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> 1 Concentrating Solar Power and Particles

Particle technology is a leading candidate to couple with next-
generation concentrating solar power (CSP) systems

Advantages of particles in CSP:
= Able to achieve high temperatures (>800°C)
= Low parasitics (gravity driven)
= Low cost heat transfer medium
= Efficient storage
= Direct irradiation (absence of flux limitations)

= No trace heating is necessary

Sandia National Laboratories has been researching particles for CSP
technologies for decades

Yue, L., et al. (2019)



|
; 1 Falling Particle Receivers m

, , . . . Candidate, Vertically Integrated,
Falling particle receivers (FPRs) are one type of particle receiver Utility-scale, Particle CSP Facility
with Multiple FPRs

= Cavity-type receivers where particles are released in a curtain and
fall via gravity past the beam of concentrated light

Multiple FPRs &
- Particle Lift ‘
Advantages of FPRs: '

= Direct irradiance of the particles (absence of flux limitations)

= Experimental evidence of high temperatures (> 800°C)

" : : Hot Storage Bin
= Low parasitics; only a single slide gate for control 2 |

= Conceptually simple and inexpensive

Heat Exchanger
& sCO, Loop

Disadvantages of FPRs:

= High advective losses through the aperture
Cold Storage Bin

= Open aperture increase susceptibility to wind

Adapted from: I
SAND2021-14614 I



+ 1 Motivation

For a utility-scale FPR, the thermal efficiency is

highly affected by the environment

= Wind can significantly increase advective losses a0

vacior1
Stalic Temparalira

750.0
' 704.0
558.0

512.0

520.0

4740

from the receiver cavity

Thermal Efficiency (%)
=] -] co [os] (e [Le]
- un o un (=] un

(o)}
un

60

M

T:, =575"C
ana.r =25 warmz
my, = 9.5 kng

—a— N —+— NNW
—— NW  -—- No Wind

0 2 4

Mills et al. (2020)

6 8 10 12 14 16 18
Wind Speed (m/s)

JEZ20
J36.0

200.0
(k]

Technoeconomic analysis requires accurately predicting
the efficiency throughout a typical year

Predicting a FPR’s thermal efficiency is I
computationally expensive |



s 1 Objectives and Methodology

Develop models for the FPR thermal efficiency in all relevant environmental
conditions that can be leveraged in technoeconomic analysis

o

Methodology: |

1. Develop sophisticated models of candidate, utility-scale FPRs at different sizes

2. Parametrically simulate the thermal performance under a range of relevant conditions |
= Receiver size, particle temperature, particle mass flow rate, incident radiative power, wind conditions

3. Use data to fit correlations of the FPR thermal efficiency that are computationally inexpensive I



s 1 Computational Model

Used a Lagrangian-Eulerian CFD model coupled with a
discrete ordinates (DO) radiation model (ANSYS Fluent®)

= Two-equation RANS turbulence model; realizable k-€
= Spherical particles: CARBO HSP (350 um nominal diameter)

Cavity design based on proposed utility-scale, “north-facing”
FPR designs and lessons learned in the G3P3 project

= 3receiver sizes,; aperture area: 25, 144, 324 m?

= Varying: radiative power Q, particle temperature T, and
particle mass flow rate m

Boundary conditions are assigned based on wind
= Wind from N (360°) to SW (225°) and speeds up to 15 m/s
= 5% and 10 for turbulent intensity and viscosity ratio




7 1 Radiation Modeling

Southy North m)

Non-grey DO model:
= Three bands: 0-2.5, 2.5-4.5, 4.5-100 ym
= All incident radiation entered in the smallest band

To generate a realistic radiative BC for simulations, a
compatible heliostat field generated with SolarPILOT:

1. Field was divided into nine zones

Ray-tracing simulations performed for each zone
Analytical correlations: intensity and directionality
Faces on north surface corresponded to a zone

o & WD

Intensity was scaled proportionally to match the
targeted flux from SolarPILOT




Mesh Convergence Study

To ensure adequate mesh sizing for all FPR sizes (25 to 324 m?), a mesh convergence
study was performed for the largest receivers

=  Approximately 3 million cells were sufficient to reasonably converge

144 m? aperture FPR; NW wind; 10 m/s 324 m? aperture FPR; quiescent conditions
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o 1 Thermal Efficiency with Particle Temperature

Particle T; and T, were varied to determine the effect on efficiencyn
= 144 m?2 FPR, Q@ = 200 MW, varied m to achieve targeted T, in quiescent conditions

= Efficiency is relatively insensitive to the particle temperature

= Higher AT corresponds to a higher cavity back wall temperature
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o | Thermal Efficiency with Wind

The effect of wind on the thermal efficiency n was quantified
* 144 m? FPR, Q = 100-200 MW, m = 885.5 kg/s, T; = 615°C, AT = 160°C

= Winds from the NNW to WNW showed the lowest efficiency

= Advective losses are the primary contribution to decreased thermal efficiency from wind
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11 I Thermal Efficiency with Mass Flow Rate

The effect of mass flow rate on the thermal efficiency n was quantified s
* 144 m2FPR, Q = 100-200 MW, T; = 615°C, AT = 160°C, varied m “
= Efficiencyis less affected by the particle mass flow rate

= At relatively low incident radiative powers, the effect is more pronounced
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iz | Thermal Efficiency with Receiver Scale

The receiver size (25 and 324 m?) was varied for different wind conditions
= Values for Q and m were adjusted to appropriate match the scale; T; = 615°C, AT = 160°C
= Similar results were found among all three FPR scales
= The average incident radiative flux q"" was more relevant than the scale
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|
13 ‘ Correlation Development m

= [ncident solar power (@), wind speed (U,,), wind direction (8,,), and aperture area (A,)

= Correlationfunction: A + B§ + C§% + DgU,,0 + EU,,*0

_19. — F 9. —
where @ = (180 |9: 180]) exp l_ (130 16, lﬂﬂl)] and G — —Q/Ap

G
= Asimilar correlation has been develop for multistage, utility-scale FPRs (J. B. Lee’s presentation)
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i« | Summary and Conclusions

A parametric study was executed to quantify the efficiency of utility scale FPRs
subject to anticipated operating and environmental conditions

= Varied: receiver size, particle inlet and outlet temperature, particle mass flow rate,
incident radiative power, and wind conditions

The most relevant parameters to the thermal efficiency included the wind direction,
wind speed, and average incident flux

A new correlation was developed for utility-scale FPRs to inform technoeconomic
models of the particle-based CSP facilities
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