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Long Term Storage of Spent Nuclear Fuel in

Austenitic Stainless Steels
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3‘ Arrhenius Temperature Dependence of Crack
Growth for SS Alloys
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* Various collection methods, environments, material lots, sensitization state, etc.

* What are the governing factors and will certain factors accelerate growth?



4‘ What Causes Different Morphology Between

Solutions?
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* Difference in cracking morphology as D WV

well as crack growth rates between
NaCl and MgCl, solutions

* Potentially due to differences in
cathodic reduction reaction

NaCl * Possibility for different crack tip
. chemistry changing pH and
Lot3-60 C  embrittlement
R.M. Katona et al., Journal of The Electrochemical Society, 168 (2021) 031512.

_ R.M. Katona et al., Corrosion Science, 177 (2020) 108935.




;1 Proposed Finite Element Model

* Stress state and aggressive chemical/electrochemical conditions local to the
crack tip control SCC
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model looking for trends in
electrochemical parameters
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concentration, pH, etc.) * Inferences about
crack growth rates
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‘ Crack tip pH Initially Decreases but Increases to
Reach a Steady State |
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* Predicting chloride concentration and pH at the crack tip for SS304 Alloy (Fe, |
Ni, Cr species) in 3 M NaCl ]

* Increase in chloride concentration (due to metal cations) to steady state value

* Initial decrease in pH then subsequent increase to steady state

Center 1800: Material, Physical and Chemical Sciences i



| Increasing External Potential Increases Chloride
Concentration and Decrease pH at Tip
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* Increasing external potential increases chloride concentration
* Increasing external potential decreases pH

* Modest polarization of external surface can greatly change crack tip conditions

Center 1800: Material, Physical and Chemical Sciences i



.| Increasing Cathode Length and Decreasing WL
Decreases pH

— >

Larger Sample
(i.e., Cathode)

Thinner WL

— L =20 mm
—— L. =200 mm

— 200 ym

Increasing Ext. Cathode Decreasing WL Thickness

o H H 3 4 5 6 H 8 3 0 1 2 3 4 5 6 7 8 9
Time (Hr) Time (Hr)

Driven by increase in external cathodic current

Center 1800: Material, Physical and Chemical Sciences




10‘ Can we confirm crack tip electrochemistry?
pH measurement

T

* Drilled holes in CT specimen to allow for placement of micro-pH probes
* Will the holes influence mechanical driving forces? — No

* Is there significant ohmic drop between the drilled holes and reference probe
for pH measurement? — No

Center 1800: Material, Physical and Chemical Sciences




} Anodic Polarizations Increase Crack Growth and
Decrease Crack Tip pH
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§ Anodic Polarizations Increase Crack Growth and
Decrease Crack Tip pH |
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§ Anodic Polarizations Increase Crack Growth and
Decrease Crack Tip pH
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* Externally polarizing the sample
increases crack growth 31 fold in
comparison to non-polarized
conditions

* Cathodically polarizing the crack
tip decreases crack growth 13 fold
in comparison to non-polarized
conditions




. Anodic Polarizations Increase Crack Growth and
Decrease Crack Tip pH
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* Preliminary investigations show that SS304L exposed to 3 M NaCl at room temperature |
is more susceptible to SCC under anodic polarization than cathodic polarization ]

Modest Polarization Influences Crack Growth Rate and Crack Tip Electrochemical
Conditions

Center 1800: Material, Physical and Chemical Sciences i



15‘ How does the model do?
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* Remember: Different geometries (2D/3D), longer crack length

* General trend is present between modeling and experimental results |
* Model appears to have more aggressive conditions

* Not too surprising to have higher pH in measurements given a longer crack length
(higher ohmic drop)

Center 1800: Material, Physical and Chemical Sciences i



s 1| Overall Summary

3.5 - OocCP B
oCcP

In-situ Measurements
3.0 1

254

pH

204 Model

External 1.5 —
1.0 4 i

", 0.5 4 -

",
> Internal 0.0 T r

T
-0.4 0.3 0.2 -0.1 0.0
Potential (Vugagc)

>

Larger Sample
(i.e., Cathode)

Center 1800: Material, Physical and Chemical Sciences




- 1 Acknowledgements

* Dr. Andrew Knight, Dr. Michael Melia, Dr. David Enos, Brendan Nation, Jason ‘
Show

* Helpful conversations with Dr. Mychailo Toloczko (PNNL), Dr. James Burns [
(UVA), Sarah Blust (UVA), Trevor Shoemaker (UVA), Michael Roach (UVA) and |
Dr. Jen Locke (OSU) are appreciated

* Funding:
* DOE's Office of Nuclear Energy's Spent Fuel and Waste Science and Technology
program

* Engineering Science Laboratory Directed Research and Development (LDRD)

Center 1800: Material, Physical and Chemical Sciences i



Towards Understanding the
Controlling Nature of Crack Tip

Chemistry on the Stress Corrosion
Cracking of Austenitic Stainless Steels

|
N\
i
Ao

§

/

PRESENTED BY

Ryan M. Katona! (rmkaton@sandia.gov)

—
Sandia National Laboratories is a
J. M. Taylorl, E. K. Karaszl, C. R. Bryanl, R. G. KeIIyZ, and Gordon ResearCh multimission laboratory managed
1 . and operated by National
R. F. Schaller Semlnar and Technology and Engineering
C on fe rence Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
. . . . International Inc. for the U.S.
1Sandia National Laboratories, Albuquerque, New Mexico Department of Energy’s National
Nuclear Security Administration
87123, USA July 9-15th, 2022 under contract DE-NAO003525.
SAND No. SAND2022-8467 PE
2University of Virginia, Charlottesville, Virginia 22904, USA New London, NH, United

States R
@ENERGY ANISA

Eenter 1800: Material, Physical and Chemical Sciences



s | Proposed Finite Element Model

* In a freely corroding/cracking need to consider the following
reactions:

* Hydrogen Evolution (HER; HT + e~ = H)

* Oxygen Reduction (ORR; O, + 4e~ + 2H,0 = 4 0H")

* Metal Oxidation (Me; = ne™ + Megg

* Metal Hydrolysis (Me™t + OH™ = MeOH™ 1)

. + Metal Salt formation (Me™* + CI~ = MeCI™™1)
 “Internal * Water Equilibrium

External

-

* Predicting chloride concentration and pH at the crack tip for SS304 Alloy (Fe, Ni, |
Cr species) in 3 M NaCl

Center 1800: Material, Physical and Chemical Sciences



» | Overview of MgCl, Samples

3-55°C(T-S)
(800 Hours)

Lot 1—-RT
(1218 hours)

(Time under Constant K)

* Crack growth rates and morphologies show influence from temperature, lot,
and direction




» | Overview of Saturated NaCl Samples

50 pm of crack
on during
constantK

Crack growth rate of
2.1-107% mm/sec

Lot 1-22°C Lot 3-60 °C
e




» 1 External ORR is Dominant Cathodic Reaction
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* FEM provides decoupling of all reactions as a function of position (not ]
previously done for SCC modeling)

* External ORR provides majority of cathodic current
* Strong coupling between the external and internal surfaces

Center 1800: Material, Physical and Chemical Sciences i



23‘ Crack Tip Electrochemistry Model

Corrosion
Pit

= Cl H*

cr

Oceluded

Environment
«— Stress

'

Crack Propagation

* Two things are generally accepted for SCC:

* Bulk chemical and electrochemical conditions not maintained down the
crack

* Stress state and chemical/electrochemical conditions local to the crack tip
control SCC

* Need to understand the occluded environment

Center 1800: Material, Physical and Chemical Sciences
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24‘ In-situ Crack Tip Measurements

pH measurement
probe

O

* Measurement of crack tip chemistries in 3 M NaCl I
* Corresponds to model concentration

* Investigate fatigue, constant K conditions, and polarizations

Center 1800: Material, Physical and Chemical Sciences



s 1 In-situ Crack Tip Measurements
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* Initial pH is near bulk solution pH
3 M NaCl (pH =6.5)

Kax = 20 MPa\/m

* Initial chemistry (pH ~ 4) in crack
develops over roughly 1.5 hours




s 1 In-situ Crack Tip Measurements
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» 1 In-situ Crack Tip Measurements
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I
Q.

* Initial pH is near bulk solution pH
* 3 M NaCl (pH =6.5)
* K_max 20

* Initial chemistry (pH ~ 4) in crack
develops over roughly 1.5 hours

* pH slightly lower with no fatigue

* Slight impact of advection on
chemistry




Anodic Polarizations Increase Crack Growth and

28 .
Decrease Crack Tip pH
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29‘ Conclusions and Implications

* Created set-up to actively measure crack tip pH and crack extension with
DCPD

* Advection plays small role in determining crack tip pH
* Crack tip pH during constant K conditions is roughly 3.5 I

* Anodic polarization increases crack growth and decreases crack tip pH

* Is austenitic stainless steel more susceptible to anodic dissolution? I
* Same trend between modeled and measured pH values
H H 17.31 L ! ! L 16
| | | | 17.30 J Eoce = 0-22 Vg0 Eqppiiea™ =12 Vigiager
| | | | 1720 7.1-10? mm/sec - 14
T P o aad
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'\ = 17.27 Eappuea:uvngmgm L 10
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- E (s T i
i, m 17.25+
L 1724 4 L6 I
17.23 B - ] —— | 4
17.22 4 H=35 |
pH = 3. | -2
172 WJ::= 1.7+0.2
17.20 T T T T 0
47 48 49 50 51 52
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30‘ Next Steps

* 3D Model

* Measurement of crack tip pH as a
function:

* sample size (i.e., cathode length)
* solution composition (i.e., MgCl,)

* Measurement of crack tip potential,
Na* concentration, and conductivity NaCl MeCl,

Le =20 mm
— L =200 mm

> L
Larger Sample
(i.e., Cathode) "

Increasing Ext. Cathode

T T T T T T T T
0 1 2 3 4 5 6 7 8 9
Time (Hr)
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31‘ Anodic Polarizations Increase Crack Growth and

Decrease Crack Tip pH
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* Initial fractography investigation started
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32‘ Spent Nuclear Fuel Storage

* US has over 86,000 metric tons
of Spent Nuclear Fuel (SNF)

° > 3600 stainless steel (SS) canisters

SNF Canister inside
concrete overpack

o 77 storage sites

* Interim storage sites being
utilized longer than initially

i nten d e d '. U.S. Independent Spent Fuel Storage Installations (ISFSI)
e :
pE > _
. 3 r‘ ? [0} g | . o ’ .a.
* US has no permanent disposal v . 050&3 %%
site selected for SNF : N TN o’ I
| SR X T
3 L]
° L4 4 ¢
% e

https://www.nrc.gov/docs/ML2111/ML21116A041.pdf




Towards Understanding Stress Corrosion

Cosntant Current

T
—

* Crack growth rate determination Dot o “\\/

s n-: 0
* Crack tip chemistry modeling 1|i| " " ————
Measurement v
* Crack tip chemistry measurement e | |
o

m t nlfi’;;

N

External l

.
= Internal
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.| New SCC/CF Capabilities at SNL

Brine Flow = 100mL/min

Bubbler
100mL/min

\

Heated

Reservoir =,

* Compact tension specimen in heated cell allowing for fluid flow

Center 1800: Material, Physical and Chemical Sciences



51 Plate Microstructure

B . S ‘

100 um

Center 1800: Material, Physical and Chemical Sciences



1 Lot Information

Lot ID | Plate # Heat # PNNL Reference # UTS (Mpa) YS 0.2% (Mpa) Elong. (%) HRB
LT001 | 206972 SD23822 n/a 647 267.516653 57.6 82.2
LTO003 [ 213104 04E28VAA P304L1 623 292 62.9 81
Composition
¢ Co Cr Cu Mn Mo N Nb Ni P 2 St i fe
LT001 | 0.02 0.2 18.14 | 0.25 1.7 0.08 0.07 8.04 0.031 | 0.004 0.4 0.001 | bal
LT003 | 0.017 | 0.234 | 18.1 | 0.412 | 1.782 | 0.414 | 0.08 | 0.014 8.03 0.037 | 0.001 | 0.236 | 0.002 | 70.7

Center 1800: Material, Physical and Chemical Sciences




Salt Composition and Concentration Change

" with RH
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* Initial assumption of sea water
brine

C.R. Bryan et al., Science of the Total Environment, Under Review, (2022)



Salt Composition and Concentration Change
*" with RH

102

Evaporation ——= ~——Deliquesence * Initial assumption of sea water ‘

10 M‘;‘; - brine
. _ * Evaporation of sea water:

* Concentration of chloride (CI") |
1073 L * Change in brine composition (~ 75 % RH) |

* Canister surface physically hot

Concentration (molal)

10-2 T L] L] L] L] L] L]
100 90 80 70 60 50 40 30 20
RH (%)

250 Modeled Canister Surface Temperature |

oo _ Need to inform upon localized
corrosion across a wide range of

e ' chloride concentration (dilute NaCl |

1°°-K - to saturated MgCl,) and I

50- ! temperature (20 — 55 °C)

N _
0

Temperature (°C)

0

100 200 300
Time (years)

Center 1800: Material, Physical and Chemical Sciences C.R. Bryan et al., Science of the Total Environment, Under Review, (2022)



» 1 Future Consideration of Anode Shape

Sample exposed at 40 % RH and 35 °C Sample exposed at 76 % RH and

e, 1} A
g.k\ Y e A Farr
W L At
] [
iz

i P g

sl 5 pm
* Anode shape dependent upon RH
I
* Potential influence on diffusion and whether or not propagation is under a salt film |
* Pit kinetics are a function of position (what is the bounding case?) |

Center 1800: Material, Physical and Chemical Sciences T.D. Weirich, et al., Journal of The Electrochemical Society, 166 (2019) C3477-C3487.



Future Consideration of Precipitated Species in
© 1 Cathode

10° ! ! ' ' ' ! ! Salts in order of precipitation
— 1. Calcite (CaCO,)
104 | |—— 2 Gypsum (CaSO,:2H,0)
® — 3. Anhydrite (CaSO,)
o
£ g —— 4. Glauberite (Na,Ca(S0,),)
5 102 - 3 ] ] - |— 5. Halite (NaCl)
= p/ 6. Hydromagnesite (Mg,(CO,),(OH),H,0)
£ ws] o N Polyhalite (K,Ca,Mg(S0,),:2H,0)
@ - - .
Q [ 2 13 —— 8. Bloedite (Na,Mg(S0,),:4H,0)
S . | 9. Epsomite (MgSO,:7H,0)
10 T i Pentahydrite (MgSO,:5H,0)
2 . 11. Carnallite (KMgCl,:6H,0)
8
— 12. Kieserite (MgS0,:2H,0)
10° T T T T T T - —— 13. Bischofite (MgCl,:6H,0)
100 90 80 70 60 50 40 30 20

RH (%)

C.R. Bryan et al., Science of the Total Environment, Under Review, (2022)

Center 1800: Material, Physical and Chemical Sciences R.M. Katona et al., Electrochimica Acta, 370 (2021) 137696.



Salt Composition and Temperature Vary by

Location
——RH Temp.—— AH — — NaCl DRH|
102 [l [l 1 [l 1 1 1 k 100
10" 4 Na NO; r g ﬁ ” H
_— E 80 B
5 cr i T i JU0 0 et e
g 1004 i &2 [ I
E sSo? _g 60 |
B -1 - I :
‘g 10 i i
§ [ é_) 40 -
-2 +2 - ~
5 10 Ca 2 0 ! \/ i
, i 2 20 \/ .
10 3
10.4 L] L L T L L L L - 0 L L L
100 920 80 70 60 50 40 30 20 170 175 180 185 190
Relative Humidity (%) Day of Year
o _ Model can be adapted to predict pit |
. Composmop and deliquescence RH change size as a function of location and
by geolocation daily fluctuations |
* Daily/Seasonal temperature and RH
changes Framework can be combined with

kinetic information
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42‘ What We Know from Galvanic Couples

D.Da L V'l V'l L L V'l
3 M NaCl - 25°C Cathode Length (m)
0.07 4
Full Immersion
0.06 - S
—. 0.05 o-oo—u-w 035 B
" . £ S i
Thin Film Electrolyte WL 2. Vs [
y 2 g p—r+rr—rp 025
~ 0.03 4 / B
AA7050 SS304L s m——m-mmm—n-n 0.18 -LC,,
X 0.02 - e : B
- \ | g B A A A MMM AA 01
| La | I—c | 0.01 4 ‘*_",M{GQ“G\G \
\, e —eeea—ese 0.05
0.00 T l-\-h—“\-hC _G_?_Q_QC“'{S?_G_Q 0|01 T
10° 10 107 107 10" 10°
Water Layer (m)

* Galvanic coupling model with fixed boundary conditions
* Strong coupling of the WL thickness and cathode length

* Delineation between thin film and bulk conditions

Center 1800: Material, Physical and Chemical Sciences i



=1 What’s Missing in SCC models?

Qext
Ecorr = > Enm * Chemistry dependent boundary conditions

* Diffusion limited ORR

* |nfluence of external environment
* Size sample
* WL thickness

Qint

Center 1800: Material, Physical and Chemical Sciences



44‘ In-situ Crack Tip Measurements

1740t a1 1)
e Cathodic charging over long
1737 1o time periods has a low crack
—_ growth rate and pH
. '_8 decreases \
T * Changing from cathodic I
% 17.31 - ' -6 5§ polarization to floating
et e - conditions, increases crack I
17.28 - . - 4 growth and decreases the
Epptica™ “1-2 Vagiage - crack tlp pH Significa ntly
17.25 - 3.17-10® mm/sec 5
17.22 +——v—g———————r——r——r————r—p— 0
50 55 60 65 70 75 80 85 90 95
Time (Hr)
* Minor anodic polarizations increase crack growth rates, more than cathodic charging |
* Further suggests susceptibility to anodic dissolution i

Center 1800: Material, Physical and Chemical Sciences i



Current Model Accounts for Changing
Electrochemistry

45

al . o | | ul - |

o | ml

0.9 4 Solid - CrCl, + LiCl
Dashed - 3 M NaCl + CrCl, + LiCl
25°C

o o
w (2]
1 1

Potential (Vgcg)
o
o
~

-0.3 1

- = o

-

pH=1.7(5M) |

pH=2.1(4 M)}

pH = 1.4 (10 M)|

107 10° 10° 10* 102 102 10" 10° 10' 10?2

Current Density (mA/cm?)

* Measured electrochemical
parameters as a function of pH

Center 1800: Material, Physical and Chemical Sciences

ity (mA/cm?)

nt Dens

Curre

1.0x10°8 ~ -

8.0x10°° -
]

6.0x107° - -

4.0x107° - -

2.0x107° - -

0.0 T T T T T
()} 3 4 5 6 7 8
pH
_ | M
Lact,M (pH) = lom (pH) - 104m I
lacem (PH) |
ir (pH) = —2EM
(T Ty
Ipass,M (pH )



« 1 Local Cathodic Current Influences Solution pH

COMSOL

1073 1072 10 10° 10°
Metal Chloride Concentration (M)

* Similar pH’s when comparing concentration (COMSOL) and activity based
calculations (EQ3/6)

* Just metal chloride concentration (i.e., FeCl,, CrCl;, NiCl,)

Center 1800: Material, Physical and Chemical Sciences



‘ Local Cathodic Current Influences Solution pH

10°

10" 4

Fraction of Cathodic Current

1

“we A ® [

e
Increasing CI

Chloride

Concentration (M)

—=—2.7-10°

—e—2.7-102

—2—27-10"

——2.7

—<— 8.1

—+—10

——10.8

1 2 3

4 5 6 7 8
pH

Center 1800: Material, Physical and Chemical Sciences

Fraction of Local Cathodic Current =

iC{I thodic

lanodic




« 1 Local Cathodic Current Influences Solution pH

100 1 1 1 1 1 1 ' ;
c
[}
107
3 Chloride
2 Concentration (M)
g1 —s—2.7-103
= s
< / —2.7-10
% 10y f —s+—27-10"
5 J —e—2.7
S 104 —<— 8.1
E 10 DY
= ——10.8

10 :

o 1 2 3 4 5 6 7 8 9 |
- . I_ -
PH Fraction of Local Cathodic Current = -22e4c
anodic

* pHis a function of both anodic dissolution and local cathodic reactions which
are both a function of time
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« 1 Current per Width Allows Evaluation Over Time

3.0x10" .
Crack Tip
. 1] Leathode = 20 mm |
Evaluate current density € 2 WL =4 mm
a=2mm
along a surface T 200
=
§ 1.5x10° - HER
o
=
g 1.0 10" - 107 4 P B TN T SRR SR BRI |
3 = f
5.0x107 1 5 ] !
E 4 4
wi——— T 1075 3
2.0x10° 150100 = ] ]
Crack Tip Dista E_ . .
o Crack HER
. g 10°4 3
E 3 1
O [
External © |
/ E &
107" = -
£ |
N © Crack ORR '
— Interna
10-? L] LI LI L L L L I
0 1 2 3 4 5 6 T 8
Time (Hr)

- Integrate to get current per width of a surface over time
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50‘ Model Summary

1.0 =l ol sttt il ml ol =
0.9 4 Solid - CrCl; + LiCl

0.8 { Dashed - 3 M NaCl + CrCl, + LiCl

0.7+ 25°C

0.6 4
05 pH =32 (3.1 M)

04 ===

0.3 4

0.2 ' _ .-_"'_/..:-'/
0.1
0.0 < 5 L L L 1
-0.1 = pH=T7 (31
-0.2 -
-0.3 4 4 - -

e e e e gl

0.4 = - = Tme

Potential (Vg.g)

0.5 - | ™ o |
107 10° 10% 10 34 comsoL -

Curn I
o

| ENnaie

External 1x10° : : : :

8x10717 -

10° 10'
. 6x107'" 4 - centration (M)

.,
__—~Internal

4x1071 4 L |

2x107° 5 - I

Fe?* Calculated Diffusivity (m?s)

* SS304L in 3 M Nacl, 25 °C
K =10 MPaym 42

0 2 4 6 8 10
Chloride Concentration (M)

* WL=5mm, L.=20 mm, a=2mm
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_ | Crack tip pH Initially Decreases but Increases to

Reach a Steady State

-
(=)
=}

L I R B BRI N LI B B
= N W A~ OO0 O N 00 O

o

.,
£ 74
=
= 10 .
& Chloride
(5] . I
5 Concentration (M) [
9 —=—27-103
s 107 —e—27-102
O -1
“ —A—27-10
c ——27
o 1073 l ® n —<— 8.1
e
0 10
s —+—10.8

10 ——t— T

0 3 4 5 6 7 8
pH
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Chloride Concentration (M)




| Crack tip pH Initially Decreases but Increases to

Reach a Steady State
100 . P PR RPN RPN B S S TP R 10 .
" .| E
-t c
g 1 | 1 " ‘g
107" - ] .
o " b Chloride ju
5 . Concentration (M)| . §
2 | —=—2.7-1073 <
® 1073 v 2.7 - 107 S
. —a—27-10" ta F
g 2.7 5
2 10°% 4 s 8.1 <
e ] 10 -2 O
T T 10.8 [
- ' | e Model é’
10-4 I‘ I L] I L] I | 0
o 1 2 3 4 5 6 7 8 9
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| Crack tip pH Initially Decreases but Increases to
Reach a Steady State

100 1 1 1 1 1 1 1 1 10 ‘

a4

1 L8 4
107" 5 & .
.,'; Chloride
< o Concentration (M) |
/ | —=—27-10°
107 . 2.7 - 1072

—s—27-10" 4 -

/ \. 2.7
10-3_ 4 A M e . 8.1
10

—

L2 14
= 10.8
‘ s Model
6

7 8 9 0 2 4 6 8
pH Time (Hr)

Fraction of Cathodic Current

[=1]
Metal Chloride Concentration (M)
pH
5] W

10
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‘ Crack tip pH Initially Decreases but Increases to
Reach a Steady State

100 1 1 1 1 1 1 1 1 10 . 5 1 1
, =
et - S
5 L =
t / -8 -g 4 - -
3107 4 o m _ w
O i, Y J Chloride =
%’ ‘ . Concentration (M) 6 8 3 i
-g ) ,.-’ I ——— 10-3 g -
w1075 i 2.7 - 1072 o S
O - )
el 2.7 -10 L4 5 B
o 2? -:
c : [+]
2 1074 . T s <
‘g 10 2 O 14 I
= -T— 10.8 e
‘ e Model =
104 L] T T T L} L} L} 0 n T L] L] L}
0 1 2 3 4 5 6 7 8 9 0 2 4 6 8
pH Time (Hr)

Decrease in pH, increases local cathodic reactions, causing for a subsequent pH
rise
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.| Crack tip pH Initially Decreases but Increases to
Reach a Steady State

100 1 1 1 1 1 1 1 1 10 . 5 1 1
, =
et - S
5 L =
E 1 / -8 ,,% 44
107" o L . [
(&) » .,-; Chloride ..E
%’ ‘ . Concentration (M) 6 8 3 ‘
g 1 ] Cezgo0r [0 _
w1075 # i 2.7 - 1072 o S
O - )
- 2.7 -10 -4 5 24
o 2? -:
c : <]
2 1074 . T s <
° 10 2 O 14
s -T— 10.8 [
‘ e Model =
104 L] L] T T T L} L} L} 0 n T L] L] L}
0 1 2 3 4 5 6 7 8 9 0 2 4 6 8
pH Time (Hr)

‘High’ pH due to significant contribution from local cathodic current
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. | Cathodic Current External to Crack and Crack Tip
Polarized Negatively compared to Cathode

100 .............................. ‘
External [ -0.25 4 i
80 - 5 I
o 60 - <
& ~*-0.30 4
I =
c © i
S 40- £
() -
o g_ -0.35 Cathode Edge
20 - Crack{ Mouth
Internal i Crack Tip
0 /I L] L] L] L] L] L] T -0'40 L] L] L] L] L] L]
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Time (Hr) Time (Hr)
* Majority of cathodic current on external surface due to oxygen reduction I
reaction (ORR) |

* Crack tip polarized negatively with respect to cathode edge
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. | Cathodic Current External to Crack and Crack Tip
Polarized Negatively compared to Cathode

100 40——u>t e 0 o 0 o 3 0 3., -0.35 . 1 . 1 . 1 . 1 . ‘
External
80 -
— -0.36
Q S
S < |
o 60 - <
=] > Cathode Edge
- — -0.37
c © i
8 40- = Crack Mouth
] 2
o & .038- Crack Tip
20
Internal i
0 /I L] L] L] L] L] L] T -0-39 T L] L] L
0 1 2 3 4 5 6 7 8 9 7.0 7.2 74 7.6 7.8 8.0
Time (Hr) Time (Hr)
* Majority of cathodic current on external surface due to oxygen reduction I
reaction (ORR) |

* Crack tip polarized negatively with respect to cathode edge

* Cathode edge and crack mouth near same potential
* Limited potential drop on the external surface
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58‘ Increasing External Potential Decreases Local
Cathodic Reactions

10

-100 1 1 1
= oCcP /,' !
2107
|
= " .

o 102 Chloride

- * -
%’ 1 / Concentration (M) |
9 | —=—27-103
=107 4 . i 2.7 -107
O 4
“5 | 2.7 -10
c 104 « ] 2.7
° 8.1
=]
& 10 5 I
Lt — 10.8

e Mo del
10 ¥ -

* Increasing external potential
increases crack tip potential

* Decrease in local cathodic
current

* Overall increase in crack tip
severity
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Metal Chloride Concentration (M)

Fraction of Cathodic Current

10° L 1 1
E=0V A
-
10 a/
1 ) ‘_‘__,..---.-’
107 ] 4 J Chloride
}! I Concentration (M) J
A
! 2.7-10"
104- "! L] 2?
- 8.1
10 o ‘ _______ -— 10
10.8
. — - —Model
10°% Sy . . r
0 1 2 3 4 5 6 7 )
pH
At the Tip
Anode
HER
1
>
log(i)

10

Chloride Concentration (M)




» 1 Holes do not change mechanical driving force

180 1 1 L 1 1 26 L L 1 L 1
Without Hole = No Hole

_ 160 ~ Analytical - . e Crack Behind of Hole
E Finite EI t S 4 Crack Infront of Hole
% 194 ° TIneEemen - \z 244 % Crack Inside Hole -
o o
= s I
~ 120 -+ B =~
z z
z g
§ 100 - - § 22 4 N N -
£ £ s $
) 80 L "
8 g
»n 604 = h 204 3

40 - -

20 T T T T T 18 T L) LI 1 L]

0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
a/lW a/lW

* Without hole, 3D simulations of stress intensity match analytical solution I
* Hole location causes variation in stress intensity of + 0.2 MPa+/m at the stress |

intensity values of interest
* Hole location should not change mechanical driving forces
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Holes do not change air fatigue crack growth

5x10-5 L L [ [ 3
Air Fatigue
)
@
O 4x10° 4 -
£
E
[
w®  3x105 - -
(1
=
vt
s
S 2x1054 -
O
4
[&]
o
O 1x10° 4 -
—=s— No Hole
—e— Hole
0 1 v 1 v 1 v T - |
0.1 0.2 0.3 0.4 0.5

Stress Intensity Ratio

. . . , Notch R=0.5 I
* Air fatigue of specimens with and
without holes R=0.1
* No difference in CGR * Minor influences on crack propagation
from holes
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‘ Calibration of Micro pH Probe

* Half cell pH electrode

* Measuring pH as a function of reference
probe location

* Very little differences in ohmic drop between
the different reference probe location

Center 1800: Material, Physical and Chemical Sciences



62‘ Influences of Loading Protocol

* Decreasing frequency

* Widely accepted as testing method for
> BWR environments (Andresen)

Stress Intensity (K)
Decreasing frequency

* Promotes SCC behavior of crack by

transitioning from transgranular pre- |
crack to intergranular SCC during
constant K

* Very time consuming (300+ hrs to i
Time transition)

Stress Intensity (K) . .
\ * Rising K

* Used to quickly assess hydrogen
embrittlement susceptibility

* CGR during ramping period dependent

Stress Intensity Rate (MPa*sqrt{m)/hr) on ramp rate

* Not widely applied

* Much quicker tests (~ 60 hrs to constantt
K) ]

Time

Do both tests produce the same CGR and cracking mode (i.e., inter/intra-granular)?

Center 1800: Material, Physical and Chemical Sciences i



‘ Comparison of Loading Protocol

1.E-06

1E-07

1.E-08

w

Decreasing f (NaCl)

1E-10

1.E-11

Decreasing f

1.E-12
1E-13
0.0023 0.0025 0.0027 0.0029 0.0031 0.0033
/T, KL

* Scatter within decreasing f tests

Center 1800: Material, Physical and Chemical Sciences

0.0035

M Shaikh 2013, 316LN BM

# PNNL 316L
¢ PNNL 316L CW

+ Speidel 1981 3041 5A
# Speidel 1981 304 5A

(MgCl,

@ Makayama 1986, 304 SA

@ SRNL(Kor) 304

o SRNL{Kor) 304 Cr-plat.
A Tjayadi 2020, 304 sens.
& PNNL 304 sens.

< PNNL 304L

@ PNMNL 304L 10% CW
XSNL Data

W NaC|_2

® MgCl_2




64‘ Comparison of Loading Protocol

LE-06 m Shalkh 2013, 316LN BM

& @ Shalkh 2013, 316LN W
® A Russell 1979, 316 CW

1EO7 ® Hawkes 1979, 316 5A

)e O 0 & PNNL 3161

& PNML 316L CW

# Speidel 1981 304L 5A

Rising K (NaCl)

@ Shaikh 2013, 304LN CW

1.E-08

©5Shaikh 2013, 304LN sens.
0‘ @ Makayama 1986, 304 SA
@ SRNL(Kor) 304
]

o SRNL{Kor) 304 Cr-plat.
A Tjayadi 2020, 304 sens.
A PHNL 304 sens.

1.E-11 e

1.E-12 304L 10% CW
e Initial results indicate that Rising K tests E
0.0023

could save significant experimental time

* Scatter within decreasing f tests

* Rising K is in between the scatter of decreasing f tests
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65‘ What is Stress Corrosion Cracking (SCC)?

NH]

Susceptible
Material

Corrosive
Environment

* Stable crack growth of a susceptible material in a corrosive environment below the

material’s fracture toughness

* Environmentally assisted cracking, corrosion fatigue, chloride induced stress corrosion
cracking, hydrogen embrittlement (sometimes), sulfide induced stress corrosion cracking

* Mechanisms vary by environment/material system

Center 1800: Material, Physical and Chemical Sciences
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—a— Site A
—+— Site B




« 1 What is Stress Corrosion Cracking (SCC)?

* Chloride induced stress corrosion cracking of austenitic stainless steel will be the focus
* Generally accepted that H* and chloride concentration is elevated in the crack tip

Crack Propagation

Center 1800: Material, Physical and Chemical Sciences




-« | New SCC/CF Capabilities at SNL

* Measure in-situ crack growth rate in a corrosive solution under flow
* ~10'2 m/sec; 15 kip (66 kN); 1 Hz (10 Hz intermittently) max frequency

* Ability to interface with fluid and gas flow (originally built for H,S environments)
* Temperatures over 150 °C (flow only up to ~75 C at this point)

* RH/T chamber for atmospheric SCC

Center 1800: Material, Physical and Chemical Sciences




Quick Summary

Susceptible
Material

Hil
.. i
- .; \lll.

Corrosive
Environment

cr , cIr H*

«— Stress Stress — »

'

Crack Propagation
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69‘ Sample Orientation and In-Situ Testing
Methodology

Constant Current

g Direction (L)

Rollin

Potential Drop
Measurement

Load

e . . . Crack Length (a)
* Majority of samples presented will be in the L-T A

orientation

* Annealed ASTM SS304L (information in
supplemental)

 Utilizing Direct Current Potential Drop (DCPD)
* Measure of average crack growth -

Potential Drop (V)




70‘ Methods for Post Test Sample Analysis

| ‘
Break open 2/3
Load

=

Mount Polish 1/3

After Heat Tint

Section at 1/3
thickness




‘ Calibration of DCPD Set-up

Change in R Ratio Ductile Failure

Notch

>~

» Time




72‘ Calibration of DCPD Set-up

19 1 [ [ L [ [ [ 1 . . I' I
Line: DCPD ; - : i
Symbol: Fractography . RS

18 - i 5 _‘?

£ : s
£ 17 - i 5 i
£ B {
2 16- - _ _ : :
5 R=07 _ AR |
0 15 - : !
© ¥
o R=0.1 5 ;
14 - L 3
™ Heat Tint Sample i
131/ R=01 i = :
T T T T T T T T 1'
0 30 60 90 120 150 180 210 240 a8 g I
Time (hr) ; f: I

* Performed on two different load frames

* Confidence DCPD system is set-up correctly



» 1 SS304L Testing Methodology

i (1)
17.3 2 1 2 1 2 1 2 1 2 [ 2 1 2 [ 2 1
17.2 - L
- 17.1 4 N
£ .
E 1704 B > Time
Ko
"év 16.9 - L A )
"’ (3) constantK ' (2)
% 16.8 - (2) § -
S 167 900/100 + 9000 sec holds "
© 900/100
1661 90110 i
16.54 9/1 (1 ) _
16.4 +——m—->—"T—"——7F—"——"F—"—""F—""T—""T—"17 | Time
0 200 400 600 800 1000 1200 1400 1600 1800 A
Time (Hr) (3) I
* Decreasing frequency under K control to
constantK state
* ‘True’ crack plane for constant K SCC
* Kmax = 20 MPayym Time




| SS304L Exhibits Delayed Crack Growth Under
Constant K in MgCl, at 55 °C

17.3 .................

17.2 - -
17.1 4 -

17.0 4 L
No Crack Growth

-1.71-10°* mm/sec B

16.9 -

16.8 - -

g

16.7 900/100 + 9000 sec holds i
900/100 |
1661  90/10 i

16.54 9/1 -

Crack Length (mm)

16.4

" ] = ] " ] = ] " L] " ] " L] " | =
0 200 400 600 800 1000 1200 1400 1600 1800
Time (Hr) i

* No growth for ~ 700 hours




| SS304L Exhibits Irregular Crack Front in
Saturated MgCl, at 55 "C

17.3 A [ A [ A [ A [ A 1 A [ A 1 A 1

17.2 - "
17.1 - -
6.13-107 mm/sec _
17.0 4 !

16.9 -

. No Crack Growth | '

I 1
16.8 - L

g

16.7 - 900/100 + 9000 sec holds L
900/100

90/10 '
16.54 9/1 -

Crack Length (mm)

16.6 4

16.4

- I - I - I - I - ] - I - ] - 1 -
0 200 400 600 800 1000 1200 1400 1600 1800
Time (Hr)

* After roughly 1500 hours of total test time,
cracking ensues

* Sample was cut at 1/3 of thickness



76‘ SS304L Exhibits Irregular Crack Front in
Saturated MgCl, at 55 °C

Pre-crack

17.3 —

17.2 | W i

17.1 - -
0 Cycling Before Constant K I
E 1704 -
< i
o 16.9 4 L
c
S [
= 16.8 - . L
g 3
16.7 - L
S |
16.6 L
16.4

- I - I - I - I - ] - I - ] - 1 -
0 200 400 600 800 1000 1200 1400 1600 1800
Time (Hr)

* Overlay of DCPD on fractography potentially
suggests cracking halted at the uniform ‘ledge’




SS304L Exhibits Crack Branching in Saturated
MgCl, at 55 °C

17.3 .................

77

17.2 4
17.1 4
17.0

16.9 -

16.8 -

16.7 -

Crack Length (mm)

16.6 -

16.5 -

16.4

Pre-crack

5 T

el T S

mm




SS304L Exhibits Crack Branching in Saturated
MgCl, at 55 °C

17.3

78

17.2 4
17.1 4
17.0

16.9 -

16.8 - B Cycling Before Constant K
16.7 L
16.6 - -

16.5 -

Crack Length (mm)

16.4 ’ .
0 Pre-crack

- . ot L
T =

mm




SS304L Exhibits Crack Branching in Saturated

79
o
MgCl, at 55 °C

17.3 A [ 5 [ 2 [ 5 [l 5 [ 5 [l 5 [ 2 L 5

|
1714 L
E Cycling Before Constant K [
s
) L
c
:I, 3
X B Cycling Before Constant K
S I l
o b

Pre-crack

; A
L R e = N

mm




SS304L Exhibits Crack Branching in Saturated

80
[e]
MgCl, at 55 °C
17.3 2 1 o 1 o 1 o [ o 1 o [ o 1 o 1
17.2-. Test End > _
1714 i
= ' Cycling Before Constant K :
é 17.0 - ycling betore Lonstan i
- : l |
S 16.9 - i
c
S oo |
< 1684 — o I
Q 1 I
g 16.7-. -
16.6 - I
16.5 - . ;
16.4 4— — " :

0 260 400 NS Pre-crack

BRI, ol Wty L

Crack End

1 mm

Is it possible that crack branching caused
delayed crack growth?




81 ‘ Next Steps

* Serial sectioning of the 1/3 slice
* Understand crack propagation (repeat EBSD)
* Reconstruct serial sectioning into 3D image and look at driving forces for branched crack

* Understand driving force for branched cracking
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Low Crack Growth Rate for in Saturated MgCl,
at 25 °C

82

18.0

18.5

Constant K
18.0 900/100

900/100 + 9000 sec holds
17.5 . 90/10

17.0
9N

16.5 -

Crack Length (mm)

16.0 - 9/1

15.5 -+

15.0

0 EI;II'.I '1IJI|JI] 15II'.I|J
Time (Hr) l




Low Crack Growth Rate for in Saturated MgCl, at
25 "C Experienced Localized Cracking

83

Potential no

growth period
18.1

t
-E 1.12-10° mmisec
E’ 18.0 -
9 Constant K
-
S 1704 900/100 + 9000 sec holds
5 !
900/100
17.8 -
0 ) 500 ] 1000 ) 1500

Time (Hr)
* Similar delay in indicated crack growth to 55 °C
* Sample was not sliced but fractured open

* Similar crack morphology to 55 °C however are
thinner regions




| SS304L Exhibits Irregular Crack Front in
Saturated MgCl, at 25 °C

18.2
_ 184
£
E 1.12-10° mmisec
E. 18.0 -
9 Constant K
-
@ 17.9 - 900/100 + 9000 sec holds
5 .
900/100
17.8 4
0 ) 500 ] 1000 ) 1500

Time (Hr)

* Slightly curved crack front makes overlay of
DCPD difficult (very small growth during
constant K hard to decipher)




.| SS304L Exhibits Irregular Crack Front in
Saturated MgCl, at 25 °C

* Measured 100 points of extension from the
drawn blue line and averaged

* Integration of crack extension by hand
* Similar to area integration
* End goal to have image analysis

I T

DCPD 53.8 pm

Fractography 60.1 pm

* Compared to total crack extension during
constant K portion confirming DCPD growth
was correct

* Possible that growth in ‘protrusions’ ahead of
blue line occurred during the constant K
portion




86‘ Crack Growth of Furthest ‘Protrusion’ Potentially
Order of Magnitude Higher Than DCPD

1.E-06

1.E-07

1.E-08 J

@Df
=

u,

SNL data
Fractography *

1.E-09

CGR, m/s
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* Considering protrusion occurs during constant K portion of the test, an
increased crack growth rate is calculated

* *measured from deepest point of protrusion




SS304L Exhibits Irregular Crack Front in
Saturated MgCl, at 25 °C

* Significant corrosion products on the surface

* Enhanced cleaning needed, however, crack wake
corrosion could be eliminating features of interest

* Looking for intergranular/transgranular fracture




‘ Measured Crack Growth Agrees with Literature
Trends
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* Similar crack growth rate trend with temperature to other studies in literature

* Potential influence of solution composition on crack growth rate but does
influence morphology




» | Key Take-a-ways

* Importance of fractography combined with DCPD
* Can impact crack growth rate if taking DCPD average or growth of furthest protrusion

* Can multiple tests be performed on the same sample given the ‘weird’ fracture
morphologies?

* Solution, sample orientation, and material lot appear to impact crack growth and
crack morphology

* Temperature has an impact on crack growth

* |s scatter due to these morphologies, environment, material, measurement
technique, etc.?
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» 1| Current Literature SCC Models
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Current models assume crack tip current density and external
potentials to determine electrochemical conditions in the crack

 Static boundary conditions
* Size of external cathode and WL not explicitly considered
* No consideration of diffusion limited oxygen reduction reaction (ORR)

Center 1800: Material, Physical and Chemical Sciences




91‘ Conclusions and Implications

* Created model to accommodate changes in sample size, external environment (WL
thickness and solution) and sample geometry

* Results follows trends in literature

* Modest anodic polarization of samples can increase electrochemical severity at the |
crack tip

* Are polarizations representative of real life scenarios?
* Are laboratory scale specimens representative of field conditions?

* Strong influence of external surface on crack tip electrochemistry
*  Will this change in 3D?

* Important to understand internal and external impacts on crack tip environment
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SS304L Exhibits Crack Branching in Saturated
MgCl, at 55 °C
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EBSD of Crack Tip
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Mixed SCC Cracking Modes in MgCI

Evidence of both inter/intra granular SCC

Still hard to decipher when branched cracking
occurred/if this is representative behavior

Center 1800: Material, Physical and Chemical Sciences



