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: ‘ Motivations & Objectives

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

P Mechanical properties of fine-grained sedimentary rocks (shale and mudstone) are governed by
heterogeneous mineral composition and geologic features

Grid nanoindentations

: Load-displacement curves
over clay-rich area
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3 ‘ Motivations & Objectives

Impact of micro-lithofacial heterogeneities on mechanical properties of Mancos Shale

P Mechanical properties of fine-grained sedimentary rocks (shale and mudstone) are governed by

heterogeneous mineral composition and geologic features

P Develop machine learning methods for mechanical properties by integrating high resolution mineralogy

mapping, multiscale nanoindentation analysis, and (modeling)

P Link geological attributes to microscale mechanical properties of Mancos shale

Grid nanoindentations

SEM image of shale over clay-rich area
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+ | Integrated Approach

¢ 40 cm diameter core of Mancos shale
- Interlaminated with varying sizes of clay to sandy materials
- 1-3 mm laminae
- Parallel/wavy lamina, ripple forms, and bioturbation

e Mineralogical and textural characterization*
- Optical petrography/microscopy
- XRD/X-ray Microprobe
- Back-Scattered Electron Microscopy
- MAPS Mineralogy (Mineralogy mapping)
- Micro-CT
- Small Angle Neutron Scattering
- Focused lon Beam-SEM

e Mechanical Experiments
- Nanoindentation
- Uni-/Tri-axial compression (1x2”)
- Brazilian Test (1x0.5”)

e Computational modeling

* highlighted in yellow for this presentation

Photo of 40cm diameter block samples for
small core samples for mechanical testing and
characterization & thin section samples

Yoon et al. (AAPG, Memoir 120, Chap. 8, 2020)



5 ‘ MAPS Mineralogy

o SEM-based Modular Automated Processing Systems (MAPS):
mineralogical measurement, analysis, data integration

e Mineral identification
- Spectral matching
- Each pixel - single/multiple minerals

Spectral matching for multiple
minerals @ pixel

Yoon et al. (AAPG, Memoir 120, Chap. 8, 2021)

Yellow Box (1.45 x 1.98 cm):
BSE @ 1Tum & MAPS @ 10um
Red box (0.18 x 1.98 cm):

BSE @ 0.2um & MAPS @ 2um

BSE image and mineralogy map
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6 ‘ Effect of geological attributes on mechanical properties
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Nanoindentation

e Depth sensing/instrumented indentation

- Highly accurate load-displacement record
- Determine modulus, hardness and other mechanical
properties using the load-displacement data A

Berkovich
indenter

e Analytical concept

- Purely elastic deformation upon initial unloading o
- Hardness = load/contact area & | unosone /
. . . — S
- Elastic modulus determined by stiffness (S) : FossieLE.
o B
he For =1 // \ (g
h.For €=0.72
DISPLACEMENT, h

[Hysitron Triboindenter 900] Oliver & Pharr (1992)

Indentation strain rate = 0.1 (Oliver et al., 1997)
(current change in displacement/current total disp.)
Maximum load = 0.1,1 10 mN (multiscale indenting)
A total of >1500 indentations were performed.




Nanoindentation Impressions

(1-2) Low-clay contents: surface of pure quartz and feldspar
having higher values of mechanical properties such as elastic
modulus and hardness

¥ (3) Dissolution surface of feldspar (mechanical properties are
. weaker)

(4-6) Grain-to-grain boundary and edge-of-grain, which have
lower mechanical properties values

Variations of measured modulus at low clay contents came from
geological textures such as boundary of grains, dissolution of
grain etc. that are likely to form during diagenesis. These

results indicate the important role of geological attributes in
mechanical properties of mudstone.
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Clustering results
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1. Overall, clustering based regression match experimental data much better

2. For low hardness data where clay mix is dominant, regression needs to be improved
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Force

Simulation of Nanoindentation

Indentation
impression

Model setup
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=Simulated indentation mark mimics an
ideal indentation mark on quartz well

=Simulation results clearly show that
calculated elastic modulus at different
locations from the center of quartz to
clay decrease

=This clearly demonstrates that the
precise location of indentation (in
other words, compositional
heterogeneity) impacts estimated
mechanical properties significantly



Deep Learning-based Analysis
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Multi-label classification (Convolutional neural network)
Input: BSE image, 15 elemental maps, elemental ratio Multi-label segmentation
Output: multiple (15) minerals per pixel

329988057 pixels; 8-bit; 254118

organic

v Clinachlore
v Chamaoszite

Images

Labels

nanopore

- MultiResUnet 97.13% accuracy




Summary & Conclusions
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= Integrated multiscale imaging and mechanical testing with numerical simulation provides a robust

approach to advancing our understanding of mechanical properties of Mancos shale

* Texture/mineralogical characterization
> Recent advances in mineralogical mapping with high resolution imaging over the large area

° Multiscale mineralogical and geologic features lead to considerable heterogeneity of mechanical properties.

= Nanoindentation
> Both mineralogy and its distribution govern distinctively different mechanical properties

> Mechanical map and nanoindentation test suggest the important role of geological attribute to mechanical properties of

mudstone
> Microscopic heterogeneity of mechanical properties can control the spatial distribution of fractures

° This heterogeneity should be taken into account for realistic mechanical modeling and can scale up by rigorous numerical

modeling & machine learning appraoches

Key reference: Yoon et al., 2020, Impact of depositional and diagenetic heterogeneity on multiscale mechanical behavior of mancos shale, New Mexico and Utah, USA, in W. Camp, K.
Milliken, K. Taylor, N. Fishman, P. Hackley, and J. Macquaker, eds., Mudstone diagenesis: Research perspectives for shale hydrocarbon reservoirs, seals, and source rocks: AAPG Memoir 120.
Chapter 8 p. 121-148. [if there is any question including the preprint version of the chapter, please contact hyoon@sandia.gov]



14 ‘ Mineralogy Mapping: Scale/methods dependent
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©Microprobe
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- Ternary diagram with QFPs (quartz, feldspars, pyrite), - MAPS data shows five micro-lithofacies that fall within a
clays, and carbonates for mechanical properties siliceous mudstone and brittle zone on the ternary
(brittle to ductile) diagram

- Petrographic point count can’t distinguish fine - A fraction of quartz (QFPs) decreases with decreasing the
particles/crystalline from clays grain size (clays in an opposite trend)

- Original XRD/microprobe analysis tend to overcount - Feldspars and carbonates are relatively evenly distributed

clay fraction (due to inaccurate mineral assumption
and low resolution)





