e-02 - 3

16 1.50e-03 | 2.16 1.02e-02 1.87 3

32 3.3%-04 | 2.15 2.70e-03 1.89 3

64 8.06e-05 | 2.07 6.84e-04 1.92 5
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341 Results - 3D Smooth Solution

f =(sin(x) + 1)(sin(y) + 1)(sin(z) + 1)

u = —sin(x) —sin(y) — sin(z) + (x*> + y*> + z?)/2
Q =(0,7)*

Taken from: Liu et al. (2016), A multigrid scheme for 3D

Monge-Ampeére equations, |JCM.

3D Multigird Smooth Solution

Error

—— L infinty Error
—e—L, Error

Grid Size (N%)

Convergence results for the 3D smooth problem.

Grid Size N | |lu — ue]]3 | Rate | [Ju — tve]ls | Rate | Max GMRES
8 2.09e-01 - 7.12e-02 - 4
16 4.84e-02 | 2.11 1.82e-02 1.97 4
32 1.16e-02 | 2.06 4.60e-03 1.98 3
64
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351 Results - 3D Non-smooth Solution

f

u
Q

(0,1)°

(1/16)(x* + y* + 2°) 7%/
(1/3)0% +y* + 22)°/*

Taken from: Liu et al. (2016), A multigrid scheme for 3D
Monge-Ampére equations, |JCM.

Kelsey DiPietro

3D Multigird Non-Smooth Solution

Error

—— L infinty Error
—e—L, Error

Grid Size (N%)

Convergence results for the 3D non-smooth problem.

Grid Size N | |Ju — ue||3 | Rate | |Ju — te]l~ | Rate | Max GMRES
8 1.10e-03 - 6.50e-03 - 3
16 2.35e-04 | 1.50 2.30e-03 2.23 4
32 5.38e-05 | 1.50 8.13e-04 2.13 5
64 1.27e-05 | 1.50 1.27e-05 2.08 6

MAE
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Conclusion

Presented an optimization-based solver for any standard low-order finite element
discretization of nonlinear elliptic problems.

Our optimization-based algorithm combined with a P! discretization demonstrates good
results with solid numerical error and convergence rates.

While the method does not directly impose convexity like other discretizations for the
Monge-Ampere equation, we have reason to believe that it is provably convergent to a
solution of the MAE.

Future work will further leverage the built in machinery for inexact methods that can offer
additional speed ups for the methods.

Potential to build in convexity constraints or other boundary conditions (such as the
optimal transport condition) directly into the objective function of the optimization solver.
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